JPH06120253A - Field effect transistor and its manufacture - Google Patents

Field effect transistor and its manufacture

Info

Publication number
JPH06120253A
JPH06120253A JP26641692A JP26641692A JPH06120253A JP H06120253 A JPH06120253 A JP H06120253A JP 26641692 A JP26641692 A JP 26641692A JP 26641692 A JP26641692 A JP 26641692A JP H06120253 A JPH06120253 A JP H06120253A
Authority
JP
Japan
Prior art keywords
opening
insulating layer
gate
field effect
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26641692A
Other languages
Japanese (ja)
Other versions
JP3144089B2 (en
Inventor
Junichiro Kobayashi
純一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP04266416A priority Critical patent/JP3144089B2/en
Publication of JPH06120253A publication Critical patent/JPH06120253A/en
Application granted granted Critical
Publication of JP3144089B2 publication Critical patent/JP3144089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide a device which has a high mechanical strength of a T-shaped gate and is free of an increase in parasitic capacitance. CONSTITUTION:A hollow part 20 surrounded by a first insulating layer 18 and a second insulating layer 19 is formed in a vicinity of a support 17a of a T-shaped gate 17 to reduce parasitic capacitance. The lower face of the top wide part 17a of the T-shaped gate 17 is supported by the second insulating layer 19. This design improves the mechanical strength of the T-shaped gate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電界効果トランジス
タに関し、特に、高電子移動度トランジスタ(HEM
T)などの所謂T字型ゲートを有する電界効果トランジ
スタに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor, and more particularly to a high electron mobility transistor (HEM).
It relates to a field effect transistor having a so-called T-shaped gate such as T).

【0002】[0002]

【従来の技術】従来、この種の電界効果トランジスタと
しては、図14に示すようなリフトオフ方法でゲート電
極が形成されている。即ち、図14(A)に示すよう
に、半導体層1上に第1レジスト2を塗布し、露光・現
像を行って開口部2aを形成した後、この開口部2aを
介しエッチング液によりウェットエッチングを行いリセ
ス3を形成する。そして、第1レジスト2の上に、同図
(A)に示すように、第2レジスト4をパターニングす
る。
2. Description of the Related Art Conventionally, as a field effect transistor of this type, a gate electrode is formed by a lift-off method as shown in FIG. That is, as shown in FIG. 14A, a first resist 2 is applied on the semiconductor layer 1, exposed and developed to form an opening 2a, and then wet-etched with an etching solution through the opening 2a. And the recess 3 is formed. Then, a second resist 4 is patterned on the first resist 2 as shown in FIG.

【0003】次に、ゲート用金属を蒸着して、第2レジ
スト4上のゲート用金属をリフトオフすることにより、
図14(B)に示すようなT字形のゲート5が形成され
る。しかしながら、この従来例は、ゲート5の上部幅広
部5Aが何ら保持されていないため、物理的に支柱部5
Bが損傷を受け易く、全体的に機械強度が弱いものであ
った。
Next, a metal for a gate is vapor-deposited and the metal for a gate on the second resist 4 is lifted off.
The T-shaped gate 5 as shown in FIG. 14B is formed. However, in this conventional example, since the upper wide portion 5A of the gate 5 is not held at all, the pillar 5 is physically held.
B was easily damaged, and its mechanical strength was weak as a whole.

【0004】このような問題の対策方法として、図15
に示すような製造方法による電界効果トランジスタが知
られている。この方法は、先ず、図15(A)に示すよ
うに、半導体層1上に絶縁膜6を形成し、この絶縁膜6
の所定位置に開口部6aを周知の技術を用いて形成す
る。この開口部6aの開口幅はゲートの支柱部の幅寸法
に設定しておく。
As a countermeasure against such a problem, FIG.
A field effect transistor manufactured by the manufacturing method as shown in FIG. In this method, first, as shown in FIG. 15A, an insulating film 6 is formed on the semiconductor layer 1, and the insulating film 6 is formed.
The opening 6a is formed at a predetermined position in the same manner by using a known technique. The opening width of the opening 6a is set to the width of the pillar of the gate.

【0005】次に、この開口部6aを介して半導体層1
にリセス3をウェットエッチングする。そして、図15
(A)に示すように、レジスト7をパターニングした
後、ゲート用金属を蒸着して、レジスト7上のゲート用
金属をリフトオフすることにより、図15(B)に示す
ようなゲート8Aが形成される。図16は、リフトオフ
法を用いず、エッチング法を用いる場合を示すものであ
り、ゲート用金属層8の上にレジストパータン9を形成
し、このレジストパータン9をマスクとしてゲート用金
属層8をドライエッチングすることにより、図15
(B)と同様のゲートが形成できる。
Next, the semiconductor layer 1 is formed through the opening 6a.
Then, the recess 3 is wet-etched. And in FIG.
As shown in FIG. 15A, after patterning the resist 7, a gate metal is deposited and the gate metal on the resist 7 is lifted off to form a gate 8A as shown in FIG. 15B. It FIG. 16 shows a case where an etching method is used instead of the lift-off method. A resist pattern 9 is formed on the gate metal layer 8 and the gate metal layer 8 is dried using the resist pattern 9 as a mask. By etching, FIG.
A gate similar to that of (B) can be formed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな電界効果トランジスタのゲート8Aは、図15
(B)に示すように、ゲート8Aの上部幅広部8a下の
空間が絶縁膜6で埋められるため、ゲートの機械的強度
は増すが、寄生容量Cが増大し、電界効果トランジスタ
の高周波特性を低下させる問題点がある。
However, the gate 8A of such a field effect transistor has the structure shown in FIG.
As shown in (B), since the space under the upper wide portion 8a of the gate 8A is filled with the insulating film 6, the mechanical strength of the gate is increased, but the parasitic capacitance C is increased and the high frequency characteristics of the field effect transistor are improved. There is a problem that lowers it.

【0007】また、上記した従来例においては、リセス
3の幅は第1レジスト2又は絶縁膜6の開口幅で一義的
に決まるため、ゲート長(ゲート支柱の幅)に対してリ
セスの幅の自由度がとれない問題点があった。
Further, in the above-described conventional example, the width of the recess 3 is uniquely determined by the opening width of the first resist 2 or the insulating film 6. There was a problem that I could not get the degree of freedom.

【0008】本発明は、このような従来の問題点に着目
して創案されたものであって、T字型ゲートの機械的強
度を有し、ゲート部の寄生容量の増加を抑制すると共
に、ゲートリセス幅の制御性が向上する電界効果トラン
ジスタを得んとするものである。
The present invention was devised in view of such conventional problems and has the mechanical strength of a T-shaped gate and suppresses an increase in parasitic capacitance of the gate portion. A field effect transistor having improved controllability of the gate recess width is obtained.

【0009】[0009]

【課題を解決するための手段】そこで、請求項1記載の
発明は、支柱部と幅広部とから成るT字型ゲート電極を
有する電界効果トランジスタにおいて、前記支柱部の近
傍を中空となし、前記幅広部の下部を絶縁物で支持した
ことをその解決手段としている。
Therefore, according to the invention of claim 1, in a field effect transistor having a T-shaped gate electrode composed of a pillar portion and a wide portion, the vicinity of the pillar portion is hollow, and Supporting the lower part of the wide part with an insulator is the solution.

【0010】請求項2記載の発明は、半導体層上に第1
絶縁層と第2絶縁層を順次積層し、該第2絶縁層上に、
順次ポジ型レジストとネガ型レジストを順次積層し、前
記ネガ型レジストに第1開口部を形成した後、該第1開
口部内のポジ型レジストに前記第1開口部より幅の狭い
第2開口部を形成し、次いで、該ポジ型レジストの第2
開口部をマスクとして前記第2絶縁層をエッチングして
第3開口部を形成した後、前記ネガ型レジストの第1開
口部内のポジ型レジストを除去し、次に、前記第1絶縁
層を該第2絶縁層の第3開口部を介してエッチングして
第4開口部を形成し、該第4開口部を介して前記半導体
層のリセスエッチングを行った後、ゲート金属を蒸着し
リフトオフすることを、その解決方法としている。
According to a second aspect of the present invention, a first semiconductor layer is formed on the semiconductor layer.
An insulating layer and a second insulating layer are sequentially laminated, and on the second insulating layer,
A positive opening resist and a negative opening resist are sequentially laminated, a first opening is formed in the negative opening resist, and a second opening narrower than the first opening is formed in the positive opening resist in the first opening. Forming a second layer of the positive resist.
The second insulating layer is etched using the opening as a mask to form a third opening, the positive resist in the first opening of the negative resist is removed, and then the first insulating layer is removed. Etching through the third opening of the second insulating layer to form a fourth opening, and recess etching of the semiconductor layer through the fourth opening, and then depositing a gate metal and lifting off. Is the solution.

【0011】[0011]

【作用】請求項1記載の発明においては、T字型ゲート
電極の支柱部の近傍を中空となしたことにより、T字型
ゲート電極の幅広部の下面より下の空間に中空部が存在
するため、幅広部下面の下を絶縁物で埋めたものに対し
て寄生容量を低減できる作用を有する。また、幅広部下
面は、第2絶縁層で支持されるため、T字型ゲート電極
の機械強度は強化される。
According to the first aspect of the present invention, since the vicinity of the pillar portion of the T-shaped gate electrode is hollow, the hollow portion exists in the space below the lower surface of the wide portion of the T-shaped gate electrode. Therefore, it has an effect of reducing the parasitic capacitance with respect to the one in which the lower surface of the wide portion is filled with the insulator. Moreover, since the lower surface of the wide portion is supported by the second insulating layer, the mechanical strength of the T-shaped gate electrode is enhanced.

【0012】請求項2記載の発明においては、第1絶縁
層の開口部(第4開口部)の幅を制御することにより、
それに対応するリセスの幅も制御可能となる。
According to the invention of claim 2, the width of the opening (the fourth opening) of the first insulating layer is controlled,
The width of the recess corresponding to it can also be controlled.

【0013】[0013]

【実施例】以下、本発明に係る電界効果トランジスタ及
びその製造方法の詳細を図面に示す実施例に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The field effect transistor and its manufacturing method according to the present invention will be described below in detail with reference to the embodiments shown in the drawings.

【0014】本実施例の電界効果トランジスタが形成さ
れたチップバターンの平面図は、図3に示す通りであ
り、同図中のA−A断面図を図1、B−B断面図を図2
に示す。
A plan view of the chip pattern in which the field effect transistor of the present embodiment is formed is as shown in FIG. 3, and the AA sectional view in FIG. 1 is shown in FIG. 1 and the BB sectional view is shown in FIG.
Shown in.

【0015】図1に示すように、本実施例の電界効果ト
ランジスタが形成されるエピタキシャル構造は、半絶縁
性のGaAs基板11上に、順次、高抵抗なノンドープ
GaAsでなるバッファ層12,ノンドープのn-−I
nGaAsでなるチャネル層13,Siドープのn+
AlGaAsでなる電子供給層14,Siドープのn+
−GaAsでなるキャップ層15が形成されている。
As shown in FIG. 1, the epitaxial structure in which the field effect transistor of this embodiment is formed is such that a buffer layer 12 made of non-doped GaAs having a high resistance and a non-doped layer are successively formed on a semi-insulating GaAs substrate 11. n - I
Channel layer 13 made of nGaAs, Si-doped n +
Electron supply layer 14 made of AlGaAs, Si-doped n +
A cap layer 15 made of -GaAs is formed.

【0016】このような構造に対して、表面よりリセス
16が形成されている。このリセス16は、キャップ層
15を貫通して電子供給層14を削った構造となってい
る。このリセス16底部にはT字型ゲート17が立設さ
れ、このT字型ゲート17の上部幅広部17a下面は、
第2絶縁層19で支持され、この第2絶縁層19は、キ
ャップ層15上に形成された第1絶縁層18上に形成さ
れている。
A recess 16 is formed on the surface of such a structure. The recess 16 has a structure in which the electron supply layer 14 is cut off by penetrating the cap layer 15. A T-shaped gate 17 is erected on the bottom of the recess 16 and the lower surface of the upper wide portion 17a of the T-shaped gate 17 is
The second insulating layer 19 is supported by the second insulating layer 19, and the second insulating layer 19 is formed on the first insulating layer 18 formed on the cap layer 15.

【0017】また、第1絶縁層18のゲートの支柱部1
7bに臨む端面18aは、支柱部17bから離れて位置
し、該支柱部17bの周囲近傍は、中空部20となって
いる。そして、第1及び第2絶縁層18,19の両脇に
は、ソース電極22とドレイン電極23が配設されてい
る。なお、図中21は、2次元電子ガス、17Aはゲー
ト電極のバッド部を示している。
Further, the pillar portion 1 of the gate of the first insulating layer 18
The end face 18a facing the 7b is located away from the column 17b, and a hollow portion 20 is formed in the vicinity of the periphery of the column 17b. A source electrode 22 and a drain electrode 23 are arranged on both sides of the first and second insulating layers 18 and 19. In the figure, 21 indicates a two-dimensional electron gas and 17A indicates a bad portion of the gate electrode.

【0018】また、図3のC−C断面は、図4に示すよ
うに、ゲート端部の中空部20は、ゲートの幅広部17
aの端部下面に第2絶縁層19が当接することにより封
止されるため、後述するゲート金属蒸着時の真空のまま
保持される。
As shown in FIG. 4, the cross section CC of FIG. 3 shows that the hollow portion 20 at the end of the gate is the wide portion 17 of the gate.
Since the second insulating layer 19 is sealed by contacting the lower surface of the end of a with the second insulating layer 19, the vacuum is maintained at the time of vapor deposition of the gate metal described later.

【0019】図5は、オーバーコート絶縁膜24を堆積
した状態を示す断面図である。
FIG. 5 is a sectional view showing a state in which the overcoat insulating film 24 is deposited.

【0020】このような構成の電界効果トランジスタに
おいては、中空部20の存在により、T字型ゲート17
の上部幅広部17aの下が絶縁物で完全に埋められた場
合に比較して、真空と絶縁物の誘電率の違いから寄生容
量が小さくなり、しかもT字型ゲート17の機械的強度
は第2絶縁層19により支えられているため、強くな
る。また、AlInAs/GaInAs系HEMT等の
リセス底部(AlInAs)とパッシベーション膜との
界面に誘電層が形成され易い半導体材料を用いる場合
も、本実施例によれば、中空部20の真空封止構造がと
れるため、上記の導電層が形成されることが防止でき
る。
In the field effect transistor having such a structure, the T-shaped gate 17 is formed due to the existence of the hollow portion 20.
Compared with the case where the lower part of the upper wide portion 17a of the above is completely filled with an insulator, the parasitic capacitance is reduced due to the difference in the dielectric constant of the vacuum and the insulator, and the mechanical strength of the T-shaped gate 17 is 2 Since it is supported by the insulating layer 19, it becomes stronger. Also, when using a semiconductor material such as AlInAs / GaInAs HEMT that easily forms a dielectric layer at the interface between the recess bottom (AlInAs) and the passivation film, according to the present embodiment, the vacuum sealing structure of the hollow portion 20 is used. Therefore, it is possible to prevent the above conductive layer from being formed.

【0021】次に、本実施例の電界効果トランジスタの
製造方法を説明する。
Next, a method of manufacturing the field effect transistor of this embodiment will be described.

【0022】先ず、GaAs基板上に順次積層されるバ
ッファ層,チャネル層,電子供給層14,キャップ層1
5でなるエピタキシャル構造の最上層であるキャップ層
15上に、SiO2をCVD法にて膜厚0.1〜0.2
μmに堆積させて第1絶縁層18を形成し、その上にS
iNをCVD法にて膜厚0.1〜0.2μmに堆積させ
て第2絶縁膜19を形成する。次いで、第1,第2絶縁
膜18,19をフォトリソグラフィー技術及びエッチン
グ技術を用いて、図6に示すようにパターニングした
後、絶縁層が形成されていないキャップ層15表面に、
周知の技術を用いてAuGe/Ni構造でなるオーミッ
ク金属を形成して、ソース電極22及びドレイン電極2
3を形成する。なお、上記第1,第2絶縁層18,19
は、後述するエッチング時の選択性を満足するものであ
れば、これらに限定されるものではない。
First, a buffer layer, a channel layer, an electron supply layer 14, and a cap layer 1 which are sequentially laminated on a GaAs substrate.
SiO 2 is deposited on the cap layer 15, which is the uppermost layer of the epitaxial structure of No. 5, by a CVD method to a film thickness of 0.1 to 0.2.
to form a first insulating layer 18 on which S
The second insulating film 19 is formed by depositing iN by CVD to a film thickness of 0.1 to 0.2 μm. Next, after patterning the first and second insulating films 18 and 19 by using a photolithography technique and an etching technique as shown in FIG. 6, on the surface of the cap layer 15 where the insulating layer is not formed,
The source electrode 22 and the drain electrode 2 are formed by forming an ohmic metal having an AuGe / Ni structure using a known technique.
3 is formed. The first and second insulating layers 18 and 19 are
Are not limited to these as long as they satisfy the etching selectivity described later.

【0023】次に、図7に示すように、(EB:電子
線)ポジ型レジスト(例えば、シプレー社製SAL11
0−PLI)25を0.3μmの厚さに形成し、その上
にネガ型レジスト(例えば、日立化成社製RD2000
N)26を〜1μmの厚さにコーティングする。そし
て、ネガ型レジスト26に、T字型ゲート17の上部幅
広部17a(及び図3に示すパッド部17Aに至るまで
の引出部)に相当するパターン開口P(〜1μm)を形
成する。このとき、ネガ型レジスト26を開口するた
め、開口部Pのポジ型レジスト25は露光されず、その
まま残る。なお、両レジストの種類は、コーティングの
際に交ざり合わず、各現像時に相互に影響を及ぼさず、
且つ絶縁層18,19のエッチング時に耐性のあるもの
であればよい。また、ネガ型レジストの開口断面形状
は、図7に示すように逆テーパ状となるものが望まし
い。
Next, as shown in FIG. 7, (EB: electron beam) positive resist (for example, SAL11 manufactured by Shipley).
0-PLI) 25 is formed to a thickness of 0.3 μm, and a negative resist (for example, RD2000 manufactured by Hitachi Chemical Co., Ltd.) is formed thereon.
N) 26 is coated to a thickness of ~ 1 μm. Then, in the negative resist 26, a pattern opening P (up to 1 μm) corresponding to the upper wide portion 17a of the T-shaped gate 17 (and the lead portion up to the pad portion 17A shown in FIG. 3) is formed. At this time, since the negative resist 26 is opened, the positive resist 25 in the opening P is not exposed and remains as it is. The types of both resists do not intersect during coating and do not affect each other during each development.
Moreover, any material may be used as long as it has resistance when the insulating layers 18 and 19 are etched. Further, it is desirable that the opening cross-sectional shape of the negative resist has an inverse taper shape as shown in FIG.

【0024】次に、図8に示すように、ネガ型レジスト
26の開口部P内のポジ型レジスト25に電子線直描等
を用いて、Pよりも幅の狭い開口部Q(〜0.2μm)
を形成し、これをマスクとして第2絶縁層19を反応性
イオンエッチング(RIE)等の異方性ドライエッチン
グを用いて開口する。
Next, as shown in FIG. 8, by using electron beam direct drawing or the like for the positive type resist 25 in the opening P of the negative type resist 26, an opening Q (~ 0. 2 μm)
Is formed, and using this as a mask, the second insulating layer 19 is opened by anisotropic dry etching such as reactive ion etching (RIE).

【0025】次に、図9に示すように、ネガ型レジスト
26の開口部のポジ型レジスト25を全面露光,現像す
ることにより除去する。この際、ネガ型レジスト26
は、ポジ型レジスト25の感光波長を吸収するものが選
定されている。なお、ネガ型レジスト26の開口断面形
状が逆テーパ状でない場合は、このときの現像時間を調
整して、図9に示す点線のようにアンダーカットを入れ
ることにより、後述するリフトオフが容易になる。
Next, as shown in FIG. 9, the positive resist 25 in the opening of the negative resist 26 is removed by exposing and developing the entire surface. At this time, the negative resist 26
Is selected to absorb the photosensitive wavelength of the positive resist 25. When the cross-sectional shape of the opening of the negative resist 26 is not the inverse taper shape, the developing time at this time is adjusted and an undercut is inserted as shown by the dotted line in FIG. .

【0026】次に、図10に示すように、第2絶縁層1
9の開口部をマスクとして第1絶縁層18をエッチング
する。このエッチングは、バッファフッ酸(HF:NH
3F=1:9)等によるウェットエッチングを用い、オ
ーバーエッチング量を調整することにより、後述するリ
セス16の幅に対応する第1絶縁層の開口幅を調整する
ことができる。
Next, as shown in FIG. 10, the second insulating layer 1
The first insulating layer 18 is etched using the opening of 9 as a mask. This etching is performed using buffer hydrofluoric acid (HF: NH
The opening width of the first insulating layer corresponding to the width of the recess 16 described later can be adjusted by adjusting the overetching amount by using wet etching such as 3 F = 1: 9).

【0027】次いで、図11に示すように、電子供給層
14まで達するリセス16を所定の電界効果トランジス
タのしきい値電圧が得られるようにリセスエッチングす
る。このエッチングには、半導体層がGaAs,AlG
aAsであるため、例えばH3PO4:H22:H2O=
3:1:100等のエッチング液が用いられるが、他の
エッチングやドライエッチングでも良い。
Then, as shown in FIG. 11, the recess 16 reaching the electron supply layer 14 is recess-etched so that a predetermined threshold voltage of the field effect transistor can be obtained. For this etching, the semiconductor layer is GaAs, AlG
Since it is aAs, for example, H 3 PO 4 : H 2 O 2 : H 2 O =
An etching solution of 3: 1: 100 or the like is used, but other etching or dry etching may be used.

【0028】次に、再度第1絶縁層18のエッチングを
上記したエッチングと同条件で行い、図12に示すよう
に、第1絶縁層18の開口幅Sをネガ型レジスト26の
開口部Pと同程度に広げる。この状態で、ゲートショッ
トキー金属を蒸着し、リフトオフすることにより、図1
3に示す構造を得る。実際には、図5に示すように、更
にオーバーコート絶縁膜24を堆積し、その他ゲート,
ドレイン,ソースのボンディングパッドメタル等を形成
して完成する。
Next, the etching of the first insulating layer 18 is performed again under the same conditions as the above-described etching. As shown in FIG. 12, the opening width S of the first insulating layer 18 is set to the opening P of the negative resist 26. Spread to the same extent. In this state, the gate Schottky metal is vapor-deposited and lifted off, so that
The structure shown in 3 is obtained. Actually, as shown in FIG. 5, an overcoat insulating film 24 is further deposited, and other gates,
Drain, source bonding pad metal, etc. are formed and completed.

【0029】上記の製造方法によれば、図3におけるゲ
ート引き出し部B−B断面は、図2に示すようになり、
図8においてポジ型レジスト25をゲート動作部のみに
開口すれば、ゲート動作部以外のゲート金属は、第2絶
縁層19上に形成されることになり、ゲート引き出し部
による寄生容量は、半導体層上に接して形成される場合
に比較して低減される。
According to the above manufacturing method, the cross section of the gate lead portion BB in FIG. 3 is as shown in FIG.
In FIG. 8, if the positive type resist 25 is opened only in the gate operating portion, the gate metal other than the gate operating portion will be formed on the second insulating layer 19, and the parasitic capacitance due to the gate lead portion will be reduced to the semiconductor layer. It is reduced as compared with the case of being formed in contact with the top.

【0030】また、第1絶縁層18の開口幅を調整する
ことでゲートリセス幅を制御できる利点を有する。
Further, there is an advantage that the gate recess width can be controlled by adjusting the opening width of the first insulating layer 18.

【0031】以上、本発明をAlInAs/GaInA
s系HEMTに適用した実施例について説明したが、本
発明は、他の半導体材料を用いる各種の電界効果トラン
ジスタに適用し得るものであり、各種の設計変更が可能
であることは言うまでもない。
As described above, the present invention is applied to AlInAs / GaInA.
Although the embodiment applied to the s-based HEMT has been described, the present invention can be applied to various field effect transistors using other semiconductor materials, and it goes without saying that various design changes are possible.

【0032】また、上記実施例においては、リフトオフ
法を用いた加工を行ったが、ゲートの形成はエッチング
法を用いても勿論可能である。
Further, in the above embodiment, the processing using the lift-off method was carried out, but it is of course possible to form the gate by using the etching method.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
によれば、電界効果トランジスタのT字型ゲート電極の
機械的強度を向上する効果を有すると共に、ゲート部の
寄生容量を低減する効果がある。そして、リセス部分
は、真空封止できるため、導電層がリセス界面に形成さ
れるようなパッシベーション膜を用いることが可能とな
る。
As is apparent from the above description, according to the present invention, the mechanical strength of the T-shaped gate electrode of the field effect transistor can be improved, and the parasitic capacitance of the gate portion can be reduced. There is. Further, since the recess portion can be vacuum-sealed, it is possible to use a passivation film in which a conductive layer is formed at the recess interface.

【0034】また、請求項2記載の発明によれば、ゲー
トリセス幅の制御性を拡大できる効果を有し、さらに、
ゲート動作部以外のゲート金属を第2絶縁層上に形成で
きるため、半導体層に接してゲート金属が形成される従
来例に比較して、寄生容量を大幅に減少させる効果があ
る。
According to the second aspect of the invention, there is the effect that the controllability of the gate recess width can be expanded.
Since the gate metal other than the gate operating portion can be formed on the second insulating layer, it has an effect of significantly reducing the parasitic capacitance as compared with the conventional example in which the gate metal is formed in contact with the semiconductor layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す図3のA−A断面図。FIG. 1 is a sectional view taken along line AA of FIG. 3 showing an embodiment of the present invention.

【図2】本発明の実施例を示す図3のB−B断面図。FIG. 2 is a sectional view taken along line BB in FIG. 3 showing an embodiment of the present invention.

【図3】本発明の実施例の平面図。FIG. 3 is a plan view of an embodiment of the present invention.

【図4】図3のC−C断面図。FIG. 4 is a sectional view taken along line CC of FIG.

【図5】実施例の電界効果トランジスタの完成状態を示
す断面図。
FIG. 5 is a cross-sectional view showing a completed state of the field effect transistor of the example.

【図6】実施例の製造工程を示す断面図。FIG. 6 is a cross-sectional view showing the manufacturing process of the example.

【図7】実施例の製造工程を示す断面図。FIG. 7 is a cross-sectional view showing the manufacturing process of the example.

【図8】実施例の製造工程を示す断面図。FIG. 8 is a cross-sectional view showing the manufacturing process of the example.

【図9】実施例の製造工程を示す断面図。FIG. 9 is a sectional view showing the manufacturing process of the example.

【図10】実施例の製造工程を示す断面図。FIG. 10 is a cross-sectional view showing the manufacturing process of the example.

【図11】実施例の製造工程を示す断面図。FIG. 11 is a cross-sectional view showing the manufacturing process of the example.

【図12】実施例の製造工程を示す断面図。FIG. 12 is a cross-sectional view showing the manufacturing process of the example.

【図13】実施例の製造工程を示す断面図。FIG. 13 is a cross-sectional view showing the manufacturing process of the example.

【図14】(A)及び(B)は従来例の工程を示す断面
図。
14A and 14B are cross-sectional views showing steps of a conventional example.

【図15】(A)及び(B)は従来例の工程を示す断面
図。
15A and 15B are cross-sectional views showing steps of a conventional example.

【図16】エッチング法を用いた従来例の断面図。FIG. 16 is a sectional view of a conventional example using an etching method.

【符号の説明】[Explanation of symbols]

13…チャネル層 14…電子供給層 15…キャップ層 16…リセス 17…T字型ゲート 17a…上部幅広部 17b…支柱部 18…第1絶縁層 19…第2絶縁層 20…中空部 13 ... Channel layer 14 ... Electron supply layer 15 ... Cap layer 16 ... Recess 17 ... T-shaped gate 17a ... Upper wide part 17b ... Strut part 18 ... First insulating layer 19 ... Second insulating layer 20 ... Hollow part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 支柱部と幅広部とから成るT字型ゲート
電極を有する電界効果トランジスタにおいて、 前記支柱部の近傍を中空となし、前記幅広部の下部を絶
縁物で支持したことを特徴とする電界効果トランジス
タ。
1. A field effect transistor having a T-shaped gate electrode composed of a pillar portion and a wide portion, wherein the vicinity of the pillar portion is hollow, and the lower portion of the wide portion is supported by an insulator. Field effect transistor to be.
【請求項2】 半導体層上に第1絶縁層と第2絶縁層を
順次積層し、該第2絶縁層上に、順次ポジ型レジストと
ネガ型レジストを順次積層し、前記ネガ型レジストに第
1開口部を形成した後、該第1開口部内のポジ型レジス
トに前記第1開口部より幅の狭い第2開口部を形成し、
次いで、該ポジ型レジストの第2開口部をマスクとして
前記第2絶縁層をエッチングして第3開口部を形成した
後、前記ネガ型レジストの第1開口部内のポジ型レジス
トを除去し、次に、前記第1絶縁層を該第2絶縁層の第
3開口部を介してエッチングして第4開口部を形成し、
該第4開口部を介して前記半導体層のリセスエッチング
を行った後、ゲート金属を蒸着しリフトオフすることを
特徴とする電界効果トランジスタの製造方法。
2. A first insulating layer and a second insulating layer are sequentially laminated on a semiconductor layer, a positive resist and a negative resist are sequentially laminated on the second insulating layer, and the negative resist is first laminated. After forming one opening, a second opening narrower in width than the first opening is formed in the positive resist in the first opening,
Then, the second insulating layer is etched using the second opening of the positive resist as a mask to form a third opening, and then the positive resist in the first opening of the negative resist is removed. And etching the first insulating layer through the third opening of the second insulating layer to form a fourth opening,
A method of manufacturing a field effect transistor, comprising performing recess etching of the semiconductor layer through the fourth opening, then depositing a gate metal and lifting off.
JP04266416A 1992-10-06 1992-10-06 Method for manufacturing field effect transistor Expired - Fee Related JP3144089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04266416A JP3144089B2 (en) 1992-10-06 1992-10-06 Method for manufacturing field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04266416A JP3144089B2 (en) 1992-10-06 1992-10-06 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JPH06120253A true JPH06120253A (en) 1994-04-28
JP3144089B2 JP3144089B2 (en) 2001-03-07

Family

ID=17430635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04266416A Expired - Fee Related JP3144089B2 (en) 1992-10-06 1992-10-06 Method for manufacturing field effect transistor

Country Status (1)

Country Link
JP (1) JP3144089B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998695B2 (en) 2002-08-29 2006-02-14 Fujitsu Limited Semiconductor device having a mushroom gate with hollow space
JPWO2006080109A1 (en) * 2005-01-25 2008-06-19 富士通株式会社 Semiconductor device having MIS structure and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998695B2 (en) 2002-08-29 2006-02-14 Fujitsu Limited Semiconductor device having a mushroom gate with hollow space
JPWO2006080109A1 (en) * 2005-01-25 2008-06-19 富士通株式会社 Semiconductor device having MIS structure and manufacturing method thereof
US7910955B2 (en) 2005-01-25 2011-03-22 Fujitsu Limited Semiconductor device having MIS structure and its manufacture method
JP4845872B2 (en) * 2005-01-25 2011-12-28 富士通株式会社 Semiconductor device having MIS structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP3144089B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US4377899A (en) Method of manufacturing Schottky field-effect transistors utilizing shadow masking
EP0447840B1 (en) Compound semiconducteur device manufacturing process and a compound semiconducteur device manufactured by the same
JP2003100775A (en) Semiconductor device and manufacturing method thereof
JP3144089B2 (en) Method for manufacturing field effect transistor
JPH0472381B2 (en)
JPH02140942A (en) Manufacture of semiconductor device
US5483089A (en) Electrically isolated MESFET
JPH0228255B2 (en) HANDOTAISOCHI
US20020004274A1 (en) Method of fabricating semiconductor device
JPH08274118A (en) Field-effect semiconductor device and its manufacture
JP2523985B2 (en) Method for manufacturing semiconductor device
JP4245689B2 (en) Manufacturing method of semiconductor device
JP2591162B2 (en) Method of manufacturing semiconductor device and semiconductor device manufactured thereby
JP2503667B2 (en) Method for manufacturing semiconductor device
JPS6323669B2 (en)
JPH0411741A (en) Field-effect transistor and its manufacture
JP2776053B2 (en) Method for manufacturing semiconductor device
JP2798041B2 (en) Method for manufacturing semiconductor device
JPS63137481A (en) Manufacture of semiconductor device
JPH0653246A (en) Manufacture of field effect transistor
JPS6323366A (en) Manufacture of field-effect transistor
JPH02142143A (en) Manufacture of filed effect transistor
JPH0684950A (en) Manufacture of field effect transistor
JPS6215861A (en) Manufacture of semiconductor device
JPH0684951A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120105

LAPS Cancellation because of no payment of annual fees