JPH0445292A - Electric corrosion protection for reinforcing bar - Google Patents

Electric corrosion protection for reinforcing bar

Info

Publication number
JPH0445292A
JPH0445292A JP15263590A JP15263590A JPH0445292A JP H0445292 A JPH0445292 A JP H0445292A JP 15263590 A JP15263590 A JP 15263590A JP 15263590 A JP15263590 A JP 15263590A JP H0445292 A JPH0445292 A JP H0445292A
Authority
JP
Japan
Prior art keywords
bar
anode
reinforcing bar
reinforcing
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15263590A
Other languages
Japanese (ja)
Other versions
JPH0826466B2 (en
Inventor
Shinji Sato
信二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd filed Critical Hazama Gumi Ltd
Priority to JP2152635A priority Critical patent/JPH0826466B2/en
Publication of JPH0445292A publication Critical patent/JPH0445292A/en
Publication of JPH0826466B2 publication Critical patent/JPH0826466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To prevent corrosion of reinforcing bars for a reinforced concrete structure by directly coating the surface of a reinforcing bar with base metal having higher ionization tendency than the reinforcing bar to make a sacrifice anode and then bringing this anode into contact with the objective reinforcing bar to be protected from corrosion. CONSTITUTION:A reinforcing bar 1 is directly coated with base metal having higher ionization tendency such as aluminum, zinc, magnesium, etc., to form an anode metal layer. Figure 1 shows one example of arrangement of reinforcing bars, in which the metal-coated bar 1 is used as a distributing bar to form a lattice with the main reinforcing bar 3. In this arrangement, the anode metal layer comes into contact with the reinforcing member 3 and the crossing part is fixed as shown in the figure 2. In this state, at the crossing part of the main reinforcing bar 3 and the bar 1, a galvanic cell is formed with the bars 1 as an anode and the main bar 3 as a cathode, and the main bar 3 is given the corrosion preventive effect by galvanic anode system. The reinforcing bar 1 is used as a sacrifice anode, however, the bar 1 itself is covered with the anode metal layer 2 and thereby, it has corrosion resistance.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、鉄筋コンクリート構造物の鉄筋の腐食を防止
する、特に流電陽極方式の電気防食方法に関する。
The present invention relates to a galvanic anode cathodic protection method for preventing corrosion of reinforcing bars in reinforced concrete structures.

【従来の技術】[Conventional technology]

水分存在環境中の金属の腐食反応は、金属が電子を放出
する酸化反応(アノード反応)と、電子を受ける還元反
応(カソード反応)が同時に進行する電気化学反応であ
る,従って、金属電位を変化させれば防食可能であり、
電気防食方法とじては、金属の自然電位差を利用する流
電陽極方式と、外部から電源を供給する外部電源方式に
大別される。 コンクリート中の鉄筋を電気防食する従来の鉄筋電気防
食方法としては、コンクリート表面に陽極となる電極を
設置し、鉄筋を陰極としてこれとコンクリート表面の陽
極との間にコンクリートを介して外部から強制的に電流
を流す外部電源方式が一般的であった。
Corrosion reactions of metals in an environment containing moisture are electrochemical reactions in which an oxidation reaction in which the metal releases electrons (anode reaction) and a reduction reaction in which the metal receives electrons (cathode reaction) proceed simultaneously.Therefore, the metal potential changes. Corrosion prevention is possible if
Cathodic protection methods are broadly divided into galvanic anode methods that utilize the natural potential difference of metals, and external power supply methods that supply power from outside. The conventional method for cathodic protection of reinforcing steel in concrete involves installing an electrode as an anode on the surface of the concrete, and using the reinforcing steel as a cathode between this electrode and the anode on the concrete surface, an external force is applied via the concrete. An external power supply method that passed current through the was common.

【発明が解決しようする課題】[Problem to be solved by the invention]

しかし、外部電源方式によると次のような問題点があっ
た。 (1)  コンクリート表面に電極を広範囲に設置しな
ければならなく、その設置に多大の手間と工費を要する
。 (2)金属に対する通常の電気防食と比較して、コンク
リートの電気抵抗が大きいため、大きな電源装置を必要
とする。 (3)  コンクリート構造物の設置されている環境に
よって、コンクリートの電気抵抗が変化するが、これに
応して供給電気量を調整する必要が生し、装置が複雑と
なって設備費、ランニングコストを含めた費用が膨大と
なる。 一方、犠牲陽極を陰極となる鉄筋から離して配置する従
来の流電陽極方式の場合には、コンクリートの電気抵抗
が高いため、所定の防食効果をあげるためには、犠牲陽
極を密に配置しなければならず、施工上難点があった。 本発明の目的は、流電陽極方式であるにも拘らず、この
ような問題がなく、しかも外部電源方式による上記のよ
うな欠点を一掃できる鉄筋の電気防食方法を提供するこ
とにある。
However, the external power supply method has the following problems. (1) Electrodes must be installed over a wide area on the concrete surface, and installation requires a great deal of effort and construction cost. (2) Compared to normal cathodic protection for metals, the electrical resistance of concrete is high, so a large power supply is required. (3) The electrical resistance of concrete changes depending on the environment in which the concrete structure is installed, and it is necessary to adjust the amount of electricity supplied accordingly, making the equipment complex and increasing equipment costs and running costs. The costs including this will be enormous. On the other hand, in the case of the conventional galvanic anode method in which the sacrificial anode is placed away from the reinforcing steel that serves as the cathode, the electrical resistance of concrete is high, so in order to achieve the desired corrosion protection effect, the sacrificial anode must be placed closely together. However, there were some construction difficulties. An object of the present invention is to provide a method for electrolytic corrosion protection of reinforcing bars that does not have such problems despite using a galvanic anode method and can eliminate the above-mentioned drawbacks caused by an external power supply method.

【課題を解決するための手段】[Means to solve the problem]

本発明では、鉄筋の表面にこれよりも自然電位列が卑な
金属を直接コーティングし、これを犠牲陽極として防食
対象の鉄筋に接触させ防食する。
In the present invention, the surface of the reinforcing bar is directly coated with a metal whose natural potential series is more base than this, and this is used as a sacrificial anode in contact with the reinforcing bar to be protected against corrosion.

【作  用】[For production]

金属コーティングされた鉄筋が、犠牲陽極となって防食
を必要とする鉄筋の至近位置に配置され、これら鉄筋が
そのまま電気防食回路網を構成する。 従って、流電陽極方式であるにも拘らず、防食効果が良
く、しかもこれまでの鉄筋コンクリート施工以外の特別
な工種を必要とせずに、経済的に電気防食が図れる。ま
た、金属コーティングした鉄筋をそのコーティング層に
よって保護できる。
A metal-coated reinforcing bar serves as a sacrificial anode and is placed close to the reinforcing bars that require corrosion protection, and these reinforcing bars directly constitute a cathodic protection circuit network. Therefore, although it is a galvanic anode method, it has a good corrosion prevention effect, and moreover, cathodic corrosion protection can be achieved economically without requiring any special work other than conventional reinforced concrete construction. Additionally, metal-coated reinforcing bars can be protected by the coating layer.

【実 施 例】【Example】

以下、本発明の一実施例について説明する。 鉄筋コンクリート構造物の鉄筋は、一般に、設計用断面
力と鉄筋の引張強度から所要断面力が決定される主鉄筋
と、主鉄筋に働く応力を均等に分散する配力筋やスター
ラップ筋や帯鉄筋等の補助鉄筋に分けられる。また、鉄
筋の位置を確保するための組立筋もある。 そこで、主鉄筋を防食対象の鉄筋とした場合、第3図の
ようにそれ以外の鉄筋1の表面に、これよりも自然電位
列が卑な金属、例えばアルミニウム、亜鉛、マグネシウ
ム等を直接コーテングして陽極金属層2を形成する。陽
極金属層2の厚さは鉄筋1の太さや設置環境などに応し
て適宜に設定する。 第11]は配筋例を示し、金属コーティングした鉄筋1
を配力筋として主鉄筋3七格子状に組み、陽極金属層2
を主鉄筋3の表面に接触させて交差部を例えば第2図の
如く結束したものである。この場合、配力筋とした鉄筋
lと主鉄筋3との交差部を介して鉄筋1が陽極、主鉄筋
3が陰極となるガルバノ電池が形成され、主鉄筋3が流
電陽極方式によって防食される。また鉄筋1はいわば犠
牲鉄筋となるが、それ自体は陽極金属層2で被覆されて
いるため、防食される。 第4図(A)、  (B)は鉄筋コンクリート構造物の
柱部4に適用した例を示す。主鉄筋5の回りにこれと接
触して帯鉄筋6を配筋する場合、該帯鉄筋6に第2図に
示したような陽極金属層を形成し、これを犠牲陽極とし
て主鉄筋5を防食する。 第5図は鉄筋コンクリート構造物のスラブ部7及び梁部
8に適用した例で、スラブ部7については配力筋9に陽
極金属層を形成して主鉄筋10を防食し、梁部8につい
てはスターラップ筋11に陽極金属層を形成して主鉄筋
工2を防食する。 特に、梁やスラブの場合、下側が乾燥し難く、水分や海
水飛沫による塩分もここに集中する(第6[21参照)
。また、第7図に示すように鉄筋13の下側は、コンク
リート14中の水分分離によるブリージング水15によ
りコンクリートの品質が他の個所より劣るため、この部
分が特に錆びやすい。そこで、このようなところに上記
の如き犠牲鉄筋を配置すれば、効果的な防食が可能であ
る。
An embodiment of the present invention will be described below. The reinforcing bars of reinforced concrete structures generally include main reinforcing bars whose required sectional force is determined from the design sectional force and the tensile strength of the reinforcing bars, and distribution bars, stirrup bars, and hoop reinforcing bars that evenly distribute the stress acting on the main reinforcing bars. It is divided into auxiliary reinforcing bars such as There are also assembly bars to secure the position of reinforcing bars. Therefore, when the main reinforcing bar is the reinforcing bar to be protected against corrosion, the surface of the other reinforcing bar 1 is directly coated with a metal whose natural potential series is baser than that, such as aluminum, zinc, magnesium, etc., as shown in Figure 3. Then, the anode metal layer 2 is formed. The thickness of the anode metal layer 2 is appropriately set depending on the thickness of the reinforcing bar 1 and the installation environment. 11] shows an example of reinforcing bar arrangement, and metal-coated reinforcing bar 1
The main reinforcing bars 3 are arranged in a lattice pattern as distribution bars, and the anode metal layer 2
are brought into contact with the surface of the main reinforcing bars 3, and the intersections are tied together as shown in FIG. 2, for example. In this case, a galvano cell is formed in which the reinforcing bar 1 serves as an anode and the main reinforcing bar 3 serves as a cathode through the intersection of the reinforcing bar 1 used as a distribution bar and the main reinforcing bar 3, and the main reinforcing bar 3 is protected against corrosion by the galvanic anode method. Ru. Further, the reinforcing bar 1 becomes a so-called sacrificial reinforcing bar, but since it is covered with the anode metal layer 2, it is protected against corrosion. Figures 4(A) and 4(B) show an example in which the method is applied to a column 4 of a reinforced concrete structure. When reinforcing hoops 6 are arranged around and in contact with the main reinforcing bars 5, an anode metal layer as shown in FIG. 2 is formed on the hoop reinforcing bars 6, and this is used as a sacrificial anode to protect the main reinforcing bars 5 from corrosion. do. Fig. 5 shows an example in which the application is applied to the slab part 7 and beam part 8 of a reinforced concrete structure.For the slab part 7, an anode metal layer is formed on the distribution bar 9 to prevent corrosion of the main reinforcing bar 10, and for the beam part 8, the anode metal layer is formed on the distribution bar 9. An anode metal layer is formed on the stirrup bar 11 to protect the main reinforcing bar 2 from corrosion. In particular, in the case of beams and slabs, the lower side is difficult to dry, and moisture and salt from seawater droplets are concentrated here (see Section 6 [21]).
. Furthermore, as shown in FIG. 7, the quality of the concrete on the lower side of the reinforcing bars 13 is inferior to other parts due to breathing water 15 caused by water separation in the concrete 14, so this part is particularly susceptible to rust. Therefore, if sacrificial reinforcing bars as described above are placed in such places, effective corrosion prevention can be achieved.

【発明の効果】【Effect of the invention】

本発明によれば次のような効果がある。 ■ 鉄筋を通常通り組み立てるだけで、流電陽極方式に
よる電気防食回路が形成されるため、従来に比ベニ費及
び工期を大幅に低減できる。 ■ ランニングコストが不要である。 ■ 梁やスラブのような水分や塩分などの影響を受けや
すい個所の鉄筋に対して、特に効果的に防食できる。 ■ 金属コーティングした鉄筋をそのコーティング層に
よって保護できる。
According to the present invention, there are the following effects. ■ By simply assembling the reinforcing bars as usual, a cathodic protection circuit using the galvanic anode method is formed, significantly reducing costs and construction time compared to conventional methods. ■ No running costs required. ■ It is particularly effective in preventing corrosion of reinforcing bars in areas such as beams and slabs that are susceptible to moisture and salt. ■ Metal-coated reinforcing bars can be protected by the coating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による配筋例の斜視図、第2図はその一
部の拡大平面図、第3図は陽極金属層を形成した鉄筋の
拡大断面図、第4図(A)、(B)は鉄筋コンクリート
構造物の柱部に適用した例の縦断面図及び横断面図、第
5図はスラブ部及び梁部に適用した例の断面図、第6図
及び第7図は梁やスラブの鉄筋が錆びやすいことを説明
するための説明図である。 1・・・・・・鉄筋、2・・・・・・陽極金属層、3,
5.10・・・・・・主鉄筋、6・・・・・・帯鉄筋、
9・・・・・・配力筋、11・・・・・・スターランプ
筋。 第 図 第 図 ア 第 図 第 図(A) 第 図<8) 第 図 第 図 塩分 水分 第 図 コンクリート打設方向
FIG. 1 is a perspective view of an example of reinforcement according to the present invention, FIG. 2 is an enlarged plan view of a part thereof, FIG. 3 is an enlarged sectional view of reinforcing bars on which an anode metal layer is formed, and FIGS. B) is a vertical cross-sectional view and a cross-sectional view of an example applied to a column part of a reinforced concrete structure, Figure 5 is a cross-sectional view of an example applied to a slab part and a beam part, and Figures 6 and 7 are a cross-sectional view of an example applied to a column part of a reinforced concrete structure. FIG. 2 is an explanatory diagram for explaining that reinforcing bars are susceptible to rust. 1...Reinforcement bar, 2...Anode metal layer, 3,
5.10... Main reinforcing bar, 6... Hoop reinforcing bar,
9... Distribution muscle, 11... Star lamp muscle. Figure Figure A Figure Figure Figure (A) Figure <8) Figure Figure Salt Moisture Figure Concrete Placement Direction

Claims (1)

【特許請求の範囲】[Claims] 1.鉄筋の表面にこれよりも自然電位列が卑な金属を直
接コーティングし、これを犠牲陽極として防食対象の鉄
筋に接触させ防食することを特徴とする鉄筋の電気防食
方法。
1. A method for electrolytic corrosion protection of reinforcing bars, which is characterized in that the surface of reinforcing bars is directly coated with a metal whose natural potential series is baser than this, and this is used as a sacrificial anode to contact the reinforcing bars to be protected against corrosion.
JP2152635A 1990-06-13 1990-06-13 Electrocorrosion method for rebar Expired - Fee Related JPH0826466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152635A JPH0826466B2 (en) 1990-06-13 1990-06-13 Electrocorrosion method for rebar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152635A JPH0826466B2 (en) 1990-06-13 1990-06-13 Electrocorrosion method for rebar

Publications (2)

Publication Number Publication Date
JPH0445292A true JPH0445292A (en) 1992-02-14
JPH0826466B2 JPH0826466B2 (en) 1996-03-13

Family

ID=15544707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152635A Expired - Fee Related JPH0826466B2 (en) 1990-06-13 1990-06-13 Electrocorrosion method for rebar

Country Status (1)

Country Link
JP (1) JPH0826466B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123347A (en) * 1976-04-08 1977-10-17 Masakuni Kanai Method of laying concrete structure in sea water
JPS5896882A (en) * 1981-12-02 1983-06-09 日本防蝕工業株式会社 Corrosion protective covering material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123347A (en) * 1976-04-08 1977-10-17 Masakuni Kanai Method of laying concrete structure in sea water
JPS5896882A (en) * 1981-12-02 1983-06-09 日本防蝕工業株式会社 Corrosion protective covering material

Also Published As

Publication number Publication date
JPH0826466B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
US5714045A (en) Jacketed sacrificial anode cathodic protection system
US4900410A (en) Method of installing a cathodic protection system for a steel-reinforced concrete structure
US5759361A (en) Cathodic protection system for a steel-reinforced concrete structure
JP2007039996A (en) Method of reinforcing and corrosion-preventing concrete structure, and reinforcing/anticorrosion material
EP0222829B1 (en) Cathodic protection system for a steel-reinforced concrete structure and method of installation
CA2189676A1 (en) Galvanic protection of rebar by zinc wire and insulating coating
US5062934A (en) Method and apparatus for cathodic protection
JPH0445292A (en) Electric corrosion protection for reinforcing bar
EP0534392B1 (en) Anode structure for cathodic protection of steel reinforced concrete and relevant method of use
JP3798189B2 (en) Repair method for concrete structures
US5098543A (en) Cathodic protection system for a steel-reinforced concrete structure
JPH05500834A (en) Method and fixing elements for fixing electrode arrangements to be used for cathodic protection of concrete structures
US5423961A (en) Cathodic protection system for a steel-reinforced concrete structure
JPH09296526A (en) Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure
KR20090111484A (en) Corrosion protection method of stainless steel water tank structure by cathodic protection mathod
JPH04297643A (en) Reinforced concrete structure and structural member, and electric protection method for reinforced concrete
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
JP2003213804A (en) Method for manufacturing concrete structure
JPH08376Y2 (en) Plating equipment using insoluble anode
JP2534329Y2 (en) Anticorrosion bolts and anticorrosion metal fittings for bolts
JPH1129952A (en) Concrete structure, and its electric anticorrosion method
JPH0454752B2 (en)
JPH0352321Y2 (en)
JPH0514160U (en) Solar system electronic anticorrosion device
JP2662754B2 (en) Backing steel material for tank bottom plate welding and corrosion prevention method for tank bottom plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees