JPH06112485A - Thin film transistor array - Google Patents

Thin film transistor array

Info

Publication number
JPH06112485A
JPH06112485A JP25848492A JP25848492A JPH06112485A JP H06112485 A JPH06112485 A JP H06112485A JP 25848492 A JP25848492 A JP 25848492A JP 25848492 A JP25848492 A JP 25848492A JP H06112485 A JPH06112485 A JP H06112485A
Authority
JP
Japan
Prior art keywords
amorphous silicon
film
gate insulating
layer
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25848492A
Other languages
Japanese (ja)
Other versions
JP2956380B2 (en
Inventor
Wakahiko Kaneko
若彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25848492A priority Critical patent/JP2956380B2/en
Publication of JPH06112485A publication Critical patent/JPH06112485A/en
Application granted granted Critical
Publication of JP2956380B2 publication Critical patent/JP2956380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To lessen a gate insulating film in thickness so as to eliminate a complicated interface simple by a method wherein the gate insulating film formed on a gate electrode is of single-layered structure under an amorphous semiconductor layer and of multilayered structure under the other part. CONSTITUTION:A gate electrode 102 is formed on a substrate 101, a silicon oxide film is formed on all the surface of the substrate 101, a part of the silicon oxide film predermined to intersect an amorphous silicon semiconductor layer 103 is removed, and a gate insulating layer 109 is formed. Furthermore, a silicon nitride film, an amorphous silicon film, and an N-amorphous silicon film are successively formed in a vacuum. The silicon nitride film is made to serve as a gate insulating film 110. Then, the amorphous silicon film and the N- amorphous silicon film are processed into the prescribed patterns on the gate electrode 102 and a necessary part for the formation of an amorphous silicon semiconductor layer 103. By this setup, a part of a gate insulating layer, which intersects an amorphous silicon semiconductor layer that serves as the operating part of a transistor, is formed in single layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
を用いた逆スタガー型チャネル堀込み構造の薄膜トラン
ジスタアレイに関し、特にアクティブマトリクス型液晶
ディスプレイの駆動用素子として用いられる薄膜トラン
ジスタアレイに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverse stagger type channel engraving thin film transistor array using amorphous silicon, and more particularly to a thin film transistor array used as a driving element of an active matrix type liquid crystal display.

【0002】[0002]

【従来の技術】図5は従来の薄膜トランジスタアレイの
構成を示す縦断面図である。従来の薄膜トランジスタア
レイは、絶縁基板を構成するガラス基板301上にアル
ミ、クロム、タンタルなどの金属をスパッタ法により成
膜し、これをフォトリソグラフィとウェットエッチング
の方法によりゲート電極302を形成しパターニングす
る。次に、窒化シリコン(100nm)および酸化シリ
コン膜(300nm)が積層されたゲート絶縁層(1)
309(400nm)と、アモルファスシリコン膜(3
00nm)およびリンをドープしたn型アモルファスシ
リコン膜(60nm)により形成されたゲート絶縁層
(2)310とをプラズマCVD法により真空中で連続
成膜する。
2. Description of the Related Art FIG. 5 is a vertical sectional view showing the structure of a conventional thin film transistor array. In a conventional thin film transistor array, a metal such as aluminum, chromium, or tantalum is formed by a sputtering method on a glass substrate 301 that constitutes an insulating substrate, and a gate electrode 302 is formed and patterned by photolithography and wet etching. . Next, a gate insulating layer (1) in which a silicon nitride (100 nm) and a silicon oxide film (300 nm) are laminated.
309 (400 nm) and amorphous silicon film (3
00 nm) and a gate insulating layer (2) 310 formed of an n-type amorphous silicon film (60 nm) doped with phosphorus are continuously formed in a vacuum by a plasma CVD method.

【0003】次に、アモルファスシリコンのn−アモル
ファスシリコン膜をフォトリソグラフィとドライエッチ
ングの方法によりしま状に加工してアモルファスシリコ
ン半導体層303を形成し、さらに、ゲート絶縁層
(1)309にも同様の方法により電極接続用のコンタ
クトホールを形成する。その後、これらの上に再度アル
ミ、クロム、などの金属を成膜し、これをフォトリソグ
ラフィの方法によりソース電極305およびドレイン電
極306の配線をパターニングする。
Next, an n-amorphous silicon film of amorphous silicon is processed into a stripe shape by a photolithography and dry etching method to form an amorphous silicon semiconductor layer 303, and the same is applied to the gate insulating layer (1) 309. A contact hole for electrode connection is formed by the method described above. After that, a metal such as aluminum and chromium is again formed on these, and the wiring of the source electrode 305 and the drain electrode 306 is patterned by the method of photolithography.

【0004】次いで、チャネル形成のためにアモルファ
スシリコン半導体層303上に残ったn−アモルファス
シリコン膜をドライエッチング法により除去し、(以
下、チャネルエッチングという)、最後に堀込んだチャ
ネルを保護するためのパシベーション膜308として窒
化シリコン膜をプラズマCVD法により成膜し、電極接
続用のコンタクトホールをフォトリソグラフィの方法に
より形成する。
Next, the n-amorphous silicon film remaining on the amorphous silicon semiconductor layer 303 for forming a channel is removed by a dry etching method (hereinafter referred to as channel etching) to protect the finally dug channel. A silicon nitride film is formed as the passivation film 308 by plasma CVD, and contact holes for electrode connection are formed by photolithography.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の薄膜ト
ランジスタアレイは、ゲート電極とソースおよびドレイ
ン電極との交差部における層間ショートの防止、あるい
はゲート電極の保護のためにゲート絶縁層を二重化して
いる。そのためにトランジスタ部のゲート絶縁層の厚さ
が増大しトランジスタの特性が劣化し、ゲート絶縁層の
中に界面準位や電荷トラップなどが生じ易くなり特性を
不安定化させる問題があった。
In the above-mentioned conventional thin film transistor array, the gate insulating layer is doubled in order to prevent an interlayer short circuit at the intersection of the gate electrode and the source and drain electrodes or to protect the gate electrode. . Therefore, there is a problem that the thickness of the gate insulating layer in the transistor portion is increased, the characteristics of the transistor are deteriorated, interface states and charge traps are easily generated in the gate insulating layer, and the characteristics are destabilized.

【0006】本発明はこのような問題を解決するもの
で、ゲート絶縁層を薄くし、複雑な界面をなくして動作
特性および安定性を向上させることができる薄膜トラン
ジスタアレイを提供することを目的とする。
The present invention solves such a problem, and an object of the present invention is to provide a thin film transistor array capable of improving the operating characteristics and stability by thinning the gate insulating layer and eliminating complicated interfaces. .

【0007】[0007]

【課題を解決するための手段】本発明は、絶縁基板上に
ゲート電極、ゲート絶縁層、しま状に加工したアモルフ
ァスシリコン半導体層、オーミックコンタクト層、ソー
スおよびドレイン電極が順次積層されパターニングされ
た後にチャネル部分のオーミックコンタクト層がエッチ
ング除去されてパシベーション膜が積層され、さらにパ
ターニングされて形成された薄膜トランジスタアレイに
おいて、前記ゲート電極上の前記ゲート絶縁層を前記ア
モルファスシリコン半導体層の下部については単層構造
としそれ以外については複層構造に構成したことを特徴
とする。
According to the present invention, a gate electrode, a gate insulating layer, a striped amorphous silicon semiconductor layer, an ohmic contact layer, a source and a drain electrode are sequentially laminated and patterned on an insulating substrate. In a thin film transistor array formed by etching away an ohmic contact layer of a channel portion and stacking a passivation film, and further patterning the gate insulating layer on the gate electrode, a single layer structure is formed below the amorphous silicon semiconductor layer. Other than that, it is characterized by having a multi-layer structure.

【0008】前記複層構造のゲート絶縁層は、少なくと
も窒化シリコン膜を含む絶縁性膜の積層構造で形成さ
れ、この窒化シリコン膜が前記アモルファスシリコン半
導体層と接する構造にすることができる。
The multi-layered gate insulating layer may be formed of a laminated structure of insulating films including at least a silicon nitride film, and the silicon nitride film may be in contact with the amorphous silicon semiconductor layer.

【0009】[0009]

【作用】薄膜トランジスタの実効移動度はゲート絶縁層
の誘電率と膜厚に大きく依存し、その動作安定性もゲー
ト絶縁層中の不純物、構造形成の準位、およびトラップ
に大きく関わっている。本発明ではゲート絶縁層をトラ
ンジスタの動作部分であるアモルファスシリコン半導体
層との交差部で単層にしてゲート絶縁膜層を薄くし、複
雑な界面をもたないようにする。これにより、動作特性
および安定性を向上させることができる。
The effective mobility of a thin film transistor is largely dependent on the dielectric constant and film thickness of the gate insulating layer, and its operational stability is also greatly related to impurities in the gate insulating layer, the level of structure formation, and traps. In the present invention, the gate insulating layer is made a single layer at the intersection with the amorphous silicon semiconductor layer, which is the operating portion of the transistor, and the gate insulating film layer is made thin so that it does not have a complicated interface. As a result, operating characteristics and stability can be improved.

【0010】[0010]

【実施例】次に、本発明実施例を図面に基づいて説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0011】(第一実施例)図1は本発明第一実施例の
構成を示す縦断面図である。
(First Embodiment) FIG. 1 is a vertical sectional view showing the structure of the first embodiment of the present invention.

【0012】本発明第一実施例は、厚さ約1mmの低ア
ルカリのガラス基板101上に金属クロム(100n
m)をスパッタ法で成膜し、これをフォトリソグラフィ
とウエットエッチングの方法により所定のパターンに加
工してゲート電極102を形成する。次に、スパッタ法
により酸化シリコン膜(150nm)をガラス基板10
1の全面に披着形成した後、フォトリソグラフィとドラ
イエッチングの技術によりアモルファスシリコン半導体
層103と交差する予定の部分の酸化シリコン膜を除去
してゲート絶縁層(1)109を形成するさらに、プラ
ズマCVD法により窒化シリコン膜(300nm)、ア
モルファスシリコン膜(300nm)、n−アモルファ
スシリコン膜(60nm)を真空中で連続成膜する。窒
化シリコン膜はゲート絶縁層(2)110となる。次に
アモルファスシリコン膜およびn−アモルファスシリコ
ン膜をフォトリソグラフィとドライエッチングの方法に
よりゲート電極102およびその必要な部分上に所定の
パターンに加工してアモルファスシリコン半導体層10
3を形成し、残ったゲート絶縁層(1)109の所定の
位置をフォトリソグラフィとドライエッチングの方法に
より電極接続用のコンタクトホールを開ける。
In the first embodiment of the present invention, metal chromium (100 n) is formed on a low-alkali glass substrate 101 having a thickness of about 1 mm.
m) is formed by a sputtering method and processed into a predetermined pattern by photolithography and wet etching to form the gate electrode 102. Next, a silicon oxide film (150 nm) is formed on the glass substrate 10 by the sputtering method.
1 is formed on the entire surface of No. 1 and then the silicon oxide film in a portion which is expected to intersect with the amorphous silicon semiconductor layer 103 is removed by a technique of photolithography and dry etching to form a gate insulating layer (1) 109. A silicon nitride film (300 nm), an amorphous silicon film (300 nm), and an n-amorphous silicon film (60 nm) are continuously formed in vacuum by the CVD method. The silicon nitride film becomes the gate insulating layer (2) 110. Next, the amorphous silicon film and the n-amorphous silicon film are processed into a predetermined pattern on the gate electrode 102 and its necessary portion by a method of photolithography and dry etching to form the amorphous silicon semiconductor layer 10.
3 is formed, and a contact hole for electrode connection is opened at a predetermined position of the remaining gate insulating layer (1) 109 by photolithography and dry etching.

【0013】この上に電極材として金属クロム膜(20
0nm)をスパッタ法により成膜し、フォトリソグラフ
ィとドライエッチングの方法により所定のパターンに加
工してソース電極105およびドレイン電極106を形
成する。次に、チャネル形成のためにアモルファスシリ
コン半導体層103上に残ったn−アモルファスシリコ
ン膜をソース電極105およびドレイン電極106をマ
スクとしてドライエッチング法により約150nm除去
する。ソース電極105およびドレイン電極106の下
に残ったn−アモルファスシリコン膜はオーミックコン
タクト層107となる。
A metal chromium film (20
0 nm) is deposited by a sputtering method and processed into a predetermined pattern by photolithography and dry etching methods to form the source electrode 105 and the drain electrode 106. Then, the n-amorphous silicon film remaining on the amorphous silicon semiconductor layer 103 for forming a channel is removed by about 150 nm by a dry etching method using the source electrode 105 and the drain electrode 106 as a mask. The n-amorphous silicon film remaining under the source electrode 105 and the drain electrode 106 becomes the ohmic contact layer 107.

【0014】最後に堀込んだチャネルを保護するための
パシベーション膜108として窒化シリコン膜をプラズ
マCVD法により成膜し、その後に電極接続用のコンタ
クトホールをフォトリソグラフィの方法により所定の位
置に形成する。
Finally, a silicon nitride film is formed as a passivation film 108 for protecting the dug channel by a plasma CVD method, and then a contact hole for connecting an electrode is formed at a predetermined position by a photolithography method. .

【0015】本発明第一実施例による薄膜トランジスタ
アレイの動作特性を図3に示す。本発明による薄膜トラ
ンジスタアレイではゲート絶縁層が単層で薄いため従来
例に比べて移動度の高い良好なトランジスタアレイ特性
が得られる。また、図4にゲートに±30Vストレス電
圧を印加した際のしきい値電圧のシフト量を示す。本実
施例によるトランジスタの動作安定性が従来例に比べて
改善されていることがわかる。
The operating characteristics of the thin film transistor array according to the first embodiment of the present invention are shown in FIG. In the thin film transistor array according to the present invention, since the gate insulating layer is a single layer and thin, it is possible to obtain good transistor array characteristics with higher mobility than the conventional example. Further, FIG. 4 shows the shift amount of the threshold voltage when a ± 30 V stress voltage is applied to the gate. It can be seen that the operational stability of the transistor according to this embodiment is improved as compared with the conventional example.

【0016】(第二実施例)図2は本発明第二実施例の
構成を示す縦断面図である。
(Second Embodiment) FIG. 2 is a vertical sectional view showing the structure of the second embodiment of the present invention.

【0017】本発明第二実施例は、厚さ約1mmの低ア
ルカリのガラス基板201上に金属クロム(100n
m)をスパッタ法で成膜し、これをフォトリソグラフィ
とウエットエッチングの方法により所定のパターンに加
工してゲート電極202を形成する。さらに、プラズマ
CVD法により窒化シリコン膜(300nm)、アモル
ファスシリコン膜(100nm)を真空中で連続成膜す
る。窒化シリコン膜はゲート絶縁層(1)209とな
る。
In the second embodiment of the present invention, metal chromium (100 n) is formed on a low-alkali glass substrate 201 having a thickness of about 1 mm.
m) is formed by a sputtering method and processed into a predetermined pattern by photolithography and wet etching to form a gate electrode 202. Further, a silicon nitride film (300 nm) and an amorphous silicon film (100 nm) are continuously formed in vacuum by the plasma CVD method. The silicon nitride film becomes the gate insulating layer (1) 209.

【0018】次に、アモルファスシリコン膜をフォトリ
ソグラフィとドライエッチングの方法によりゲート電極
202およびその他必要な部分上に所定のパターンに加
工してアモルファスシリコン半導体層203を形成す
る。この上にプラズマCVD法により再度窒化シリコン
膜(200nm)を形成し、フォトリソグラフィとドラ
イエッチングの方法によりゲート電極202とアモルフ
ァスシリコン半導体層203との接続用コンタクトホー
ルを開口しゲート絶縁層(2)210を形成する。さら
に、このゲート絶縁層(2)210をマスクとしてイオ
ン打ち込み法によりアモルファスシリコン半導体層20
3にリンをドーピングしてオーミックコンタクト層20
7を形成する。この上に電極材として金属クロム膜(2
00nm)をスパッタ法により成膜しフォトリソグラフ
ィとドライエッチングの方法により所定のパターンに加
工してソース電極205およびドレイン電極206を形
成し,さらにパシベーション膜208を形成する。
Next, the amorphous silicon film is processed into a predetermined pattern on the gate electrode 202 and other necessary portions by a method of photolithography and dry etching to form an amorphous silicon semiconductor layer 203. A silicon nitride film (200 nm) is again formed on this by a plasma CVD method, and a contact hole for connection between the gate electrode 202 and the amorphous silicon semiconductor layer 203 is opened by a method of photolithography and dry etching to form a gate insulating layer (2). 210 is formed. Further, the amorphous silicon semiconductor layer 20 is formed by ion implantation using the gate insulating layer (2) 210 as a mask.
3 is doped with phosphorus to form ohmic contact layer 20.
Form 7. A metal chromium film (2
00 nm) is formed by a sputtering method and processed into a predetermined pattern by a method of photolithography and dry etching to form a source electrode 205 and a drain electrode 206, and further a passivation film 208 is formed.

【0019】本第二実施例ではチャネルの堀込み工程が
無くアモルファスシリコンの膜厚が薄くできるため動作
特性をさらに向上させることができる。
In the second embodiment, since the film thickness of the amorphous silicon can be reduced without the step of forming the channel, the operating characteristics can be further improved.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、薄
膜トランジスタアレイのゲート絶縁層がトランジスタの
動作部分であるアモルファスシリコン半導体層との交差
部を単層に構成されるために、ゲート絶縁層の厚さを薄
くするとともに、複雑な界面をなくすことができ、動作
特性および安定性を向上させることができる効果があ
る。
As described above, according to the present invention, the gate insulating layer of the thin film transistor array has a single layer at the intersection with the amorphous silicon semiconductor layer which is the operating portion of the transistor. In addition to reducing the thickness, the effect of being able to eliminate complicated interfaces and improving operating characteristics and stability is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例の構成を示す縦断面図。FIG. 1 is a vertical sectional view showing the configuration of a first embodiment of the present invention.

【図2】本発明第二実施例の構成を示す縦断面図。FIG. 2 is a vertical sectional view showing the configuration of a second embodiment of the present invention.

【図3】本発明実施例における効果を示す薄膜トランジ
スタアレイのゲート電圧に対する電流の特性曲線図。
FIG. 3 is a characteristic curve diagram of a current with respect to a gate voltage of a thin film transistor array showing an effect in the embodiment of the present invention.

【図4】本発明実施例における効果を示す薄膜トランジ
スタのゲートストレス印加電圧に対するしきい値電圧変
化量の特性曲線図。
FIG. 4 is a characteristic curve diagram of a threshold voltage change amount with respect to a gate stress applied voltage of a thin film transistor, which shows effects of the embodiment of the invention.

【図5】従来例の構成を示す縦断面図。FIG. 5 is a vertical cross-sectional view showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

101、201、301 ガラス基板 102、202、302 ゲート電極 103、203、303 アモルファスシリコン半導体
層 105、205、305 ソース電極 106、206、306 ドレイン電極 107、207、307 オーミックコンタクト層 108、208、308 パシベーション膜 109、209、309 ゲート絶縁層(1) 110、210、310 ゲート絶縁層(2)
101, 201, 301 Glass substrate 102, 202, 302 Gate electrode 103, 203, 303 Amorphous silicon semiconductor layer 105, 205, 305 Source electrode 106, 206, 306 Drain electrode 107, 207, 307 Ohmic contact layer 108, 208, 308 Passivation film 109, 209, 309 Gate insulating layer (1) 110, 210, 310 Gate insulating layer (2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上にゲート電極、ゲート絶縁
層、しま状に加工したアモルファスシリコン半導体層、
オーミックコンタクト層、ソースおよびドレイン電極が
順次積層されパターニングされた後にチャネル部分のオ
ーミックコンタクト層がエッチング除去されてパシベー
ション膜が積層され、さらにパターニングされて形成さ
れた薄膜トランジスタアレイにおいて、 前記ゲート電極上の前記ゲート絶縁層を前記アモルファ
スシリコン半導体層の下部については単層構造としそれ
以外については複層構造に構成したことを特徴とする薄
膜トランジスタアレイ。
1. A gate electrode, a gate insulating layer, a striped amorphous silicon semiconductor layer on an insulating substrate,
An ohmic contact layer, a source electrode, and a drain electrode are sequentially stacked and patterned, and then an ohmic contact layer of a channel portion is removed by etching, a passivation film is stacked, and the thin film transistor array is further patterned. A thin film transistor array, wherein the gate insulating layer has a single-layer structure below the amorphous silicon semiconductor layer and a multi-layer structure other than the amorphous silicon semiconductor layer.
【請求項2】 前記複層構造のゲート絶縁層は、少なく
とも窒化シリコン膜を含む絶縁性膜の積層構造で形成さ
れ、この窒化シリコン膜が前記アモルファスシリコン半
導体層と接する構造である請求項1記載の薄膜トランジ
スタアレイ。
2. The multi-layered gate insulating layer is formed of a laminated structure of insulating films including at least a silicon nitride film, and the silicon nitride film is in contact with the amorphous silicon semiconductor layer. Thin film transistor array.
JP25848492A 1992-09-28 1992-09-28 Thin film transistor array and method of manufacturing the same Expired - Fee Related JP2956380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25848492A JP2956380B2 (en) 1992-09-28 1992-09-28 Thin film transistor array and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25848492A JP2956380B2 (en) 1992-09-28 1992-09-28 Thin film transistor array and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06112485A true JPH06112485A (en) 1994-04-22
JP2956380B2 JP2956380B2 (en) 1999-10-04

Family

ID=17320855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25848492A Expired - Fee Related JP2956380B2 (en) 1992-09-28 1992-09-28 Thin film transistor array and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2956380B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097068A1 (en) * 2006-02-24 2007-08-30 Sharp Kabushiki Kaisha Active matrix substrate, display device and television receiver
JP2008009430A (en) * 2006-06-26 2008-01-17 Lg Phillips Lcd Co Ltd Array substrate, manufacturing method thereof and liquid crystal display device having the same
US7864281B2 (en) 2004-08-24 2011-01-04 Sharp Kabushiki Kaisha Active matrix substrate and display unit provided with it
US8023056B2 (en) 2006-02-24 2011-09-20 Sharp Kabushiki Kaisha Active matrix substrate, display device, and television receiver
US8168980B2 (en) 2006-02-24 2012-05-01 Sharp Kabushiki Kaisha Active matrix substrate, display device, television receiver, manufacturing method of active matrix substrate, forming method of gate insulating film
US8330883B2 (en) 2006-07-19 2012-12-11 Sharp Kabushiki Kaisha Active matrix substrate, liquid crystal panel, display, television receiver

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864281B2 (en) 2004-08-24 2011-01-04 Sharp Kabushiki Kaisha Active matrix substrate and display unit provided with it
WO2007097068A1 (en) * 2006-02-24 2007-08-30 Sharp Kabushiki Kaisha Active matrix substrate, display device and television receiver
JPWO2007097068A1 (en) * 2006-02-24 2009-07-09 シャープ株式会社 Active matrix substrate, display device, television receiver
JP4588785B2 (en) * 2006-02-24 2010-12-01 シャープ株式会社 Active matrix substrate, display device, television receiver
US7868960B2 (en) 2006-02-24 2011-01-11 Sharp Kabushiki Kaisha Active matrix substrate, display device, and television receiver
US8023056B2 (en) 2006-02-24 2011-09-20 Sharp Kabushiki Kaisha Active matrix substrate, display device, and television receiver
US8168980B2 (en) 2006-02-24 2012-05-01 Sharp Kabushiki Kaisha Active matrix substrate, display device, television receiver, manufacturing method of active matrix substrate, forming method of gate insulating film
JP2008009430A (en) * 2006-06-26 2008-01-17 Lg Phillips Lcd Co Ltd Array substrate, manufacturing method thereof and liquid crystal display device having the same
US8330883B2 (en) 2006-07-19 2012-12-11 Sharp Kabushiki Kaisha Active matrix substrate, liquid crystal panel, display, television receiver

Also Published As

Publication number Publication date
JP2956380B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
US7189998B2 (en) Thin film transistor array panel for a liquid crystal display
US6897479B2 (en) ITO film contact structure, TFT substrate and manufacture thereof
KR100270467B1 (en) Active matrix substrate of lcd and its fabrication method
KR100359795B1 (en) Liquid crystal display and method for fabricating the same
US5998230A (en) Method for making liquid crystal display device with reduced mask steps
JP2000002892A (en) Liquid crystal display device, matrix array substrate, and manufacture thereof
JPH0677483A (en) Thin-film transistor and its manufacture
JP2950212B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH04219736A (en) Manufacture of active matrix display device
JPH06112485A (en) Thin film transistor array
JP2965283B2 (en) Method for manufacturing thin film transistor
JPS60261174A (en) Matrix array
JPH0812539B2 (en) Display device and manufacturing method thereof
JPH0555573A (en) Thin film transistor and manufacture thereof
JP3131850B2 (en) Method for manufacturing thin film transistor
JPH06132536A (en) Film transistor
JP2522014B2 (en) Method of forming transparent electrode
JP2919369B2 (en) Liquid crystal display device and method of manufacturing the same
KR100870019B1 (en) Thin film trasistor array panel and manufacturing method thereof
KR100848102B1 (en) Thin film transistor array panels and manufacturing methods thereof
JP2669399B2 (en) Semiconductor device and manufacturing method thereof
JP3319453B2 (en) Manufacturing method of semiconductor integrated circuit
JPH098312A (en) Thin film transistor and fabrication thereof
JPH01200672A (en) Coplanar transistor and manufacture thereof
KR100878264B1 (en) Methods for manufacturing thin film transistor panels for liquid crystal display

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees