JPH0411741A - Field-effect transistor and its manufacture - Google Patents

Field-effect transistor and its manufacture

Info

Publication number
JPH0411741A
JPH0411741A JP11441390A JP11441390A JPH0411741A JP H0411741 A JPH0411741 A JP H0411741A JP 11441390 A JP11441390 A JP 11441390A JP 11441390 A JP11441390 A JP 11441390A JP H0411741 A JPH0411741 A JP H0411741A
Authority
JP
Japan
Prior art keywords
gate
gate electrode
insulating film
film
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11441390A
Other languages
Japanese (ja)
Other versions
JP2921020B2 (en
Inventor
Tatsuo Tokue
徳江 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11441390A priority Critical patent/JP2921020B2/en
Publication of JPH0411741A publication Critical patent/JPH0411741A/en
Application granted granted Critical
Publication of JP2921020B2 publication Critical patent/JP2921020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent a parasitic capacitance from being increased at a gate electrode and to improve a gain by a method wherein, at a passivation film with which the gate electrode of a mashroom structure is covered, voids are formed at the lower part of eaves of the gate electrode. CONSTITUTION:A first insulating film 2 is formed on a GaAs substrate 1; after that, an opening part 3 is formed in a position to be used as a gate region in the film 2. Then, a resist layer 4 is coated; the resist corresponding to the lower side of eaves of a mushroom gate is left on both sides of the inside of the opening part 3 in the film 2; an opening part 5 is formed between them; after that, a recess part 6 at a desired depth is formed by making use of the resist 4 as a mask. Then, a gate metal is vapor-deposited; it is patterned in the upper-part width of the mushroom gate; after that, a gate electrode 7 of a mushroom structure is formed. When a second insulating film 8 is formed, voids 9 are produced at the lower part of eaves of the electrode 7 of the mushroom structure. Thereby, since the permittivity of the air is smaller than that of the film 8, it is possible to prevent a parasitic capacitance from being increased at the electrode 7 and the improve a gain.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果トランジスタの製造方法に関するも
のであり、特にマツシュルームゲート構造を有する電界
効果トランジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a field effect transistor, and particularly to a method for manufacturing a field effect transistor having a pine mushroom gate structure.

〔従来の技術〕[Conventional technology]

一般に、低雑音増幅用のガリウム砒素電界効果トランジ
スタ(CaAsFET)や、アルミガリウム砒素/ガリ
ウム砒素系のへテロ接合を有する電界効果トランジスタ
(HEMT、MODFET。
In general, gallium arsenide field effect transistors (CaAsFET) for low-noise amplification and field effect transistors (HEMT, MODFET) having an aluminum gallium arsenide/gallium arsenide heterojunction.

HJ−FET等、以下本文ではHJ−FETと記す)で
は、そのマイクロ波性能を向上するために、ゲート長(
Lg)の短縮やソース抵抗(Rs)の低減等が図られて
いる。特に、ゲート長の短縮は非常に有効であり、EB
(電子ビーム)描画法等によって0.25〜0.3μm
程度のゲート長の素子が実用化されている。しかしなが
ら、このゲート長の短縮によりゲート入力容置(Cgs
)が低減されるため、他方ではゲート抵抗(Rg)の増
大が生じる。
In order to improve the microwave performance of HJ-FET (hereinafter referred to as HJ-FET in the main text), the gate length (
Efforts are being made to shorten Lg) and reduce source resistance (Rs). In particular, shortening the gate length is very effective, and EB
(Electron beam) 0.25 to 0.3 μm depending on drawing method etc.
Elements with gate lengths of about 300 yen have been put into practical use. However, due to this shortened gate length, the gate input capacity (Cgs
) is reduced, which on the other hand results in an increase in the gate resistance (Rg).

このため、従来ではマツシュルームゲート構造の適用に
より、ゲート抵抗の低減を図っている。
For this reason, in the past, efforts have been made to reduce gate resistance by applying a pine mushroom gate structure.

第2図はその一例であり、1はCaAs基板、7はその
リセス部6に設けたゲート電極、10.11はソース、
ドレインの各電極、8はSiNまたはSiO□からなる
パッシベーション膜である。
FIG. 2 shows an example, in which 1 is a CaAs substrate, 7 is a gate electrode provided in the recessed part 6, 10.11 is a source,
Each drain electrode 8 is a passivation film made of SiN or SiO□.

このように、ゲート電極7をマンシュルーム構造とする
ことで、ゲート長を短縮する一方で、ゲート抵抗の低減
を図っている。
In this way, by forming the gate electrode 7 into a manshroom structure, the gate length is shortened and the gate resistance is reduced.

このマツシュルームゲートの形成方法は、いくつか考え
られるが、EB描画法を利用したレジストリフトオフ法
による形成がゲート長をコントロールする上で有利と考
えられる。
Although there are several methods of forming this pine mushroom gate, it is thought that formation by a resist lift-off method using an EB lithography method is advantageous in controlling the gate length.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記した従来の構造では、信転度確保のために設けたパ
ッシベーション膜8を、信転度を確保する為の十分な厚
さ(通常は1000Å以上)に形成すると、ゲート電極
7のひさし下部に侵入されるパッシベーション膜8によ
り寄生容量の増加が生し、マイクロ波特性、特に利得の
低下をもたらす。例えば、ゲート長Lg30.3μm、
ゲート幅Wg=200 a mの素子では、通常の矩形
ゲートではゲートドレイン間容量Cgdさ0.015p
 Fに対し、Cgdユ0.025pF程度に増加し、こ
れにより、12GH2において、利得が1〜1.5dB
程度低下する。また、寄生容量の増大を防止するために
は、パッシベーション膜8を形成しなければ良いが、素
子の信輔度やウェハー製造9Mi立工程に際しての汚染
、劣化等をもたらすおそれがある。
In the conventional structure described above, when the passivation film 8 provided to ensure the reliability is formed to a sufficient thickness (usually 1000 Å or more) to ensure the reliability, the underside of the eaves of the gate electrode 7 is The invaded passivation film 8 causes an increase in parasitic capacitance, resulting in a decrease in microwave characteristics, especially gain. For example, gate length Lg30.3μm,
In a device with a gate width Wg = 200 am, a normal rectangular gate has a gate-drain capacitance Cgd of 0.015p.
Cgd increases to about 0.025 pF with respect to
The degree decreases. Further, in order to prevent an increase in parasitic capacitance, the passivation film 8 may not be formed, but this may cause contamination, deterioration, etc. in the reliability of the elements and during the wafer manufacturing process.

本発明の目的は、寄生容量の増大を防止して利得の改善
を図った電界効果トランジスタおよびその製造方法を提
供することにある。
An object of the present invention is to provide a field effect transistor that prevents increase in parasitic capacitance and improves gain, and a method for manufacturing the same.

[課題を解決するための手段〕 本発明の電界効果トランジスタは、GaAs基板上に設
けたマツシュルーム構造のゲート電極を被覆するパッジ
ベージジン膜に、ゲート電極のひさし下部に空孔を設け
た構成としている。
[Means for Solving the Problems] The field effect transistor of the present invention has a structure in which holes are provided under the eaves of the gate electrode in a padded resin film that covers a gate electrode with a mushroom structure provided on a GaAs substrate.

また、本発明の電界効果トランジスタの製造方法は、G
aA−s基板上に第1の絶縁膜を形成する工程と、この
第1の絶縁膜に開口領域を設ける工程と、この開口領域
内にその一部を残しかつ該開口と同位置に開口部を有す
るレジストを形成する工程と、この開口を利用して前記
GaAs基板にゲート金属を蒸着し、がっ前記レジスト
を除去してリフトオフ法によりマツシュルーム構造のゲ
ート電極を形成する工程と、全面にパッシベーション膜
としての第2の絶縁膜を堆積法により形成する工程とを
含んでいる。
Further, the method for manufacturing a field effect transistor of the present invention includes G
a step of forming a first insulating film on the aA-s substrate, a step of providing an opening area in the first insulating film, and forming an opening at the same position as the opening while leaving a part of the opening area within the opening area. A step of forming a resist having a gate electrode having a pine mushroom structure by using the opening to deposit a gate metal on the GaAs substrate, removing the resist and using a lift-off method, and passivating the entire surface. The method includes a step of forming a second insulating film as a film by a deposition method.

〔作用〕[Effect]

本発明の電界効果トランジスタによれば、ゲート電極の
ひさし下部において、パッシベーション膜に空孔が存在
しているため、ゲート電極の寄生容量が低減される。
According to the field effect transistor of the present invention, the parasitic capacitance of the gate electrode is reduced because holes are present in the passivation film under the eaves of the gate electrode.

〔実施例] 次に、本発明を図面を参照して説明する。〔Example] Next, the present invention will be explained with reference to the drawings.

第1図(a)ないしくlは本発明の一実施例を製造工程
順に示す断面図であり、特にゲート電極部分の製造方法
を示す図である。以下、この製造工程に従って説明する
FIGS. 1(a) to 1(l) are cross-sectional views showing an embodiment of the present invention in the order of manufacturing steps, and in particular, are views showing a method of manufacturing a gate electrode portion. This manufacturing process will be explained below.

先ず、第1図(a)のように、活性領域を形成した後の
GaAs基板1上に、第1の絶縁膜2、例えばSiO2
膜を比較的に厚< (3000人)形成する。ついで、
この絶縁膜2のゲートN域となる位置にマツシュルーム
ゲートの上部幅とほぼ同じ開口部3を形成する。
First, as shown in FIG. 1(a), a first insulating film 2, for example SiO2, is deposited on a GaAs substrate 1 after forming an active region.
Form a relatively thick film (3000 people). Then,
An opening 3 is formed in the insulating film 2 at a position that will be the gate N region, the opening 3 being approximately the same width as the upper part of the mushroom gate.

次に、第1図(b)のように、PMMA系のレジスト層
4を塗布し、EB直接描画法によりレジスト4のバター
ニングを行う。このパターニングでは、前記絶縁膜2の
開口部3の内面両側にマツシュ/I/−Lay’−)の
ひさし下側に相当するレジストを残し、かつこれらの間
に開口部5を形成する。
Next, as shown in FIG. 1(b), a PMMA-based resist layer 4 is applied, and the resist 4 is patterned by the EB direct writing method. In this patterning, resists corresponding to the underside of the eaves of the mats/I/-Lay'-) are left on both sides of the inner surface of the opening 3 of the insulating film 2, and an opening 5 is formed between them.

この場合、EB描画法を用いるため、位置合わせ精度は
高い。
In this case, since the EB drawing method is used, the alignment accuracy is high.

その後、第1図(C)のように、前記レジスト4をマス
クにしてGaAs基板l基板面をエツチングし、所望の
深さのリセス部6を形成する。ついで、ゲート金属とし
て、例えば、Ti−Alを200人〜4000人蒸着し
、これをマツシュルームゲ−トの上部幅でパターニング
する。その後、レジスト4を除去するりフトオフ法によ
りマツシュルーム構造のゲート電極7を形成する。
Thereafter, as shown in FIG. 1C, the surface of the GaAs substrate 1 is etched using the resist 4 as a mask to form a recess 6 of a desired depth. Then, as a gate metal, for example, Ti--Al is deposited by 200 to 4000 people and patterned to have the upper width of the pine mushroom gate. Thereafter, the resist 4 is removed and a gate electrode 7 having a mushroom structure is formed by a lift-off method.

なお、この後、第2図に示したようなソース。In addition, after this, the sauce as shown in FIG.

ドレインの各電極やそのコンタクト領域を形成するが、
この方法や形成される電極はこれまでと同じであるので
、その説明は省略する。
Each drain electrode and its contact area are formed.
Since this method and the electrodes formed are the same as before, their explanation will be omitted.

しかる上で、第1図(d)のように、パッシベーション
膜として第2の絶縁膜8、例えば、プラズマCVD法等
の堆積法によるSiN膜を1000人の厚さで全面に形
成する。このとき、マツシュルーム構造をしたゲート電
極7のひさし下部には空孔9が生じることになる。
Then, as shown in FIG. 1(d), a second insulating film 8 as a passivation film, for example, a SiN film by a deposition method such as plasma CVD, is formed over the entire surface to a thickness of 1000 nm. At this time, holes 9 are generated under the eaves of the gate electrode 7 having a mushroom structure.

この空孔9が形成される理由は、第1の絶縁膜2とゲー
ト電極7のひさしが非常に接近し、かつ第1の絶縁膜2
の方が高い位置にあるため、第2の絶縁膜8の成長時に
ひさし先端部と第1の絶縁膜2上で第2の絶縁膜8が連
絡してしまうためである。例えば、本実施例の場合には
、第2の絶縁膜8としてSiN膜を1000人程度成長
しているが、ゲート電極7のひさし下部には400〜5
00人程度しか成成長れず、この間に空孔9が形成され
る。
The reason why the holes 9 are formed is that the eaves of the first insulating film 2 and the gate electrode 7 are very close to each other, and the first insulating film 2
This is because the second insulating film 8 contacts the tip of the eaves on the first insulating film 2 when the second insulating film 8 is grown. For example, in the case of this embodiment, about 1000 SiN films are grown as the second insulating film 8, but about 400 to 500 SiN films are grown under the eaves of the gate electrode 7.
Only about 0.00 people grow, and holes 9 are formed during this time.

このように構成された電界効果トランジスタでは、ゲー
ト電極7のひさし下部には第2の絶縁膜8が充填されて
はおらず、空孔9が存在しているため、空気の誘電率が
第2の絶縁膜8のそれよりも小さいことから、ゲート電
極7における寄生容量の増大を防止することができる。
In the field-effect transistor configured in this way, the lower part of the eaves of the gate electrode 7 is not filled with the second insulating film 8, but the holes 9 are present, so that the dielectric constant of the air is equal to the second insulating film 8. Since it is smaller than that of the insulating film 8, an increase in parasitic capacitance in the gate electrode 7 can be prevented.

また、この製造方法では、ゲート電極7に近接してあら
かじめ第1の絶縁膜2を形成しておけば、以後の工程は
従来と同様の工程で製造でき、容易に製造を行うことが
できる。
Further, in this manufacturing method, if the first insulating film 2 is formed in advance in the vicinity of the gate electrode 7, the subsequent steps can be performed in the same manner as in the conventional method, and the manufacturing can be easily performed.

なお、この電界効果トランジスタでは、ゲート電極7の
ひさし下部に空孔9が存在しても、リセス部6は第2の
絶縁膜8で保護されるため、信輔度やウェハー工程7組
立工程での汚染、劣化等の問題が生じることはない。
In this field effect transistor, even if there is a hole 9 under the eaves of the gate electrode 7, the recessed part 6 is protected by the second insulating film 8, so that reliability and wafer process 7 assembly process may be affected. Problems such as contamination and deterioration will not occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の電界効果トランジスタは、
マツシュルーム構造のゲート電極のひさし下部のパッシ
ベーション膜に空孔を設けているので、この部分におけ
る誘電率を低くし、ゲート電極における寄生容量を抑制
し、利得を改善することができる効果がある。
As explained above, the field effect transistor of the present invention has
Since holes are provided in the passivation film under the eaves of the gate electrode of the pine mushroom structure, the dielectric constant in this part is lowered, parasitic capacitance in the gate electrode is suppressed, and gain can be improved.

また、本発明の電界効果トランジスタの製造方法は、従
来の製造方法と比較すると、ゲート電極に近接する第1
の絶縁膜をあらかじめ形成しておくだけでよいため、従
来の工程ををそのまま利用でき、本発明の電界効果トラ
ンジスタを容易に製造することができる効果もある。
Furthermore, compared to conventional manufacturing methods, the method for manufacturing a field effect transistor of the present invention is characterized in that the first
Since it is only necessary to form an insulating film in advance, the conventional process can be used as is, and the field effect transistor of the present invention can be manufactured easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないしくd)は本発明の電界効果トランジ
スタを製造工程順に示す断面図、第2図は従来の電界効
果トランジスタの断面図である。 1・・・GaAs基板、2・・・第1の絶縁膜、3・・
・開口部、4・・・レジスト、5・・・開口部、6・・
・リセス部、7・・・ゲート電極、8・・・第2の絶縁
膜(パッシベーション膜)、9・・・空孔、10.11
・・・ソース、ド第1図
FIGS. 1(a) to d) are cross-sectional views showing the field effect transistor of the present invention in the order of manufacturing steps, and FIG. 2 is a cross-sectional view of a conventional field effect transistor. DESCRIPTION OF SYMBOLS 1... GaAs substrate, 2... First insulating film, 3...
・Opening, 4...Resist, 5...Opening, 6...
- Recessed part, 7... Gate electrode, 8... Second insulating film (passivation film), 9... Hole, 10.11
・・・Source, Figure 1

Claims (1)

【特許請求の範囲】 1、GaAs基板上にマッシュルーム構造のゲート電極
を形成し、かつこのゲート電極をパッシベーション膜で
被覆した電界効果トランジスタにおいて、前記パッシベ
ーション膜は、前記ゲート電極のひさし下部に空孔を有
することを特徴とする電界効果トランジスタ。 2、GaAs基板上に第1の絶縁膜を形成する工程と、
この第1の絶縁膜に開口領域を設ける工程と、この開口
領域内にその一部を残しかつ該開口と同位置に開口部を
有するレジストを形成する工程と、この開口を利用して
前記GaAs基板にゲート金属を蒸着し、かつ前記レジ
ストを除去してリフトオフ法によりマッシュルーム構造
のゲート電極を形成する工程と、全面にパッシベーショ
ン膜としての第2の絶縁膜を堆積法で形成する工程とを
含むことを特徴とする電界効果トランジスタの製造方法
[Claims] 1. In a field effect transistor in which a mushroom-structured gate electrode is formed on a GaAs substrate and this gate electrode is covered with a passivation film, the passivation film has holes formed under the eaves of the gate electrode. A field effect transistor characterized by having: 2. Forming a first insulating film on the GaAs substrate;
A step of providing an opening region in the first insulating film, a step of forming a resist having an opening at the same position as the opening while leaving a part of the resist in the opening region, and using this opening to The method includes the steps of depositing a gate metal on the substrate, removing the resist, and forming a gate electrode with a mushroom structure using a lift-off method, and forming a second insulating film as a passivation film on the entire surface using a deposition method. A method of manufacturing a field effect transistor, characterized in that:
JP11441390A 1990-04-28 1990-04-28 Field effect transistor and method of manufacturing the same Expired - Fee Related JP2921020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11441390A JP2921020B2 (en) 1990-04-28 1990-04-28 Field effect transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11441390A JP2921020B2 (en) 1990-04-28 1990-04-28 Field effect transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0411741A true JPH0411741A (en) 1992-01-16
JP2921020B2 JP2921020B2 (en) 1999-07-19

Family

ID=14637071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11441390A Expired - Fee Related JP2921020B2 (en) 1990-04-28 1990-04-28 Field effect transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2921020B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272095A (en) * 1992-03-18 1993-12-21 Research Triangle Institute Method of manufacturing heterojunction transistors with self-aligned metal contacts
US5358885A (en) * 1992-08-19 1994-10-25 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a field effect transistor with a T-shaped gate electrode and reduced capacitance
US5953625A (en) * 1997-12-15 1999-09-14 Advanced Micro Devices, Inc. Air voids underneath metal lines to reduce parasitic capacitance
KR100366422B1 (en) * 1998-10-29 2003-04-23 주식회사 하이닉스반도체 Metal Transistor Manufacturing Method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272095A (en) * 1992-03-18 1993-12-21 Research Triangle Institute Method of manufacturing heterojunction transistors with self-aligned metal contacts
US5358885A (en) * 1992-08-19 1994-10-25 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a field effect transistor with a T-shaped gate electrode and reduced capacitance
US5953625A (en) * 1997-12-15 1999-09-14 Advanced Micro Devices, Inc. Air voids underneath metal lines to reduce parasitic capacitance
KR100366422B1 (en) * 1998-10-29 2003-04-23 주식회사 하이닉스반도체 Metal Transistor Manufacturing Method

Also Published As

Publication number Publication date
JP2921020B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
US5362677A (en) Method for producing a field effect transistor with a gate recess structure
KR970004846B1 (en) Semiconductor device
JPH0411741A (en) Field-effect transistor and its manufacture
JPS6222536B2 (en)
JP2822404B2 (en) Method for manufacturing field effect transistor
JP3027236B2 (en) Semiconductor device and method of manufacturing the same
JP2523985B2 (en) Method for manufacturing semiconductor device
JP3144089B2 (en) Method for manufacturing field effect transistor
JP3161418B2 (en) Method for manufacturing field effect transistor
JP2591162B2 (en) Method of manufacturing semiconductor device and semiconductor device manufactured thereby
JP2557432B2 (en) Field effect transistor
JP3019446B2 (en) High frequency semiconductor device
JPH0645363A (en) Arsenic gallium field effect transistor
KR100262941B1 (en) Method for forming t-type gate of semiconductor device
JPH05218090A (en) Manufacture of field effect transistor
JPH05335340A (en) Gallium arsenide field-effect transistor
JP2734185B2 (en) Method for manufacturing field effect transistor
JP3217714B2 (en) Method for forming gate of field effect transistor
JPH0653246A (en) Manufacture of field effect transistor
JPH03127840A (en) Manufacture of semiconductor device
JPH05175243A (en) Manufacture of semiconductor device
JPH0812871B2 (en) Field effect transistor
JPH05152346A (en) Method of manufacturing compound semiconductor device
JPS63224262A (en) Field effect type transistor
JPH02268445A (en) Manufacture of field effect transistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees