JPH0445292A - Electric corrosion protection for reinforcing bar - Google Patents
Electric corrosion protection for reinforcing barInfo
- Publication number
- JPH0445292A JPH0445292A JP15263590A JP15263590A JPH0445292A JP H0445292 A JPH0445292 A JP H0445292A JP 15263590 A JP15263590 A JP 15263590A JP 15263590 A JP15263590 A JP 15263590A JP H0445292 A JPH0445292 A JP H0445292A
- Authority
- JP
- Japan
- Prior art keywords
- bar
- anode
- reinforcing bar
- reinforcing
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003014 reinforcing effect Effects 0.000 title claims abstract description 59
- 238000005260 corrosion Methods 0.000 title claims abstract description 21
- 230000007797 corrosion Effects 0.000 title claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 15
- 239000011150 reinforced concrete Substances 0.000 abstract description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052749 magnesium Inorganic materials 0.000 abstract description 2
- 239000011777 magnesium Substances 0.000 abstract description 2
- 229910052725 zinc Inorganic materials 0.000 abstract description 2
- 239000011701 zinc Substances 0.000 abstract description 2
- 239000010953 base metal Substances 0.000 abstract 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 230000003449 preventive effect Effects 0.000 abstract 1
- 239000004567 concrete Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 10
- 238000004210 cathodic protection Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005536 corrosion prevention Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Underground Or Underwater Handling Of Building Materials (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
本発明は、鉄筋コンクリート構造物の鉄筋の腐食を防止
する、特に流電陽極方式の電気防食方法に関する。The present invention relates to a galvanic anode cathodic protection method for preventing corrosion of reinforcing bars in reinforced concrete structures.
水分存在環境中の金属の腐食反応は、金属が電子を放出
する酸化反応(アノード反応)と、電子を受ける還元反
応(カソード反応)が同時に進行する電気化学反応であ
る,従って、金属電位を変化させれば防食可能であり、
電気防食方法とじては、金属の自然電位差を利用する流
電陽極方式と、外部から電源を供給する外部電源方式に
大別される。
コンクリート中の鉄筋を電気防食する従来の鉄筋電気防
食方法としては、コンクリート表面に陽極となる電極を
設置し、鉄筋を陰極としてこれとコンクリート表面の陽
極との間にコンクリートを介して外部から強制的に電流
を流す外部電源方式が一般的であった。Corrosion reactions of metals in an environment containing moisture are electrochemical reactions in which an oxidation reaction in which the metal releases electrons (anode reaction) and a reduction reaction in which the metal receives electrons (cathode reaction) proceed simultaneously.Therefore, the metal potential changes. Corrosion prevention is possible if
Cathodic protection methods are broadly divided into galvanic anode methods that utilize the natural potential difference of metals, and external power supply methods that supply power from outside. The conventional method for cathodic protection of reinforcing steel in concrete involves installing an electrode as an anode on the surface of the concrete, and using the reinforcing steel as a cathode between this electrode and the anode on the concrete surface, an external force is applied via the concrete. An external power supply method that passed current through the was common.
しかし、外部電源方式によると次のような問題点があっ
た。
(1) コンクリート表面に電極を広範囲に設置しな
ければならなく、その設置に多大の手間と工費を要する
。
(2)金属に対する通常の電気防食と比較して、コンク
リートの電気抵抗が大きいため、大きな電源装置を必要
とする。
(3) コンクリート構造物の設置されている環境に
よって、コンクリートの電気抵抗が変化するが、これに
応して供給電気量を調整する必要が生し、装置が複雑と
なって設備費、ランニングコストを含めた費用が膨大と
なる。
一方、犠牲陽極を陰極となる鉄筋から離して配置する従
来の流電陽極方式の場合には、コンクリートの電気抵抗
が高いため、所定の防食効果をあげるためには、犠牲陽
極を密に配置しなければならず、施工上難点があった。
本発明の目的は、流電陽極方式であるにも拘らず、この
ような問題がなく、しかも外部電源方式による上記のよ
うな欠点を一掃できる鉄筋の電気防食方法を提供するこ
とにある。However, the external power supply method has the following problems. (1) Electrodes must be installed over a wide area on the concrete surface, and installation requires a great deal of effort and construction cost. (2) Compared to normal cathodic protection for metals, the electrical resistance of concrete is high, so a large power supply is required. (3) The electrical resistance of concrete changes depending on the environment in which the concrete structure is installed, and it is necessary to adjust the amount of electricity supplied accordingly, making the equipment complex and increasing equipment costs and running costs. The costs including this will be enormous. On the other hand, in the case of the conventional galvanic anode method in which the sacrificial anode is placed away from the reinforcing steel that serves as the cathode, the electrical resistance of concrete is high, so in order to achieve the desired corrosion protection effect, the sacrificial anode must be placed closely together. However, there were some construction difficulties. An object of the present invention is to provide a method for electrolytic corrosion protection of reinforcing bars that does not have such problems despite using a galvanic anode method and can eliminate the above-mentioned drawbacks caused by an external power supply method.
本発明では、鉄筋の表面にこれよりも自然電位列が卑な
金属を直接コーティングし、これを犠牲陽極として防食
対象の鉄筋に接触させ防食する。In the present invention, the surface of the reinforcing bar is directly coated with a metal whose natural potential series is more base than this, and this is used as a sacrificial anode in contact with the reinforcing bar to be protected against corrosion.
金属コーティングされた鉄筋が、犠牲陽極となって防食
を必要とする鉄筋の至近位置に配置され、これら鉄筋が
そのまま電気防食回路網を構成する。
従って、流電陽極方式であるにも拘らず、防食効果が良
く、しかもこれまでの鉄筋コンクリート施工以外の特別
な工種を必要とせずに、経済的に電気防食が図れる。ま
た、金属コーティングした鉄筋をそのコーティング層に
よって保護できる。A metal-coated reinforcing bar serves as a sacrificial anode and is placed close to the reinforcing bars that require corrosion protection, and these reinforcing bars directly constitute a cathodic protection circuit network. Therefore, although it is a galvanic anode method, it has a good corrosion prevention effect, and moreover, cathodic corrosion protection can be achieved economically without requiring any special work other than conventional reinforced concrete construction. Additionally, metal-coated reinforcing bars can be protected by the coating layer.
以下、本発明の一実施例について説明する。
鉄筋コンクリート構造物の鉄筋は、一般に、設計用断面
力と鉄筋の引張強度から所要断面力が決定される主鉄筋
と、主鉄筋に働く応力を均等に分散する配力筋やスター
ラップ筋や帯鉄筋等の補助鉄筋に分けられる。また、鉄
筋の位置を確保するための組立筋もある。
そこで、主鉄筋を防食対象の鉄筋とした場合、第3図の
ようにそれ以外の鉄筋1の表面に、これよりも自然電位
列が卑な金属、例えばアルミニウム、亜鉛、マグネシウ
ム等を直接コーテングして陽極金属層2を形成する。陽
極金属層2の厚さは鉄筋1の太さや設置環境などに応し
て適宜に設定する。
第11]は配筋例を示し、金属コーティングした鉄筋1
を配力筋として主鉄筋3七格子状に組み、陽極金属層2
を主鉄筋3の表面に接触させて交差部を例えば第2図の
如く結束したものである。この場合、配力筋とした鉄筋
lと主鉄筋3との交差部を介して鉄筋1が陽極、主鉄筋
3が陰極となるガルバノ電池が形成され、主鉄筋3が流
電陽極方式によって防食される。また鉄筋1はいわば犠
牲鉄筋となるが、それ自体は陽極金属層2で被覆されて
いるため、防食される。
第4図(A)、 (B)は鉄筋コンクリート構造物の
柱部4に適用した例を示す。主鉄筋5の回りにこれと接
触して帯鉄筋6を配筋する場合、該帯鉄筋6に第2図に
示したような陽極金属層を形成し、これを犠牲陽極とし
て主鉄筋5を防食する。
第5図は鉄筋コンクリート構造物のスラブ部7及び梁部
8に適用した例で、スラブ部7については配力筋9に陽
極金属層を形成して主鉄筋10を防食し、梁部8につい
てはスターラップ筋11に陽極金属層を形成して主鉄筋
工2を防食する。
特に、梁やスラブの場合、下側が乾燥し難く、水分や海
水飛沫による塩分もここに集中する(第6[21参照)
。また、第7図に示すように鉄筋13の下側は、コンク
リート14中の水分分離によるブリージング水15によ
りコンクリートの品質が他の個所より劣るため、この部
分が特に錆びやすい。そこで、このようなところに上記
の如き犠牲鉄筋を配置すれば、効果的な防食が可能であ
る。An embodiment of the present invention will be described below. The reinforcing bars of reinforced concrete structures generally include main reinforcing bars whose required sectional force is determined from the design sectional force and the tensile strength of the reinforcing bars, and distribution bars, stirrup bars, and hoop reinforcing bars that evenly distribute the stress acting on the main reinforcing bars. It is divided into auxiliary reinforcing bars such as There are also assembly bars to secure the position of reinforcing bars. Therefore, when the main reinforcing bar is the reinforcing bar to be protected against corrosion, the surface of the other reinforcing bar 1 is directly coated with a metal whose natural potential series is baser than that, such as aluminum, zinc, magnesium, etc., as shown in Figure 3. Then, the anode metal layer 2 is formed. The thickness of the anode metal layer 2 is appropriately set depending on the thickness of the reinforcing bar 1 and the installation environment. 11] shows an example of reinforcing bar arrangement, and metal-coated reinforcing bar 1
The main reinforcing bars 3 are arranged in a lattice pattern as distribution bars, and the anode metal layer 2
are brought into contact with the surface of the main reinforcing bars 3, and the intersections are tied together as shown in FIG. 2, for example. In this case, a galvano cell is formed in which the reinforcing bar 1 serves as an anode and the main reinforcing bar 3 serves as a cathode through the intersection of the reinforcing bar 1 used as a distribution bar and the main reinforcing bar 3, and the main reinforcing bar 3 is protected against corrosion by the galvanic anode method. Ru. Further, the reinforcing bar 1 becomes a so-called sacrificial reinforcing bar, but since it is covered with the anode metal layer 2, it is protected against corrosion. Figures 4(A) and 4(B) show an example in which the method is applied to a column 4 of a reinforced concrete structure. When reinforcing hoops 6 are arranged around and in contact with the main reinforcing bars 5, an anode metal layer as shown in FIG. 2 is formed on the hoop reinforcing bars 6, and this is used as a sacrificial anode to protect the main reinforcing bars 5 from corrosion. do. Fig. 5 shows an example in which the application is applied to the slab part 7 and beam part 8 of a reinforced concrete structure.For the slab part 7, an anode metal layer is formed on the distribution bar 9 to prevent corrosion of the main reinforcing bar 10, and for the beam part 8, the anode metal layer is formed on the distribution bar 9. An anode metal layer is formed on the stirrup bar 11 to protect the main reinforcing bar 2 from corrosion. In particular, in the case of beams and slabs, the lower side is difficult to dry, and moisture and salt from seawater droplets are concentrated here (see Section 6 [21]).
. Furthermore, as shown in FIG. 7, the quality of the concrete on the lower side of the reinforcing bars 13 is inferior to other parts due to breathing water 15 caused by water separation in the concrete 14, so this part is particularly susceptible to rust. Therefore, if sacrificial reinforcing bars as described above are placed in such places, effective corrosion prevention can be achieved.
本発明によれば次のような効果がある。
■ 鉄筋を通常通り組み立てるだけで、流電陽極方式に
よる電気防食回路が形成されるため、従来に比ベニ費及
び工期を大幅に低減できる。
■ ランニングコストが不要である。
■ 梁やスラブのような水分や塩分などの影響を受けや
すい個所の鉄筋に対して、特に効果的に防食できる。
■ 金属コーティングした鉄筋をそのコーティング層に
よって保護できる。According to the present invention, there are the following effects. ■ By simply assembling the reinforcing bars as usual, a cathodic protection circuit using the galvanic anode method is formed, significantly reducing costs and construction time compared to conventional methods. ■ No running costs required. ■ It is particularly effective in preventing corrosion of reinforcing bars in areas such as beams and slabs that are susceptible to moisture and salt. ■ Metal-coated reinforcing bars can be protected by the coating layer.
第1図は本発明による配筋例の斜視図、第2図はその一
部の拡大平面図、第3図は陽極金属層を形成した鉄筋の
拡大断面図、第4図(A)、(B)は鉄筋コンクリート
構造物の柱部に適用した例の縦断面図及び横断面図、第
5図はスラブ部及び梁部に適用した例の断面図、第6図
及び第7図は梁やスラブの鉄筋が錆びやすいことを説明
するための説明図である。
1・・・・・・鉄筋、2・・・・・・陽極金属層、3,
5.10・・・・・・主鉄筋、6・・・・・・帯鉄筋、
9・・・・・・配力筋、11・・・・・・スターランプ
筋。
第
図
第
図
ア
第
図
第
図(A)
第
図<8)
第
図
第
図
塩分
水分
第
図
コンクリート打設方向FIG. 1 is a perspective view of an example of reinforcement according to the present invention, FIG. 2 is an enlarged plan view of a part thereof, FIG. 3 is an enlarged sectional view of reinforcing bars on which an anode metal layer is formed, and FIGS. B) is a vertical cross-sectional view and a cross-sectional view of an example applied to a column part of a reinforced concrete structure, Figure 5 is a cross-sectional view of an example applied to a slab part and a beam part, and Figures 6 and 7 are a cross-sectional view of an example applied to a column part of a reinforced concrete structure. FIG. 2 is an explanatory diagram for explaining that reinforcing bars are susceptible to rust. 1...Reinforcement bar, 2...Anode metal layer, 3,
5.10... Main reinforcing bar, 6... Hoop reinforcing bar,
9... Distribution muscle, 11... Star lamp muscle. Figure Figure A Figure Figure Figure (A) Figure <8) Figure Figure Salt Moisture Figure Concrete Placement Direction
Claims (1)
接コーティングし、これを犠牲陽極として防食対象の鉄
筋に接触させ防食することを特徴とする鉄筋の電気防食
方法。1. A method for electrolytic corrosion protection of reinforcing bars, which is characterized in that the surface of reinforcing bars is directly coated with a metal whose natural potential series is baser than this, and this is used as a sacrificial anode to contact the reinforcing bars to be protected against corrosion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2152635A JPH0826466B2 (en) | 1990-06-13 | 1990-06-13 | Electrocorrosion method for rebar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2152635A JPH0826466B2 (en) | 1990-06-13 | 1990-06-13 | Electrocorrosion method for rebar |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0445292A true JPH0445292A (en) | 1992-02-14 |
JPH0826466B2 JPH0826466B2 (en) | 1996-03-13 |
Family
ID=15544707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2152635A Expired - Fee Related JPH0826466B2 (en) | 1990-06-13 | 1990-06-13 | Electrocorrosion method for rebar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0826466B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123347A (en) * | 1976-04-08 | 1977-10-17 | Masakuni Kanai | Method of laying concrete structure in sea water |
JPS5896882A (en) * | 1981-12-02 | 1983-06-09 | 日本防蝕工業株式会社 | Corrosion protective covering material |
-
1990
- 1990-06-13 JP JP2152635A patent/JPH0826466B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123347A (en) * | 1976-04-08 | 1977-10-17 | Masakuni Kanai | Method of laying concrete structure in sea water |
JPS5896882A (en) * | 1981-12-02 | 1983-06-09 | 日本防蝕工業株式会社 | Corrosion protective covering material |
Also Published As
Publication number | Publication date |
---|---|
JPH0826466B2 (en) | 1996-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5714045A (en) | Jacketed sacrificial anode cathodic protection system | |
US4900410A (en) | Method of installing a cathodic protection system for a steel-reinforced concrete structure | |
US5759361A (en) | Cathodic protection system for a steel-reinforced concrete structure | |
JP2007039996A (en) | Method of reinforcing and corrosion-preventing concrete structure, and reinforcing/anticorrosion material | |
EP0222829B1 (en) | Cathodic protection system for a steel-reinforced concrete structure and method of installation | |
CA2189676A1 (en) | Galvanic protection of rebar by zinc wire and insulating coating | |
US5062934A (en) | Method and apparatus for cathodic protection | |
JPH0445292A (en) | Electric corrosion protection for reinforcing bar | |
EP0534392B1 (en) | Anode structure for cathodic protection of steel reinforced concrete and relevant method of use | |
JP3798189B2 (en) | Repair method for concrete structures | |
US5098543A (en) | Cathodic protection system for a steel-reinforced concrete structure | |
JPH05500834A (en) | Method and fixing elements for fixing electrode arrangements to be used for cathodic protection of concrete structures | |
US5423961A (en) | Cathodic protection system for a steel-reinforced concrete structure | |
JPH09296526A (en) | Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure | |
KR20090111484A (en) | Corrosion protection method of stainless steel water tank structure by cathodic protection mathod | |
JPH04297643A (en) | Reinforced concrete structure and structural member, and electric protection method for reinforced concrete | |
JP4201394B2 (en) | Concrete steel structure covered with composite film electrode | |
JP2003213804A (en) | Method for manufacturing concrete structure | |
JPH08376Y2 (en) | Plating equipment using insoluble anode | |
JP2534329Y2 (en) | Anticorrosion bolts and anticorrosion metal fittings for bolts | |
JPH1129952A (en) | Concrete structure, and its electric anticorrosion method | |
JPH0454752B2 (en) | ||
JPH0352321Y2 (en) | ||
JPH0514160U (en) | Solar system electronic anticorrosion device | |
JP2662754B2 (en) | Backing steel material for tank bottom plate welding and corrosion prevention method for tank bottom plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |