JP3962312B2 - Method for improving corrosion resistance of road reflector and road reflector - Google Patents

Method for improving corrosion resistance of road reflector and road reflector Download PDF

Info

Publication number
JP3962312B2
JP3962312B2 JP2002312111A JP2002312111A JP3962312B2 JP 3962312 B2 JP3962312 B2 JP 3962312B2 JP 2002312111 A JP2002312111 A JP 2002312111A JP 2002312111 A JP2002312111 A JP 2002312111A JP 3962312 B2 JP3962312 B2 JP 3962312B2
Authority
JP
Japan
Prior art keywords
stainless steel
metal
mirror
corrosion resistance
road reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002312111A
Other languages
Japanese (ja)
Other versions
JP2004143870A (en
Inventor
崇志 小出
和俊 高室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Jushi Corp
Original Assignee
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Jushi Corp filed Critical Sekisui Jushi Corp
Priority to JP2002312111A priority Critical patent/JP3962312B2/en
Publication of JP2004143870A publication Critical patent/JP2004143870A/en
Application granted granted Critical
Publication of JP3962312B2 publication Critical patent/JP3962312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Road Signs Or Road Markings (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、道路周辺に設置される道路反射鏡に関するものである。
【0002】
【従来の技術】
道路反射鏡は、信号のない交差点や角地、見通しの悪い曲がり角などに取り付けられ、鏡体の反射により、走行しているドライバーに、直接見ることの出来ない他の自動車を認識できるようにするものであり、安全な走行を促す重要な道路付帯設備である。最近では、ヒーターを取り付けたり、鏡面に超親水化処理を施して結露を防止したり、表面に超撥水処理を施し水滴の付着を低減し、視認性を確保する等の機能的な道路反射鏡も開発、設置されている。(例えば特許文献1〜4)
【0003】
道路反射鏡鏡面の素材としては、ステンレスやアクリル樹脂、ガラス等を用いたものがあるが、アクリル樹脂製やガラス製のものは割れやすかったり、またアクリル樹脂製のものは経時的に樹脂が劣化して視認性が低下するなどの欠点がある。ステンレスは強度も強く、割れることもない。また、不動態被膜を形成するため、耐食性も非常に高いため、通常の環境下では長期間にわたり良好な耐久性を保持する。
【0004】
【特許文献1】
特開2001−152418公報
【特許文献2】
特開2000−51028公報
【特許文献3】
特開2000−17620公報
【発明が解決しようとする課題】
【0005】
しかしながら、ステンレス製品は海岸地などに設置されると、海塩粒子などに含まれる塩化物イオンにより、不動態被膜が破壊され、孔食が発生する場合がある。孔食が発生すると、視認性が低下するため、その役割を果たすことができなくなる。また、ステンレス鏡の表面に塗膜がコーティングされている場合は、塗膜中のピンホール部分が集中的に腐食されるため、特に孔食が起きやすい。これらのような孔食を防ぐためには、鏡に使われているステンレスの金属組成を変更し、素材自体の耐食性を向上させなければならないが、金属組成の変更は素材の加工性や脆性などを大きく変えてしまうため、使用には十分な検証が必要であるとともに、材料費が大きく変わったり、加工設備を大幅に改造しなければならないなど、時間的にも費用的にも問題であった。
【0006】
そこで本発明は上記の如き問題点に鑑みてなされたものであり、鏡に使われているステンレスの金属組成をかえることなく、従来の部材をそのまま利用できる、簡易で安価なステンレス製道路反射鏡の耐食性向上方法を提供せんとするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明者は鋭意研究した結果、電気的な作用で金属の電位を変化させて腐食を防止するする電気防食法のなかで、陰極防食法がとくに有効であり、ステンレス製道路反射鏡の裏面にステンレスより電気的に卑である金属を接触させることにより接触させた金属が流電陽極となり、防食体であるステンレス鏡に対して有効な電位差を保つ流電陽極方式または、補助電極を取り付け、前記補助電源を正極、ステンレス鏡を負極として電極に直流電源を通電させることによりステンレス鏡の電位差を保つようにする外部電源方式を用いることによって、耐食性が向上することを知得した。
【0008】
上記目的を達成するために、本発明は次のような構成としている。すなわち、ステンレス製の鏡の裏面に、ステンレスより電気的に卑である金属を接触させ、電気的に卑である金属が接触させられた鏡裏面には、裏板が取り付けられており、裏板には外気を通すための開口部が穿設されていることを特徴とするものである。
【0009】
流電陽極方式では、防食対象であるステンレスの裏面に、ステンレスより電気的に卑である金属を接触させることにより、両金属間にステンレスが陰極、前記金属が陽極となる電位差が生じ、電流を流すことにより、防食する方法である。これは、空気中の水分や雨水などが陽極金属に付着すると、陽極金属は溶解してイオンとなり、そのときに電子が発生する作用によるものである。陽極で発生した電子は陰極であるステンレスへ送られ、陰極であるステンレスが腐食するのを防ぐため、陰極であるステンレス基材は耐食性が向上する。
【0010】
一般的に流電陽極方式による防食効果は、陽極金属を接触させた直近にのみ効果が及ぶため、耐食性のみを考えた場合、表側にも卑な金属を接触させたほうが好ましいが、本発明の場合、表側は道路反射鏡の機能を保持させる必要があるため、表面には処理することが出来ず、裏面にのみ卑な金属を接触させている。そのため、表側の面まで防食効果が十分に発揮されるか懸念されるが、ステンレス鏡の場合、基材の厚さも1mm以下であり、また裏面の全面に均一に金属を接触させることで。十分な防食効果を発揮させることができる。
【0011】
また、ステンレスより電気的に卑である金属は、亜鉛、アルミニウム、マグネシウム、鉛の中より選ばれた少なくとも一つ以上の金属または、前記金属を含む合金であることを特徴とするものである。
【0012】
流電陽極としてステンレスの裏面に接触させる金属は、ステンレスより卑である金属であれば、特に限定されるものではないが、使用期間中、被防食体に対して有効な電位を保ち、しかも単位重量あたりの発生電気量が大きく、溶解が出来るだけ均一なものが好ましい。一般的に実用されている金属としては、亜鉛、アルミニウム、マグネシウム等の金属または、それらの金属を含む合金がある。また前記金属の取り付け方法は、ステンレス鏡の裏面に均等に接触していれば、特に限定されるものではなく、例えば前記金属を含んだ液状組成物を塗装してもよいし、金属板を接着材や溶接などで取り付けるようにしてもよいし、金属を溶射してもよいし、吸着や蒸着させてもよいし、めっきしてもよい。
【0013】
また、電気的に卑である金属が接触させられた鏡裏面には、裏板が取り付けられており、裏板には外気を通すための開口部が穿設されていることを特徴とするものである。
【0014】
道路反射鏡の裏面には、鏡を保護し、支柱へ鏡を取り付けるための冶具が取り付けられた裏板が設けられている。裏板が取り付けられていると、鏡の裏に設けられた流電陽極に外気が当たらず、流電陽極が溶出するだけの十分な水分が供給されないため、防食効果が十分に発揮されない。したがって、鏡の裏面に設けられた流電陽極の金属に十分な外気をあてるため、裏板に外気を通すための開口部を穿設するとよい。その開口部は、内部に十分に外気が入る大きさで、流電陽極の金属に均等に外気があたるように配置される。開口部が均等に配置されていなければ、外気があたりにくい部分は、防食効果が発現せず、また逆に外気が良く当たる部分は、流電電極の流出が速く、効果を長期間維持できない場合がある。したがって、開口部は裏板に均等に配置され、防食効果が十分に発現する範囲で、適当な大きさにすればよい。
【0015】
また、ステンレス製の鏡の裏面に、ステンレスより電気的に卑である金属を接触させており、前記金属には保湿性物質を接触させていることを特徴とするものである。
【0016】
金属による犠牲防食は、ステンレスより電気的に卑である金属が水への溶解により、電子をステンレスへ供給することにより起こる。そのため、陽極金属に水分を保持させておくような保湿材を接触させておけば、金属の溶出が容易になり、より高い耐食性を得ることが出来るとともに、常に効果を発揮することが出来る。
【0017】
また、ステンレス製の道路反射鏡に直流電源と補助電極を取り付け、ステンレス製の鏡を負極、補助電極を正極として、鏡と補助電極間に通電することにより耐食性を向上させたことを特徴とするものである。
【0018】
ステンレス鏡に、補助電極と直流電源を取り付け、直流電源の正極側に補助電極、負極側に被防食体であるステンレス鏡自身を接続して通電させておけば、ステンレス鏡は、常に電位が保たれるため耐食性が向上する。
【0019】
補助電極は、通電するものであれば特に限定されるものではないが、例えば黒鉛、鉛合金、高けい素鉄、酸化鉄、白金めっきチタンなどがよく用いられる。また、電源は商用電源などの交流電源をシリコン整流器等で、直流に変換したものでも良いし、直流電池、風力発電、太陽光発電などを用いても良い。また、環境の変化の激しいところでは、所要防食電流が変化し、過防食により腐食が増大する可能性もあるので、場合によっては、電流を調整できる定電位装置を使用するとよい。
【0020】
【発明の実施の形態】
本発明の実施の形態について、以下に具体的に説明する。図1は、一般的な道路反射鏡の概略図である。支柱10に反射鏡1が取り付けられている。反射鏡1の表面には、超親水性の塗膜や超撥水性の塗膜が形成されている場合もある。このようなステンレス製の道路反射鏡の裏面に、ステンレスより卑である金属を接触させ、流電陽極とすることによって耐食性が向上する。その断面図の一例を図2に示す。ステンレス鏡21の裏面に、流電陽極22を接触させている。流電陽極22から、金属が流出する(a)と、電子が流電陽極よりステンレス鏡へと流れ込む(b)ことによって、防食作用が働く。
【0021】
ステンレス鏡裏面に金属を設ける方法としては、例えば塗装であれば、亜鉛を含んだジンクリッチペイント、鉛丹ペイント等を、鏡裏面に、刷毛等で均等に塗布すればよい。また、ステンレス鏡裏面に亜鉛めっき鋼板などを鏡裏面の形にあわせて取り付けてもよい。このように部材を接触させる場合は、十分に被防食体と接触していることが必要であり、接着剤や溶接などをもちいることが好ましい。
【0022】
接触させる金属の付着量であるが、特に制限はなく、裏面に均一に接触していることが肝要である。ただし、付着量は効果の持続時間に係わるため、付着させられる範囲で、出来るだけ付着させたほうがよい。
【0023】
さらに、図3は、道路反射鏡を裏側から見た図である。鏡裏面には裏板31が取り付けられている。裏板は鏡を設置する際に支柱に固定するための冶具が取り付けられている。流電陽極である金属を設置した上に裏板31を取り付けると、流電陽極である金属に外気の水分が接触せず、防食効果を発揮することが出来ない。そのため、裏板には流電陽極である金属を効率的に外気と接触させて金属を流出させるために、外気取り入れ孔を穿設する必要がある。出来るだけ内部の流電電極が均等に防食効果を発揮するためには、外気が均等に流電電極に当たる必要があるため、外気取り入れ孔は、裏板面に均等に配置される。外気取り入れ孔の大きさや、孔の位置は特に限定されるものではないが、例えば図3では、円を描くように一定間隔で外気取り入れ孔32が設けられていてもよい。
【0024】
また、図4には、鏡裏面に流電陽極とともに保湿材を取り付けた場合の、道路反射鏡の断面図を示す。裏面に流電陽極が設けられたステンレス鏡1の裏側に、流電陽極と接触するよう、水分を保持する保湿材41を設け、その上から外気取り入れ孔32が穿設された裏板を取り付ける。保湿材は、水分を保持するものであれば特に限定されるものではないが、例えば、スポンジ、砂利や砂等の粒子状物質、グラスウールや合成繊維などの繊維状物質、シリカゲルや活性炭やゼオライトのような多孔質体、吸水性ポリマーなどが利用できる。保水材を流電陽極に接触させて設けることにより、流電陽極が効率的に、かつ均一に溶出することができ、高い防食効果を期待できる。また、無降雨期間においても、保湿材に水分が蓄積されているため、溶出が促されて十分な耐食性を発揮することが出来る。
【0025】
ステンレス鏡に電気防食を行った具体的な実施の形態と、耐食性の向上効果を実施例により示す。
【0026】
(実施例1)
20cm×20cmのステンレス鏡面板の裏面にジンクリッチペイントを約1000g/平米のとなるように均一に刷毛を用いて塗装した。
(実施例2)
20cm×20cmのステンレス鏡面の鏡面に酸化チタンによる光触媒塗膜をコーティングし、裏面に、実施例1と同様の処理を施した。
(比較例1)
20cm×20cmのステンレス鏡面には、なにも処理をしていない。
【0027】
実施例1、2と比較例1のステンレス鏡に冠して促進耐食性試験を行った。促進耐食性試験は、自動車技術者協会(JASO)規格にある自動車材料腐食評価試験法M609に記載の条件で試験を行った。なお、塩水として酸性塩水を用いた。促進試験700サイクル後の観察状況を表1に示す。
【0028】

Figure 0003962312
【0029】
表1に示すように、促進耐食性試験700サイクルにおいて、裏面に流電陽極となる亜鉛を含んだジンクリッチペイントを塗装したステンレス鏡は、孔食の発生もほとんどみられなかった。また、ステンレス鏡面上に塗膜がコーティングされているような、孔食が発生し易い場合でも、実施例2に示すように良好に防食効果を示している。
【0030】
(実施例3)
600mmφのステンレス鏡裏面にジンクリッチペイントを、1000g/平米の厚さで、全面均一になるように刷毛で塗装した。その上から裏板が取り付けた。裏板には、φ5mmの開口部10個が円形に配置され、さらに、一つのφ5mmの孔の周りにそれぞれφ2mm開口部が3つずつ穿設された裏板を取り付けた。
(実施例4)
実施例1と同様の処理を施したステンレス鏡の鏡面に酸化チタン光触媒塗膜をコーティングした。
(比較例2)
600mmφのステンレス鏡には、防食処理をせず開口部のない裏板をとりつけた。
【0031】
実施例3、4と比較例2のステンレス鏡を、海岸から5mの位置に暴露し、孔食の発生状況を観察した。暴露4ヶ月後の観察状況を表2に示す。
【0032】
Figure 0003962312
【0033】
表2に示すように、沿岸地での実暴露においても、裏面に流電陽極となる亜鉛を含んだジンクリッチペイントを塗装することによって、ステンレス表面の孔食を抑えることができる。また、ステンレス鏡面上に塗膜がコーティングされているような、孔食が発生し易い場合でも、良好に防食効果を示している。
【0034】
次に、ステンレス鏡に補助電極と直流電源を取り付けて、耐食性を向上させる外部電源方式の一例を図5に示す。直流電極51の正極511に補助電極52を接続し、直流電源の負極512に防食対象であるステンレス鏡を接続する。環境の変化の激しいところでは、定電位装置を使用して、常に一定の電位を保つようにしても良い。直流電源には、商用電源を直流に変換して用いても良いし、太陽電池や風力発電などを、用いることもできる。
【0035】
【発明の効果】
以上のように、本発明では、ステンレス製道路反射鏡の裏面にステンレスより電気的に卑である金属を接触させてステンレス鏡に対して有効な電位差を保つ流電陽極方式または、補助電極と外部電源を用いてステンレス鏡の電位差を保つようにする外部電源方式を用いることによって耐食性を向上させたものであり、孔食の発生しやすい海岸地域でも良好に効果を発揮し、また、孔食の発生しやすい表面に塗膜が存在する場合でも良好な耐食性を発揮することができ、長期にわたり腐食による道路反射鏡の視認性低下を防いで、安全な自動車の走行に寄与する。
【図面の簡単な説明】
【図1】本発明に係わる道路反射鏡の実施の形態の一例を示す概略図である。
【図2】本発明の道路反射鏡の実施の形態の一例を示す断面図である。
【図3】本発明の道路反射鏡の実施の形態の一例で、裏側から見た図を示すものである。
【図4】本発明の道路反射鏡の実施の形態の一例を示す断面図である。
【図5】本発明の道路反射鏡の実施の形態の一例を示す概略図である。
a 流電電極の流出
b 防食電子の動き
1 ステンレス製道路反射鏡
10 支柱
21 ステンレス基材
22 流電陽極
23 塗膜
31 裏板
32 外気取り入れ孔
41 保湿材
42 支柱に固定するための治具
51 外部電源
511 正極
512 負極
52 補助電極
53 絶縁体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a road reflector installed around a road.
[0002]
[Prior art]
Road reflectors are installed at intersections and corners where there is no signal, corners with poor visibility, etc., and the reflection of the mirror body makes it possible for the driving driver to recognize other cars that cannot be seen directly It is an important road incidental facility that promotes safe driving. Recently, functional road reflections such as attaching a heater, applying ultra-hydrophilic treatment to the mirror surface to prevent condensation, and applying super water-repellent treatment to the surface to reduce the adhesion of water droplets and ensure visibility. A mirror has also been developed and installed. (For example, Patent Documents 1 to 4)
[0003]
There are materials that use stainless steel, acrylic resin, glass, etc. as the mirror mirror surface material, but acrylic resin and glass materials are easy to break, and acrylic resin materials deteriorate over time. As a result, there are drawbacks such as reduced visibility. Stainless steel is strong and does not break. Moreover, since the passive film is formed, the corrosion resistance is also very high, and therefore, good durability is maintained over a long period of time in a normal environment.
[0004]
[Patent Document 1]
JP 2001-152418 A [Patent Document 2]
JP 2000-51028 A [Patent Document 3]
JP, 2000-17620, A [Problems to be solved by the invention]
[0005]
However, when a stainless steel product is installed in a coastal area, the passive film may be destroyed and pitting corrosion may occur due to chloride ions contained in sea salt particles. When pitting corrosion occurs, the visibility is lowered, so that it cannot play its role. Moreover, when the coating film is coated on the surface of the stainless steel mirror, the pinhole portion in the coating film is eroded intensively, so pitting corrosion is particularly likely to occur. In order to prevent such pitting corrosion, the metal composition of the stainless steel used in the mirror must be changed to improve the corrosion resistance of the material itself. However, the change in the metal composition affects the workability and brittleness of the material. Because it changes greatly, it is necessary to fully verify the use, and the material cost has changed greatly, and the processing equipment has to be significantly modified.
[0006]
Therefore, the present invention has been made in view of the above problems, and a simple and inexpensive stainless steel road reflector that can use conventional members as they are without changing the metal composition of stainless steel used in the mirror. It is intended to provide a method for improving the corrosion resistance.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, the cathodic protection method is particularly effective among the anticorrosion methods for preventing corrosion by changing the electric potential of the metal by electrical action. The galvanic anode system that maintains the effective potential difference with respect to the stainless steel mirror, which is the anticorrosive body, by making the metal that is in contact with the back surface of the stainless steel road reflecting mirror into the galvanic anode by contacting the metal that is electrically lower than stainless steel. Alternatively, the corrosion resistance is improved by attaching an auxiliary electrode and using an external power supply system that maintains the potential difference of the stainless steel mirror by applying a DC power to the electrode with the auxiliary power source as the positive electrode and the stainless steel mirror as the negative electrode. I knew it.
[0008]
In order to achieve the above object, the present invention is configured as follows. That is, a back plate is attached to the back surface of the mirror in which the base metal electrically contacted with stainless steel is in contact with the back surface of the stainless steel mirror, and the base metal is in contact with the base metal electrically. Is characterized in that an opening for allowing outside air to pass therethrough is formed .
[0009]
In the galvanic anode method, by contacting a metal that is electrically lower than stainless steel with the back surface of the stainless steel that is the object of corrosion protection, a potential difference occurs between the two metals, with the stainless steel serving as the cathode and the metal serving as the anode. This is a method of preventing corrosion by flowing. This is due to the action that when the moisture in the air, rainwater, or the like adheres to the anode metal, the anode metal dissolves into ions, and electrons are generated at that time. Electrons generated at the anode are sent to the stainless steel, which is the cathode, and the stainless steel substrate, which is the cathode, has improved corrosion resistance in order to prevent the stainless steel, which is the cathode, from corroding.
[0010]
In general, the anticorrosion effect by the galvanic anode method is effective only in the immediate vicinity of contacting the anode metal, so when considering only the corrosion resistance, it is preferable to contact a base metal on the front side as well. In this case, it is necessary to keep the function of the road reflector on the front side, so that the surface cannot be treated, and a base metal is brought into contact only with the back side. For this reason, there is a concern that the anti-corrosion effect can be sufficiently exerted up to the front side surface, but in the case of a stainless steel mirror, the thickness of the base material is 1 mm or less, and the metal is uniformly contacted with the entire back surface. A sufficient anticorrosive effect can be exhibited.
[0011]
In addition, the metal that is electrically lower than stainless steel is at least one metal selected from zinc, aluminum, magnesium, and lead, or an alloy containing the metal.
[0012]
The metal to be brought into contact with the back surface of the stainless steel as the galvanic anode is not particularly limited as long as it is a metal that is baser than stainless steel. It is preferable that the amount of generated electricity per weight is large and is as uniform as possible. Examples of metals that are generally used include metals such as zinc, aluminum, and magnesium, or alloys containing these metals. The method for attaching the metal is not particularly limited as long as the metal is evenly in contact with the back surface of the stainless steel mirror. For example, a liquid composition containing the metal may be coated, or a metal plate may be bonded. It may be attached by material or welding, or metal may be sprayed, adsorbed or evaporated, or plated.
[0013]
In addition, a back plate is attached to the back of the mirror, which is contacted with an electrically base metal, and an opening for allowing outside air to pass through the back plate. It is.
[0014]
On the rear surface of the road reflector, a back plate is provided with a jig for protecting the mirror and attaching the mirror to the support column. When the back plate is attached, since the outside air does not hit the galvanic anode provided on the back of the mirror and sufficient moisture is not supplied to the galvanic anode to elute, the anticorrosion effect is not sufficiently exhibited. Therefore, in order to apply sufficient outside air to the metal of the galvanic anode provided on the back surface of the mirror, an opening for allowing outside air to pass through the back plate may be formed. The opening is of a size that allows enough outside air to enter the interior, and is arranged so that the outside air is evenly applied to the metal of the galvanic anode. If the openings are not evenly arranged, the part where the outside air is hard to hit does not exhibit the anti-corrosion effect, and conversely the part where the outside air hits well, the outflow of the galvanic electrode is fast and the effect cannot be maintained for a long time There is. Therefore, the openings should be appropriately sized within the range in which the openings are evenly arranged on the back plate and the anticorrosion effect is sufficiently developed.
[0015]
In addition, a metal that is electrically lower than stainless steel is brought into contact with the back surface of a stainless steel mirror, and a moisturizing substance is brought into contact with the metal.
[0016]
Sacrificial corrosion protection by metal occurs when a metal that is electrically lower than stainless steel dissolves in water and supplies electrons to stainless steel. Therefore, if a moisture retaining material that keeps moisture in contact with the anode metal is brought into contact with the anode metal, elution of the metal is facilitated, higher corrosion resistance can be obtained, and an effect can always be exhibited.
[0017]
In addition, the DC power supply and auxiliary electrode are attached to a stainless steel road reflector, and the corrosion resistance is improved by energizing between the mirror and the auxiliary electrode with the stainless steel mirror as the negative electrode and the auxiliary electrode as the positive electrode. Is.
[0018]
If an auxiliary electrode and a DC power source are attached to the stainless steel mirror, and the auxiliary electrode is connected to the positive electrode side of the DC power source and the stainless steel mirror itself is connected to the negative electrode side and energized, the stainless steel mirror always maintains its potential. Corrosion resistance is improved due to sagging.
[0019]
The auxiliary electrode is not particularly limited as long as it is energized. For example, graphite, lead alloy, high silicon iron, iron oxide, platinized titanium and the like are often used. Further, the power source may be an AC power source such as a commercial power source converted into a direct current with a silicon rectifier or the like, or a direct current battery, wind power generation, solar power generation, or the like may be used. Further, in places where the environment changes drastically, the required anticorrosion current changes, and corrosion may increase due to over-corrosion prevention. In some cases, a constant potential device that can adjust the current may be used.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below. FIG. 1 is a schematic view of a general road reflector. The reflecting mirror 1 is attached to the support column 10. A superhydrophilic coating film or a superhydrophobic coating film may be formed on the surface of the reflecting mirror 1. Corrosion resistance is improved by bringing a metal, which is more base than stainless steel, into contact with the back surface of such a stainless steel road reflecting mirror to form a galvanic anode. An example of the cross-sectional view is shown in FIG. The galvanic anode 22 is brought into contact with the back surface of the stainless steel mirror 21. When the metal flows out from the galvanic anode 22 (a), the electrons flow from the galvanic anode into the stainless steel mirror (b), thereby providing an anticorrosive action.
[0021]
As a method of providing a metal on the back surface of the stainless steel mirror, for example, in the case of painting, zinc rich paint containing zinc, red lead paint or the like may be evenly applied to the back surface of the mirror with a brush or the like. Moreover, you may attach a galvanized steel plate etc. according to the shape of a mirror back surface on the stainless steel mirror back surface. Thus, when contacting a member, it is necessary to fully contact with the to-be-protected object, and it is preferable to use an adhesive agent, welding, etc.
[0022]
The amount of metal to be brought into contact is not particularly limited, and it is important that the back surface is uniformly contacted. However, since the amount of adhesion is related to the duration of the effect, it is better to adhere as much as possible within the range of adhesion.
[0023]
Further, FIG. 3 is a view of the road reflector as viewed from the back side. A back plate 31 is attached to the rear surface of the mirror. A jig for fixing the back plate to the column when the mirror is installed is attached. If the back plate 31 is attached on the metal that is the galvanic anode, the moisture of the outside air does not contact the metal that is the galvanic anode, and the anticorrosion effect cannot be exhibited. Therefore, it is necessary to make an outside air intake hole in the back plate so that the metal which is an galvanic anode is brought into contact with the outside air efficiently and the metal flows out. In order for the internal current-carrying electrodes to exhibit the anticorrosion effect as evenly as possible, it is necessary for the outside air to uniformly strike the current-carrying electrodes, so the outside air intake holes are evenly arranged on the back plate surface. The size of the outside air intake hole and the position of the hole are not particularly limited. For example, in FIG. 3, the outside air intake holes 32 may be provided at regular intervals so as to draw a circle.
[0024]
FIG. 4 shows a cross-sectional view of the road reflecting mirror when a moisturizing material is attached to the back surface of the mirror together with the electromotive anode. A moisturizing material 41 for holding moisture is provided on the back side of the stainless steel mirror 1 provided with a rheological anode on the back surface so as to be in contact with the rheological anode, and a back plate having an outside air intake hole 32 formed thereon is attached thereto. . The moisturizing material is not particularly limited as long as it retains moisture, but for example, sponges, particulate materials such as gravel and sand, fibrous materials such as glass wool and synthetic fibers, silica gel, activated carbon and zeolite. Such porous bodies and water-absorbing polymers can be used. By providing the water retaining material in contact with the galvanic anode, the galvanic anode can be eluted efficiently and uniformly, and a high anticorrosive effect can be expected. In addition, since moisture is accumulated in the moisturizing material even in the rainless period, elution is promoted and sufficient corrosion resistance can be exhibited.
[0025]
A specific embodiment in which the anticorrosion is performed on the stainless steel mirror and the effect of improving the corrosion resistance will be shown by examples.
[0026]
Example 1
Zinc rich paint was applied uniformly to the back of a 20 cm × 20 cm stainless steel mirror plate with a brush so as to be about 1000 g / square meter.
(Example 2)
A photocatalyst coating film made of titanium oxide was coated on a mirror surface of a stainless mirror surface of 20 cm × 20 cm, and the same treatment as in Example 1 was performed on the back surface.
(Comparative Example 1)
The 20 cm × 20 cm stainless steel mirror surface is not treated at all.
[0027]
The accelerated corrosion resistance test was performed on the stainless steel mirrors of Examples 1 and 2 and Comparative Example 1. The accelerated corrosion resistance test was performed under the conditions described in the automotive material corrosion evaluation test method M609 in the Japan Automotive Engineers Association (JASO) standard. In addition, acidic salt water was used as salt water. Table 1 shows the observation situation after 700 cycles of the accelerated test.
[0028]
Figure 0003962312
[0029]
As shown in Table 1, in the accelerated corrosion resistance test 700 cycles, the stainless steel mirror coated with zinc rich paint containing zinc serving as a galvanic anode on the back surface hardly caused pitting corrosion. Further, even when pitting corrosion is likely to occur, such as when a coating film is coated on the stainless steel mirror surface, the anticorrosion effect is well exhibited as shown in Example 2.
[0030]
(Example 3)
Zinc rich paint was applied to the back of a 600 mmφ stainless steel mirror with a brush at a thickness of 1000 g / sq.m. A back plate was attached from above. On the back plate, 10 φ5 mm openings were arranged in a circle, and further, a back plate having three φ2 mm openings formed around one φ5 mm hole was attached.
Example 4
A mirror surface of a stainless steel mirror subjected to the same treatment as in Example 1 was coated with a titanium oxide photocatalytic coating film.
(Comparative Example 2)
A stainless steel mirror with a diameter of 600 mm was provided with a back plate without an anticorrosion treatment and without an opening.
[0031]
The stainless steel mirrors of Examples 3 and 4 and Comparative Example 2 were exposed to a position 5 m from the coast, and the occurrence of pitting corrosion was observed. Table 2 shows the observation situation after 4 months of exposure.
[0032]
Figure 0003962312
[0033]
As shown in Table 2, pitting corrosion on the stainless steel surface can be suppressed by applying zinc rich paint containing zinc as an galvanic anode on the back surface even in actual exposure in coastal areas. Moreover, even when a pitting corrosion is likely to occur, such as when a coating film is coated on a stainless steel mirror surface, the anticorrosion effect is well exhibited.
[0034]
Next, FIG. 5 shows an example of an external power supply system in which an auxiliary electrode and a DC power supply are attached to a stainless steel mirror to improve corrosion resistance. The auxiliary electrode 52 is connected to the positive electrode 511 of the DC electrode 51, and a stainless steel mirror that is a corrosion protection target is connected to the negative electrode 512 of the DC power source. Where the environment changes drastically, a constant potential device may be used to always maintain a constant potential. As the direct current power source, a commercial power source may be converted into direct current, or a solar cell or wind power generation may be used.
[0035]
【The invention's effect】
As described above, according to the present invention, the back electrode of the stainless steel road reflector is brought into contact with a metal that is electrically lower than stainless steel to maintain an effective potential difference with respect to the stainless steel mirror, or the auxiliary electrode and the outside Corrosion resistance has been improved by using an external power supply system that uses a power source to maintain the potential difference of the stainless steel mirror, and is effective even in coastal areas where pitting corrosion tends to occur. Even when a coating film is present on a surface that tends to occur, good corrosion resistance can be exhibited, and the deterioration of the visibility of the road reflector due to corrosion can be prevented over a long period of time, thereby contributing to safe driving of an automobile.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an embodiment of a road reflector according to the present invention.
FIG. 2 is a cross-sectional view showing an example of an embodiment of a road reflector according to the present invention.
FIG. 3 shows an example of an embodiment of a road reflector according to the present invention, as viewed from the back side.
FIG. 4 is a cross-sectional view showing an example of an embodiment of a road reflector according to the present invention.
FIG. 5 is a schematic view showing an example of an embodiment of a road reflector according to the present invention.
a outflow of galvanic electrode b movement of anticorrosion electron 1 stainless steel road reflector 10 support column 21 stainless steel base material 22 galvanic anode 23 coating film 31 back plate 32 outside air intake hole 41 moisturizing material 42 jig 51 for fixing to the support column External power supply 511 Positive electrode 512 Negative electrode 52 Auxiliary electrode 53 Insulator

Claims (4)

ステンレス製の鏡の裏面に、ステンレスより電気的に卑である金属を接触させ、電気的に卑である金属が接触させられた鏡裏面には、裏板が取り付けられており、裏板には外気を通すための開口部が穿設されていることを特徴とする道路反射鏡の耐食性向上方法。A back plate is attached to the back of the mirror, which is made of a metal that is electrically lower than stainless steel, and is contacted with a metal that is electrically lower than stainless. A method for improving the corrosion resistance of a road reflector, characterized in that an opening for allowing outside air to pass therethrough is formed . ステンレスより電気的に卑である金属は、亜鉛、アルミニウム、マグネシウム、鉛の中より選ばれた少なくとも一つ以上の金属または、前記金属を含む合金であることを特徴とする請求項1に記載の道路反射鏡の耐食性向上方法。2. The metal according to claim 1, wherein the metal that is electrically lower than stainless steel is at least one metal selected from zinc, aluminum, magnesium, and lead, or an alloy containing the metal. A method for improving the corrosion resistance of road reflectors. ステンレス製の鏡の裏面に、ステンレスより電気的に卑である金属を接触させており、前記金属には保湿性物質を接触させていることを特徴とする請求項1又は2に記載の道路反射鏡の耐食性向上方法。The road reflection according to claim 1 or 2 , wherein a metal that is electrically lower than stainless steel is brought into contact with the back surface of the stainless steel mirror, and a moisturizing substance is brought into contact with the metal. How to improve the corrosion resistance of mirrors. 請求項1〜のいずれか1項に記載の方法で耐食性を向上させたことを特徴とする道路反射鏡。The road reflector which improved corrosion resistance by the method of any one of Claims 1-3 .
JP2002312111A 2002-10-28 2002-10-28 Method for improving corrosion resistance of road reflector and road reflector Expired - Fee Related JP3962312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312111A JP3962312B2 (en) 2002-10-28 2002-10-28 Method for improving corrosion resistance of road reflector and road reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312111A JP3962312B2 (en) 2002-10-28 2002-10-28 Method for improving corrosion resistance of road reflector and road reflector

Publications (2)

Publication Number Publication Date
JP2004143870A JP2004143870A (en) 2004-05-20
JP3962312B2 true JP3962312B2 (en) 2007-08-22

Family

ID=32457096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312111A Expired - Fee Related JP3962312B2 (en) 2002-10-28 2002-10-28 Method for improving corrosion resistance of road reflector and road reflector

Country Status (1)

Country Link
JP (1) JP3962312B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461093B2 (en) * 2009-07-27 2014-04-02 国立大学法人九州大学 Sacrificial anode panel and anticorrosion method using sacrificial anode panel

Also Published As

Publication number Publication date
JP2004143870A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
EP1210469B1 (en) Arrangement for decreasing galvanic corrosion between metal components
CN1446271A (en) Method and system of preventing fouling and corrosion of biomedical devices and structures
Pinto et al. A two-step surface treatment, combining anodisation and silanisation, for improved corrosion protection of the Mg alloy WE54
US20240052500A1 (en) Cathodic protection of metal substrates
CA2393611C (en) Method and system of preventing corrosion of conductive structures
JP4028169B2 (en) Antifouling equipment for structures and heat exchangers in contact with seawater
JP3962312B2 (en) Method for improving corrosion resistance of road reflector and road reflector
US6551491B2 (en) Method and system of preventing corrosion of conductive structures
CA2989380A1 (en) Cathodic protection of metal substrates
JPH0610358B2 (en) Multi-layer electric plated steel sheet
CN101994141B (en) Methods of coating magnesium-based substrates
JP3137771B2 (en) Corrosion protection method for concrete structures by thermal spray coating.
JP4051409B2 (en) Electrocorrosion protection equipment for painted metal bodies in the atmospheric environment
JPH07316850A (en) Corrosion preventive method by solar battery
JP3866911B2 (en) Corrosion-proof spray-coated member and method for manufacturing the same
JPH10244622A (en) Anti-corrosion method of steel material
JP4201394B2 (en) Concrete steel structure covered with composite film electrode
JP2003213459A (en) Surface treated steel sheet having excellent corrosion resistance and spot weldability and production method therefor
JP3073448B2 (en) Corrosion protection of steel
JP2004339782A (en) Anti-fouling device of structure
JPH0752167Y2 (en) Replaceable energizing antifouling cover for offshore structures
JP4895535B2 (en) Non-chromate phosphate-treated galvanized steel sheet
JPH0740775A (en) Trolley line and rigid body trolley line
JP2003013264A (en) Antifouling device for structure and heat exchanger contacting with seawater
JPH05156474A (en) Corrosion-preventing method for steel by controlling flow rate in neutral solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees