JPH0826466B2 - Electrocorrosion method for rebar - Google Patents

Electrocorrosion method for rebar

Info

Publication number
JPH0826466B2
JPH0826466B2 JP2152635A JP15263590A JPH0826466B2 JP H0826466 B2 JPH0826466 B2 JP H0826466B2 JP 2152635 A JP2152635 A JP 2152635A JP 15263590 A JP15263590 A JP 15263590A JP H0826466 B2 JPH0826466 B2 JP H0826466B2
Authority
JP
Japan
Prior art keywords
rebar
main
reinforcing bars
anode
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2152635A
Other languages
Japanese (ja)
Other versions
JPH0445292A (en
Inventor
信二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Corp
Original Assignee
Hazama Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd filed Critical Hazama Gumi Ltd
Priority to JP2152635A priority Critical patent/JPH0826466B2/en
Publication of JPH0445292A publication Critical patent/JPH0445292A/en
Publication of JPH0826466B2 publication Critical patent/JPH0826466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、鉄筋コンクリート構造物の鉄筋の腐食を防
止する、特に流電陽極方式の電気防食方法に関する。
TECHNICAL FIELD The present invention relates to a method for preventing corrosion of reinforcing bars of a reinforced concrete structure, and more particularly to a galvanic anode type cathodic protection method.

【従来の技術】[Prior art]

水分存在環境中の金属の腐食反応は、金属が電子を放
出する酸化反応(アノード反応)と、電子を受ける還元
反応(カソード反応)が同時に進行する電気化学反応で
ある。従って、金属電位を変化させれば防食可能であ
り、電気防食方法としては、金属の自然電位差を利用す
る流電陽極方式と、外部から電源を供給する外部電源方
式に大別される。 コンクリート中の鉄筋を電気防食する従来の鉄筋電気
防食方法としては、コンクリート表面に陽極となる電極
を設置し、鉄筋を陰極としてこれとコンクリート表面の
陽極との間にコンクリートを介して外部から強制的に電
流を流す外部電源方式が一般的であった。
The corrosion reaction of a metal in a water-existing environment is an electrochemical reaction in which an oxidation reaction (anode reaction) in which a metal releases an electron and a reduction reaction (cathode reaction) in which an electron is received simultaneously proceed. Therefore, it is possible to prevent corrosion by changing the metal potential, and the methods of galvanic protection are roughly classified into a galvanic anode method that utilizes the natural potential difference of metals and an external power source method that supplies power from the outside. The conventional method of galvanic protection for reinforcing bars in concrete is to install an electrode on the concrete surface that serves as an anode, and use the reinforcing bar as a cathode to force it from the outside via concrete through the concrete. An external power supply system that supplies a current to the general was common.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

しかし、外部電源方式によると次のような問題点があ
った。 (1)コンクリート表面に電極を広範囲に設置しなけれ
ばならなく、その設置に多大の手間と工費を要する。 (2)金属に対する通常の電気防食と比較して、コンク
リートの電気抵抗が大きいため、大きな電源装置を必要
とする。 (3)コンクリート構造物の設置されている環境によっ
て、コンクリートの電気抵抗が変化するが、これに応じ
て供給電気量を調整する必要が生じ、装置が複雑となっ
て設備費、ランニングコストを含めた費用が膨大とな
る。 一方、犠牲陽極を陰極となる鉄筋から離して配置する
従来の流電陽極方式の場合には、コンクリートの電気抵
抗が高いため、所定の防食効果をあげるためには、犠牲
陽極を密に配置しなければならず、施工上難点があっ
た。 本発明の目的は、流電陽極方式であるにも拘らず、こ
のような問題がなく、しかも外部電源方式による上記の
ような欠点を一掃できる鉄筋の電気防食方法を提供する
ことにある。
However, the external power supply method has the following problems. (1) It is necessary to install electrodes on a concrete surface in a wide range, and the installation requires a great deal of time and labor. (2) Compared with normal cathodic protection against metal, the electrical resistance of concrete is large, so a large power supply device is required. (3) The electrical resistance of concrete changes depending on the environment in which the concrete structure is installed, but the amount of electricity supplied must be adjusted accordingly, which complicates the equipment and includes equipment costs and running costs. The cost will be enormous. On the other hand, in the case of the conventional galvanic anode method in which the sacrificial anode is placed away from the reinforcing bar serving as the cathode, the electrical resistance of the concrete is high. There was a construction problem. It is an object of the present invention to provide a method of cathodic protection for reinforcing bars, which has no such problems despite the galvanic anode method and can eliminate the above-mentioned drawbacks of the external power source method.

【課題を解決するための手段】[Means for Solving the Problems]

本発明では、鉄筋の表面にこれよりも自然電位列が卑
な金属を直接コーティングして陽極金属層を形成した配
力筋等の補助鉄筋を、防食対象の主鉄筋に接触させ、主
鉄筋を陰極、補助鉄筋を犠牲陽極として主鉄筋を防食す
る。
In the present invention, the self-potential train than the surface of the reinforcing bar is directly coated with a base metal to form auxiliary metal bars such as distribution bars that form the anode metal layer, and the main bars to be protected are brought into contact with the main bars. The main reinforcement is protected against corrosion by using the cathode and auxiliary reinforcement as sacrificial anodes.

【作用】[Action]

金属コーティングによる陽極金属層を形成した配力筋
等の補助鉄筋が、犠牲陽極となって防食を必要とする主
鉄筋の至近位置に配置され、これら鉄筋がそのまま電気
防食回路網を構成する。従って、流電陽極方式であるに
も拘らず、防食効果が良く、しかもこれまでの鉄筋コン
クリート施工以外の特別な工種を必要とせずに、経済的
に電気防食が図れる。また、金属コーティングした補助
鉄筋をそのコーティング層によって保護できる。
Auxiliary reinforcing bars such as distribution bars having an anodic metal layer formed by metal coating are arranged in the vicinity of the main reinforcing bars which are sacrificial anodes and require corrosion protection, and these reinforcing bars directly constitute the cathodic protection network. Therefore, despite the galvanic anode method, the anticorrosion effect is good, and the electrolytic corrosion can be economically achieved without requiring any special work other than the conventional reinforced concrete construction. Also, the metal coated auxiliary rebar can be protected by the coating layer.

【実施例】【Example】

以下、本発明の一実施例について説明する。 鉄筋コンクリート製造物の鉄筋は、一般に、設計用断
面力と鉄筋の引張強度から所要断面力が決定される主鉄
筋と、主鉄筋に働く応力を均等に分散する配力筋やスタ
ーラップ筋や帯鉄筋等の補助鉄筋に分けられる。また、
鉄筋の位置を確保するための組立筋もある。 そこで、主鉄筋を防食対象の鉄筋とした場合、第3図
のように配力筋となる鉄筋1の表面に、これよりも自然
電位列が卑な金属、例えばアルミニウム,亜鉛,マグネ
シウム等を直接コーテングして陽極金属層2を形成す
る。陽極金属層2の厚さは鉄筋1の太さや設置環境など
に応じて適宜に設定する。 第1図は配筋例を示し、金属コーティングした鉄筋1
を配力筋として主鉄筋3と格子状に組み、陽極金属層2
を主鉄筋3の表面に接触させて交差部を例えば第2図の
如く結束したものである。この場合、配力筋1と主鉄筋
3との交差部を介して配力筋1が陽極、主鉄筋3が陰極
となるガルバノ電池が形成され、主鉄筋3が流電陽極方
式によって防食される。また配力筋1はいわば犠牲鉄筋
となるが、それ自体は陽極金属層2で被覆されているた
め、防食される。 第4図(A),(B)は鉄筋コンクリート構造物の柱
部4に適用した例を示す。主鉄筋5の回りにこれと接触
して帯鉄筋6を配筋する場合、該帯鉄筋6に第2図に示
したような陽極金属層を形成し、これを犠牲陽極として
主鉄筋5を防食する。 第5図は鉄筋コンクリート構造物のスラブ部7及び梁
部8に適用した例で、スラブ部7については配力筋9に
陽極金属層を形成して主鉄筋10を防食し、梁部8につい
てはスターラップ筋11に陽極金属層を形成して主鉄筋12
を防食する。 特に、梁やスラブの場合、下側が乾燥し難く、水分や
海水飛沫による塩分もここに集中する(第6図参照)。
また、第7図に示すように鉄筋13の下側は、コンクリー
ト14中の水分分離によるブリージング水15によりコンク
リートの品質が他の個所より劣るため、この部分が特に
錆びやすい。そこで、このようなところに上記の如き犠
牲鉄筋を配置すれば、効果的な防食が可能である。
An embodiment of the present invention will be described below. Reinforcing bars of reinforced concrete products are generally composed of main reinforcing bars whose required sectional force is determined from the design sectional strength and tensile strength of the reinforcing bars, and distribution bars, stirrup bars, and strip reinforcing bars that evenly distribute the stress acting on the main reinforcing bars. Etc. are divided into auxiliary reinforcing bars. Also,
There is also an assembly bar to secure the position of the reinforcing bar. Therefore, when the main rebar is the rebar for corrosion protection, the surface of the rebar 1 which is the distribution rebar as shown in FIG. The anode metal layer 2 is formed by coating. The thickness of the anode metal layer 2 is appropriately set according to the thickness of the reinforcing bar 1 and the installation environment. Figure 1 shows an example of bar arrangement, and metal-coated rebar 1
The main metal bars 3 are laid in a grid pattern using the
Is brought into contact with the surface of the main rebar 3, and the intersections are bound as shown in FIG. 2, for example. In this case, a galvano battery in which the distribution bar 1 serves as an anode and the main reinforcement 3 serves as a cathode is formed through the intersection of the distribution bar 1 and the main rebar 3, and the main rebar 3 is protected by galvanic anode method. . Further, the distribution bar 1 becomes, so to speak, a sacrificial rebar, but since it is itself covered with the anode metal layer 2, it is protected from corrosion. 4 (A) and (B) show an example applied to the column portion 4 of the reinforced concrete structure. When the strip reinforcing bars 6 are arranged around the main reinforcing bars 5 in contact with them, an anode metal layer as shown in FIG. 2 is formed on the strip reinforcing bars 6, and the main reinforcing bars 5 are protected against corrosion by using this as a sacrificial anode. To do. FIG. 5 is an example applied to the slab portion 7 and the beam portion 8 of the reinforced concrete structure. For the slab portion 7, the anode metal layer is formed on the distribution bar 9 to protect the main rebar 10, and for the beam portion 8 Main reinforcing bar 12 by forming anode metal layer on stirrup bar 11
To prevent corrosion. Particularly in the case of beams and slabs, the lower side is difficult to dry, and water and salt due to seawater splash are also concentrated here (see FIG. 6).
Further, as shown in FIG. 7, since the quality of the concrete on the lower side of the reinforcing bar 13 is inferior to that of other portions due to the breathing water 15 due to the water separation in the concrete 14, this portion is particularly apt to rust. Therefore, by disposing the sacrificial rebar as described above in such a place, effective corrosion prevention is possible.

【発明の効果】【The invention's effect】

本発明によれば次のような効果がある。 主鉄筋と配力筋等の補助鉄筋とを通常通り組み立て
るだけで、流電陽極方式による電気防食回路が形成され
るため、従来に比べ工費及び工期を大幅に低減できる。 ランニングコストが不要である。 梁やスラブのような水分や塩分などの影響を受けや
すい個所の主鉄筋に対して、特に効果的に防食できる。 主鉄筋を配力筋等の補助鉄筋により防食できるに加
え、補助鉄筋も、その表面に直接コーティングした陽極
金属層によって保護できる。
The present invention has the following effects. By simply assembling the main rebar and auxiliary rebars such as distribution bars as usual, a galvanic anode type cathodic protection circuit is formed, so the construction cost and construction period can be greatly reduced compared to the conventional one. No running cost is required. Corrosion can be effectively prevented against main rebars such as beams and slabs that are easily affected by moisture and salt. In addition to being able to prevent the main rebar from being corroded by auxiliary rebars such as distribution bars, the auxiliary rebar can also be protected by the anode metal layer coated directly on the surface.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による配筋例の斜視図、第2図はその一
部の拡大平面図、第3図は陽極金属層を形成した鉄筋の
拡大断面図、第4図(A),(B)は鉄筋コンクリート
構造物の柱部に適用した例の縦断面図及び横断面図、第
5図はスラブ部及び梁部に適用した例の断面図、第6図
及び第7図は梁やスラブの鉄筋が錆びやすいことを説明
するための説明図である。 1……鉄筋、2……陽極金属層、3,5,10……主鉄筋、6
……帯鉄筋、9……配力筋、11……スターラップ筋。
FIG. 1 is a perspective view of an example of bar arrangement according to the present invention, FIG. 2 is an enlarged plan view of a part thereof, FIG. 3 is an enlarged sectional view of a reinforcing bar on which an anode metal layer is formed, and FIG. 4 (A), ( B) is a longitudinal sectional view and a transverse sectional view of an example applied to a column portion of a reinforced concrete structure, FIG. 5 is a sectional view of an example applied to a slab portion and a beam portion, and FIGS. 6 and 7 are beams and slabs. FIG. 6 is an explanatory view for explaining that the reinforcing bars of FIG. 1 ... Reinforcing bar, 2 ... Anode metal layer, 3, 5, 10 ... Main reinforcing bar, 6
...... Reinforcing bar, 9 ...... Strengthening bar, 11 ...... Stirrup bar.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄筋の表面にこれよりも自然電位列が卑な
金属を直接コーティングして陽極金属層を形成した配力
筋等の補助鉄筋を、防食対象の主鉄筋に接触させ、主鉄
筋を陰極、補助鉄筋を犠牲陽極として主鉄筋を防食する
ことを特徴とする鉄筋の電気防食方法。
1. A main rebar, wherein auxiliary rebar such as distribution bar having an anode metal layer formed by directly coating the surface of the rebar with a base metal having a self-potential series is brought into contact with the main rebar to be protected by corrosion. A cathodic protection method for reinforcing bars, characterized in that the main reinforcing bars are protected by using as a cathode and auxiliary reinforcing bars as sacrificial anodes.
JP2152635A 1990-06-13 1990-06-13 Electrocorrosion method for rebar Expired - Fee Related JPH0826466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152635A JPH0826466B2 (en) 1990-06-13 1990-06-13 Electrocorrosion method for rebar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152635A JPH0826466B2 (en) 1990-06-13 1990-06-13 Electrocorrosion method for rebar

Publications (2)

Publication Number Publication Date
JPH0445292A JPH0445292A (en) 1992-02-14
JPH0826466B2 true JPH0826466B2 (en) 1996-03-13

Family

ID=15544707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152635A Expired - Fee Related JPH0826466B2 (en) 1990-06-13 1990-06-13 Electrocorrosion method for rebar

Country Status (1)

Country Link
JP (1) JPH0826466B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123347A (en) * 1976-04-08 1977-10-17 Masakuni Kanai Method of laying concrete structure in sea water
JPS5896882A (en) * 1981-12-02 1983-06-09 日本防蝕工業株式会社 Corrosion protective covering material

Also Published As

Publication number Publication date
JPH0445292A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US5639358A (en) Cathodic protection system for a steel-reinforced concrete structure
WO1996030561A1 (en) Jacketed sacrificial anode cathodic protection system
CZ20031118A3 (en) Concrete structure with double protected reinforcing elements
EP0222829B2 (en) Cathodic protection system for a steel-reinforced concrete structure and method of installation
CA1279606C (en) Cathodic protection systems
US5062934A (en) Method and apparatus for cathodic protection
JPH0826466B2 (en) Electrocorrosion method for rebar
EP0534392B1 (en) Anode structure for cathodic protection of steel reinforced concrete and relevant method of use
EP4139499B1 (en) Anode assembly for corrosion control of steel reinforced concrete structures
JP3798189B2 (en) Repair method for concrete structures
US5098543A (en) Cathodic protection system for a steel-reinforced concrete structure
JPH04297643A (en) Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
JPH05500834A (en) Method and fixing elements for fixing electrode arrangements to be used for cathodic protection of concrete structures
US5423961A (en) Cathodic protection system for a steel-reinforced concrete structure
JPH0588316B2 (en)
JP4015933B2 (en) Method for manufacturing concrete structure
JP2000026174A (en) Method for preventing corrosion of reinforcing bar in concrete
JPS62287086A (en) Method for preventing corrosion of reinforcing bar in reinforced concrete structure
JP3137771B2 (en) Corrosion protection method for concrete structures by thermal spray coating.
JPH09296526A (en) Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure
JPH1129952A (en) Concrete structure, and its electric anticorrosion method
JP4132174B2 (en) Macro cell corrosion prevention method for buried piping
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
CN211200711U (en) Anticorrosive node of underground steel structure
WO1996000805A1 (en) Corrosion protection of steel reinforcement in concrete

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees