JPH098312A - Thin film transistor and fabrication thereof - Google Patents

Thin film transistor and fabrication thereof

Info

Publication number
JPH098312A
JPH098312A JP15581495A JP15581495A JPH098312A JP H098312 A JPH098312 A JP H098312A JP 15581495 A JP15581495 A JP 15581495A JP 15581495 A JP15581495 A JP 15581495A JP H098312 A JPH098312 A JP H098312A
Authority
JP
Japan
Prior art keywords
electrode
gate electrode
film
gate
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15581495A
Other languages
Japanese (ja)
Other versions
JP2699933B2 (en
Inventor
Kenichi Hayashi
健一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15581495A priority Critical patent/JP2699933B2/en
Publication of JPH098312A publication Critical patent/JPH098312A/en
Application granted granted Critical
Publication of JP2699933B2 publication Critical patent/JP2699933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a thin film transistor in which response and reliability are enhanced while simplifying the fabrication process. CONSTITUTION: The thin film transistor comprises a gate electrode 2, a source electrode 6 and a drain electrode 7 formed on the same plane of an insulating substrate 1, where the source electrode 6 and drain electrode 7 are disposed oppositely each other while spaced apart by a predetermined distance from the side face at the end part of the gate electrode 2. The thin film transistor further comprises a gate insulation film 3 covering the side face at the end part of the gate electrode 2 including at least the side face thereof, and an a-Si film 4 buried between the side face of gate insulation film 3 and the drain electrode 7 and extending to the upper surface thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶ディスプレイ、イ
メージセンサ、集積回路等に用いられる薄膜トランジス
タおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor used in a liquid crystal display, an image sensor, an integrated circuit and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】薄膜トランジスタは、アクティブマトリ
クス型液晶表示装置における画素電極選択用スイッチン
グ素子や、密着型イメージセンサにおける信号転送用ス
イッチング素子等に用いられている。
2. Description of the Related Art A thin film transistor is used as a switching element for selecting a pixel electrode in an active matrix type liquid crystal display device, a switching element for signal transfer in a contact image sensor, and the like.

【0003】薄膜トランジスタの構造に、逆スタガ型、
順スタガ型と称される種類がある。
In the structure of the thin film transistor, an inverted stagger type,
There is a type called the forward stagger type.

【0004】順スタガ型あるいは逆スタガ型の薄膜トラ
ンジスタにおいては、ゲート電極とソース電極およびド
レイン電極とがゲート絶縁膜および半導体膜を挟んで別
の層に存在しているため、フォトリソグラフィ工程にお
ける目合わせずれを見込んでゲート電極とソース電極お
よびドレイン電極との間に若干の重なりを設ける必要が
ある。そのため、この間に寄生容量が発生してトランジ
スタの応答特性が悪いという問題点と、オフセットを自
由に調節できないという問題点があった。さらに、フォ
トリソグラフィ工程におけるゲート電極とソース電極お
よびドレイン電極との目合わせずれによってトランジス
タの特性がばらつき、信頼性が悪いという問題点があっ
た。
In a forward stagger type or an inverted stagger type thin film transistor, since the gate electrode and the source electrode and the drain electrode are present in different layers with the gate insulating film and the semiconductor film interposed therebetween, alignment in the photolithography process is performed. It is necessary to provide a slight overlap between the gate electrode and the source and drain electrodes in consideration of the shift. Therefore, there are problems that a parasitic capacitance is generated during this period and the response characteristics of the transistor are poor, and that the offset cannot be freely adjusted. Further, there is a problem in that the characteristics of the transistor are varied due to misalignment of the gate electrode with the source electrode and the drain electrode in the photolithography process, resulting in poor reliability.

【0005】また、コプレナ型と称される薄膜トランジ
スタも知られている。
A thin film transistor called a coplanar type is also known.

【0006】図6(a)〜(d)は従来の薄膜トランジ
スタの製造方法を説明するための工程順に示した断面図
である。
FIGS. 6A to 6D are sectional views showing the order of steps for explaining a conventional method of manufacturing a thin film transistor.

【0007】まず、図6(a)に示すように、ガラス等
の絶縁基板1の上にアモルファスシリコン膜(以下a−
Si膜と記す)21(又は多結晶シリコン膜)を堆積し
た後、a−Si膜21の上に窒化シリコン膜およびCr
膜を順次堆積してパターニングし、窒化シリコン膜から
なるゲート絶縁膜3およびCr膜からなるゲート電極2
をそれぞれ形成する。
First, as shown in FIG. 6A, an amorphous silicon film (hereinafter a-) is formed on an insulating substrate 1 such as glass.
Si film) 21 (or polycrystalline silicon film) is deposited, and then a silicon nitride film and a Cr film are formed on the a-Si film 21.
A film is sequentially deposited and patterned to form a gate insulating film 3 made of a silicon nitride film and a gate electrode 2 made of a Cr film.
Are formed respectively.

【0008】次に、図6(b)に示すように、ゲート電
極2をマスクとしてa−Si膜21中にリンイオンをイ
オン注入した後、a−Si膜21をパターニングしてn
+ 型シリコン層からなるソース領域19およびドレイン
領域20のそれぞれを形成する。
Next, as shown in FIG. 6B, phosphorus ions are ion-implanted into the a-Si film 21 using the gate electrode 2 as a mask, and then the a-Si film 21 is patterned to n.
Each of the source region 19 and the drain region 20 made of a + type silicon layer is formed.

【0009】次に、図6(c)に示すように、ゲート電
極2を含む全面に窒化シリコン膜等の層間絶縁膜16を
堆積して選択的にエッチングし、ソース領域19および
ドレイン領域20の上にコンタクトホールを形成する。
Next, as shown in FIG. 6C, an interlayer insulating film 16 such as a silicon nitride film is deposited on the entire surface including the gate electrode 2 and selectively etched to form a source region 19 and a drain region 20. Form a contact hole on top.

【0010】次に、図6(d)に示すように、コンタク
トホールを含む表面にCr膜等の金属膜を堆積してパタ
ーニングし、コンタクトホールのソース領域19とドレ
イン領域20のそれぞれに接続するソース電極6および
ドレイン電極7を形成する。
Next, as shown in FIG. 6 (d), a metal film such as a Cr film is deposited on the surface including the contact hole and patterned to connect to the source region 19 and the drain region 20 of the contact hole. The source electrode 6 and the drain electrode 7 are formed.

【0011】[0011]

【発明が解決しようとする課題】この従来の薄膜トラン
ジスタは、順スタガ型あるいは逆スタガ型ではゲート電
極とソースおよびドレイン電極との間の目合わせマージ
ンを見込むための重なりによる寄生容量や目合わせずれ
による特性のばらつきを生じ、また、コプレナ型では、
工程数が多くなり、生産性が低いという問題があった。
The conventional thin film transistor of the forward stagger type or the inverted stagger type is affected by parasitic capacitance and misalignment due to overlap for allowing an alignment margin between the gate electrode and the source and drain electrodes. Characteristic variations occur, and in the coplanar type,
There is a problem in that the number of steps increases and the productivity is low.

【0012】本発明の目的は、工程を増加させることな
く、ゲート電極とソースおよびドレイン電極との目合わ
せずれを無くして寄生容量を低減し信頼性を向上させた
薄膜トランジスタおよびその製造方法を提供することに
ある。
An object of the present invention is to provide a thin film transistor in which misalignment between the gate electrode and the source and drain electrodes is eliminated without increasing the number of steps to reduce parasitic capacitance and improve reliability, and a manufacturing method thereof. Especially.

【0013】[0013]

【課題を解決するための手段】本発明の薄膜トランジス
タは、絶縁基板上に形成したゲート電極と、前記ゲート
電極と同一平面の前記絶縁基板上に形成して前記ゲート
電極端部の側面から一定距離に隔て且つ互に対向させて
配置したソース電極およびドレイン電極と、前記ゲート
電極端部の側面および上面を被覆して形成したゲート絶
縁膜と、少くとも前記ゲート絶縁膜の側面と前記ソース
およびドレイン電極の側面との間に埋込み且つ前記ソー
ス電極および前記ドレイン電極を共通に含む領域に形成
した半導体層とを有する。
A thin film transistor according to the present invention comprises a gate electrode formed on an insulating substrate and a gate electrode formed on the insulating substrate in the same plane as the gate electrode, and a constant distance from a side surface of an end of the gate electrode. A source electrode and a drain electrode which are spaced apart from each other and face each other; a gate insulating film formed by covering the side surface and the upper surface of the end portion of the gate electrode; and at least the side surface of the gate insulating film and the source and drain. And a semiconductor layer which is embedded between the side surface of the electrode and formed in a region including the source electrode and the drain electrode in common.

【0014】本発明の薄膜トランジスタの製造方法は、
絶縁基板上に金属膜および不純物を含む半導体層からな
るコンタクト層を順次堆積して形成する工程と、前記コ
ンタクト層および金属膜を選択的に順次エッチングして
ゲート電極および前記ゲート電極端部の側面から一定距
離に隔て且つ互に対向させて配置したソース電極および
ドレイン電極を形成する工程と、前記ゲート電極ソース
電極およびドレイン電極を含む表面にノンドープのアモ
ルファスシリコン膜を堆積してパターニングし前記ゲー
ト電極,ソース電極およびドレイン電極の各端部を共通
に含む領域に半導体層を形成する工程と、前記ゲート電
極の上面および側面を含む領域の前記半導体層に選択的
に窒素イオンをイオン注入した後熱処理し、前記ゲート
電極の上面および側面にゲート絶縁膜を形成する工程と
を含んで構成される。
The method of manufacturing a thin film transistor according to the present invention comprises:
A step of sequentially depositing and forming a contact layer consisting of a metal film and a semiconductor layer containing impurities on an insulating substrate; and a step of selectively sequentially etching the contact layer and the metal film to form side surfaces of a gate electrode and an end portion of the gate electrode. Forming a source electrode and a drain electrode arranged at a constant distance from each other and facing each other; and depositing and patterning a non-doped amorphous silicon film on the surface including the gate electrode source electrode and drain electrode to form the gate electrode A step of forming a semiconductor layer in a region that commonly includes each end of the source electrode and the drain electrode, and a heat treatment after selectively implanting nitrogen ions into the semiconductor layer in a region including the upper surface and the side surface of the gate electrode And forming a gate insulating film on the upper surface and the side surface of the gate electrode. .

【0015】[0015]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0016】図1(a)は本発明の第1の実施例を示す
平面図、図1(b)は図1(a)のA−O−A′線断面
図である。
FIG. 1A is a plan view showing a first embodiment of the present invention, and FIG. 1B is a sectional view taken along the line AA-A 'of FIG. 1A.

【0017】図1(a),(b)に示すように、絶縁基
板1の上の同一平面上にゲート電極2,ソース電極6お
よびドレイン電極7が形成され、且つゲート電極2の端
部側面と一定の距離で隔てられ、なお且つ、互に対向さ
せて配置したソース電極6とドレイン電極7とを有して
おり、このソース電極6およびドレイン電極7に対向し
ているゲート電極2の側面を少くとも含むゲート電極2
の端部表面を被覆するゲート絶縁膜3と、ゲート絶縁膜
3の側面とソース電極6およびドレイン電極7との間に
埋込まれ、且つソース電極6およびドレイン電極7の上
面まで延在するa−Si膜4と、ソース電極6およびド
レイン電極7の上面とa−Si膜4との間に設けてソー
スおよびドレイン電極6,7とa−Si膜4との間のオ
ーミックコンタクトを形成するn+ 型シリコン層5とを
有して構成される。
As shown in FIGS. 1A and 1B, the gate electrode 2, the source electrode 6 and the drain electrode 7 are formed on the same plane on the insulating substrate 1, and the side surface of the end portion of the gate electrode 2 is formed. Has a source electrode 6 and a drain electrode 7 which are separated from each other by a constant distance and are arranged to face each other, and the side surface of the gate electrode 2 facing the source electrode 6 and the drain electrode 7. Gate electrode 2 containing at least
A, which is embedded between the gate insulating film 3 covering the end surface of the gate insulating film 3, the side surface of the gate insulating film 3 and the source electrode 6 and the drain electrode 7, and extends to the upper surfaces of the source electrode 6 and the drain electrode 7. An ohmic contact between the source / drain electrodes 6 and 7 and the a-Si film 4 is provided between the -Si film 4 and the upper surfaces of the source electrode 6 and the drain electrode 7 and the a-Si film 4. And a + type silicon layer 5.

【0018】図2(a)〜(e)は本発明の第1の実施
例の製造方法を説明するための工程順に示した断面図で
ある。なお、図2の各図は図1(a)のA−O−A′線
断面図に対応している。
2 (a) to 2 (e) are sectional views showing the order of steps for explaining the manufacturing method of the first embodiment of the present invention. Note that each drawing of FIG. 2 corresponds to the sectional view taken along the line AA-A ′ of FIG.

【0019】まず、図2(a)に示すように、ガラス等
の絶縁基板1の上にCr,Al,W等からなる金属膜8
を、スパッタリング法を用いて500nm程度の厚さに
堆積した後、その上に、a−Si膜を、プラズマCVD
法を用いて50nm程度の厚さに堆積する。この時のプ
ラズマCVD条件は、例えば、SiH4 ガスの流量30
0sccm、H2 ガスの流量200sccm、温度27
0℃、RFパワー250W、圧力100Paである。次
に、オーミックコンタクト層を形成するため、このa−
Si膜に、リン、ヒ素、アンチモン等のn型不純物をイ
オン注入してn+ 型シリコン層5を形成する。この時の
イオン注入条件は、例えば、加速エネルギー70ke
V、ドーズ量1×1015ions/cm2 である。
First, as shown in FIG. 2A, a metal film 8 made of Cr, Al, W or the like is formed on an insulating substrate 1 made of glass or the like.
Is deposited to a thickness of about 500 nm by using a sputtering method, and then an a-Si film is formed on it by plasma CVD.
Is deposited to a thickness of about 50 nm using the method. The plasma CVD condition at this time is, for example, a flow rate of SiH 4 gas of 30.
0 sccm, H 2 gas flow rate 200 sccm, temperature 27
0 ° C., RF power 250 W, pressure 100 Pa. Next, in order to form an ohmic contact layer, this a-
N-type impurities such as phosphorus, arsenic and antimony are ion-implanted into the Si film to form an n + -type silicon layer 5. The ion implantation conditions at this time are, for example, acceleration energy of 70 ke.
V, dose amount 1 × 10 15 ions / cm 2 .

【0020】次に、図2(b)に示すように、フォトリ
ソグラフィ工程によりn+ 型シリコン層5および金属膜
8を選択的に順次エッチングして、ゲート電極2、ソー
ス電極6およびドレイン電極7を所定の形状にパターン
化する。このとき、n+ 型シリコン層5は、ゲート電極
2、ソース電極6およびドレイン電極7と同じ形状にパ
ターン化される。
Next, as shown in FIG. 2B, the n + type silicon layer 5 and the metal film 8 are selectively and sequentially etched by a photolithography process to form the gate electrode 2, the source electrode 6 and the drain electrode 7. Are patterned into a predetermined shape. At this time, the n + type silicon layer 5 is patterned into the same shape as the gate electrode 2, the source electrode 6 and the drain electrode 7.

【0021】次に、図2(c)に示すように、全面にa
−Si膜4を、プラズマCVD法を用いて500nm程
度の厚さに堆積させ、フォトリソグラフィ工程によりこ
のa−Si膜4とその下のn+ 型シリコン層5を連続的
にエッチングして島状の半導体能動層を形成する。この
時、この半導体能動層は図1におけるa−Si膜4にゲ
ート絶縁膜3を含めた形状にパターニングすると共に、
この半導体能動層の外側にあるn+ 型シリコン層5を除
去する。
Next, as shown in FIG. 2 (c), a
The -Si film 4 is deposited to a thickness of about 500 nm by the plasma CVD method, and the a-Si film 4 and the n + -type silicon layer 5 thereunder are continuously etched by a photolithography process to form an island shape. Forming a semiconductor active layer. At this time, this semiconductor active layer is patterned into a shape including the gate insulating film 3 in the a-Si film 4 in FIG.
The n + type silicon layer 5 outside the semiconductor active layer is removed.

【0022】次に、図2(d)に示すように、絶縁基板
1上にフォトレジスト膜10を塗布し、露光および現像
工程によって、ゲート絶縁膜3が形成される部分の上の
フォトレジスト膜10を除去する。そして、このフォト
レジスト膜10をマスクとしてa−Si膜4に窒素を例
えば、加速エネルギー50〜100keV、ドーズ量1
×1015〜1×1020ions/cm2 の条件でイオン
注入する。なお、フォトレジスト膜パターン形成の際に
は、ゲート電極2が僅かに露出するようにフォトレジス
ト膜10を除去して、ゲート絶縁膜を形成した後にゲー
ト電極上にa−Si膜4が残らないようにする。
Next, as shown in FIG. 2D, a photoresist film 10 is coated on the insulating substrate 1 and exposed and developed to form a photoresist film on the portion where the gate insulating film 3 is formed. Remove 10. Then, using the photoresist film 10 as a mask, nitrogen is applied to the a-Si film 4, for example, with an acceleration energy of 50 to 100 keV and a dose of 1
Ion implantation is performed under the condition of × 10 15 to 1 × 10 20 ions / cm 2 . When forming the photoresist film pattern, the a-Si film 4 is not left on the gate electrode after removing the photoresist film 10 so that the gate electrode 2 is slightly exposed and forming a gate insulating film. To do so.

【0023】次に、図2(e)に示すように、フォトレ
ジスト膜10を除去して熱処理しゲート絶縁膜3を形成
し、薄膜トランジスタを構成する。なお、n+ 型シリコ
ン層5は、a−Si層にn型不純物をイオン注入して形
成する代りに、プラズマCVD法等によって金属膜8上
に直接n型シリコン層5を形成してもよい。この時のプ
ラズマCVD条件は、例えば、SiH4 ガスの流量30
0sccm、PH3 ガスの流量450sccm、H2
スの流量150sccm、温度270℃、RFパワー1
50W、圧力100Paである。
Next, as shown in FIG. 2E, the photoresist film 10 is removed and heat-treated to form a gate insulating film 3 to form a thin film transistor. Note that the n + type silicon layer 5 may be formed directly on the metal film 8 by a plasma CVD method or the like instead of forming the n type impurities by ion implantation into the a-Si layer. . The plasma CVD condition at this time is, for example, a flow rate of SiH 4 gas of 30.
0 sccm, PH 3 gas flow rate 450 sccm, H 2 gas flow rate 150 sccm, temperature 270 ° C., RF power 1
It is 50 W and the pressure is 100 Pa.

【0024】また、a−Si層4の代りに微結晶シリコ
ン膜や多結晶シリコン膜等を用いることができる。同様
に、n型シリコン層5の代りにn+ 型多結晶シリコン膜
や微結晶シコン膜を用いることもできる。
Further, instead of the a-Si layer 4, a microcrystalline silicon film, a polycrystalline silicon film or the like can be used. Similarly, instead of the n-type silicon layer 5, an n + -type polycrystalline silicon film or a microcrystalline silicon film can be used.

【0025】本実施例では、ゲート電極2とソース電極
6およびドレイン電極7とが同一平面内に存在している
ので、これらの電極を1回のフォトリソグラフィ工程で
形成することができ、従来の順スタガ型あるいは逆スタ
ガ型の薄膜トランジスタのような目合わせずれを考慮す
る必要がなくなる。そのため、ゲート電極とソース電極
およびドレイン電極との間に発生する寄生容量が低減さ
れ、トランジスタの応答特性を改善することができる。
また、オフセットを自由に調節することができる。さら
に、トランジスタの特性のばらつきを小さくすることが
できる。
In this embodiment, since the gate electrode 2, the source electrode 6 and the drain electrode 7 are in the same plane, these electrodes can be formed by a single photolithography process, and the conventional method can be used. It is not necessary to consider misalignment as in a forward stagger type or an inverted stagger type thin film transistor. Therefore, parasitic capacitance generated between the gate electrode and the source and drain electrodes is reduced, and the response characteristics of the transistor can be improved.
Also, the offset can be adjusted freely. Further, variations in transistor characteristics can be reduced.

【0026】また、本実施例では、n+ 型シリコン層5
をイオン注入法で形成した場合、半導体膜を2回、金属
膜を1回の計3回の成膜工程と、同様に3回のエッチン
グ工程と、3回のレジスト塗布、露光、現像を順次行う
工程と、2回のイオン注入工程によって製造することが
できる。したがって、従来のコプレナ型の薄膜トランジ
スタと比較して、イオン注入工程が1回増加している
が、成膜工程を2回、エッチング工程を2回、レジスト
塗布、露光、現像を順次行う工程を1回削減することが
できる。
In this embodiment, the n + type silicon layer 5 is also used.
When the ion implantation method is used, a semiconductor film is formed twice, a metal film is formed once, a total of three times, similarly, three etching steps are performed, and three times resist coating, exposure, and development are sequentially performed. It can be manufactured by performing the steps and the two ion implantation steps. Therefore, as compared with the conventional coplanar thin film transistor, the number of ion implantation steps is increased by one, but the film formation step is performed twice, the etching step is performed twice, resist coating, exposure and development are sequentially performed. It can be reduced times.

【0027】本実施例では、a−Si膜4の膜厚を0.
5μm、ソース電極6とドレイン電極7の間隔を7μ
m、ゲート電極2とa−Si膜4との間隔を0.5μm
として作成した場合、1×10-8Aのオン電流が得られ
た。
In this embodiment, the thickness of the a-Si film 4 is set to 0.
5 μm, the distance between the source electrode 6 and the drain electrode 7 is 7 μm
m, the distance between the gate electrode 2 and the a-Si film 4 is 0.5 μm
On the other hand, an on-current of 1 × 10 −8 A was obtained.

【0028】図3(a)は本発明の薄膜トランジスタを
用いて構成したアクティブマトリクス型液晶表示装置の
一例を示す平面図、図3(b)は図3(a)のB−B′
線断面図である。
FIG. 3 (a) is a plan view showing an example of an active matrix type liquid crystal display device constructed by using the thin film transistor of the present invention, and FIG. 3 (b) is BB 'of FIG. 3 (a).
It is a line sectional view.

【0029】図3(a)に示すように、行列状に配置さ
れた薄膜トランジスタのゲート電極2に接続して平行に
配列された走査線12と薄膜トランジスタのソース電極
6と接続し且つ走査線12と直角方向に交差して平行に
配列されたデータ線13と、薄膜トランジスタのドレイ
ン電極7と接続した画素電極14とを有しており、走査
線12とデータ線13が交差する部分では、図3(b)
に示すように、絶縁基板1上のデータ線13と同一面に
形成された走査線12がデータ線13の手前で分断さ
れ、交差部のデータ線12の表面を被覆する層間絶縁膜
16の上面に形成した上層配線17によりデータ線12
を跨いで両側のデータ線12の間を電気的に接続し、薄
膜トランジスタおよび画素電極14を含む全面に保護絶
縁膜15を形成している。
As shown in FIG. 3A, the scanning lines 12 connected to the gate electrodes 2 of the thin film transistors arranged in a matrix and arranged in parallel and the source electrodes 6 of the thin film transistors and the scanning lines 12 are connected. It has the data lines 13 arranged in parallel and intersecting at right angles, and the pixel electrode 14 connected to the drain electrode 7 of the thin film transistor, and the portion where the scanning line 12 and the data line 13 intersect is shown in FIG. b)
As shown in, the scanning line 12 formed on the same surface as the data line 13 on the insulating substrate 1 is divided in front of the data line 13, and the upper surface of the interlayer insulating film 16 covering the surface of the data line 12 at the intersection. The upper layer wiring 17 formed on the
The data lines 12 on both sides are electrically connected to each other and the protective insulating film 15 is formed on the entire surface including the thin film transistor and the pixel electrode 14.

【0030】この交差部は薄膜トランジスタの各電極と
同時に形成した走査線12とデータ線13の交差部分に
薄膜トランジスタの能動層を形成するためのSi層と同
時にSi層を選択的に堆積し、ゲート絶縁膜を形成する
ための窒素イオン注入と同時に交差部分のSi層に窒素
イオンを注入して層間絶縁膜16を形成することによ
り、層間絶縁膜16を形成する工程を新たに付け加える
必要がなくなり、工程が簡素化できる。
At this intersection, at the intersection of the scanning line 12 and the data line 13 formed at the same time as each electrode of the thin film transistor, the Si layer for selectively forming the active layer of the thin film transistor and the Si layer are selectively deposited and gate insulation is performed. By implanting nitrogen ions into the Si layer at the intersecting portion to form the interlayer insulating film 16 at the same time as implanting the nitrogen ions for forming the film, it is not necessary to additionally add a step of forming the interlayer insulating film 16. Can be simplified.

【0031】図4(a)は本発明の第2の実施例を示す
平面図、図4(b)は図4(a)のC−P−C′線断面
図である。
FIG. 4 (a) is a plan view showing a second embodiment of the present invention, and FIG. 4 (b) is a sectional view taken along the line C--P 'of FIG. 4 (a).

【0032】図4(a),(b)に示すように、第1の
実施例と同様の工程でゲート電極2,ソース電極6およ
びドレイン電極7を含む表面にa−Si膜4を堆積した
後パターニングしてゲート電極2のソース電極6および
ドレイン電極7に面する側面に対して一定距離に隔てた
空隙を有するようにa−Si膜4をエッチングし、この
空隙を含む表面に絶縁膜を堆積して空隙に埋込み、ゲー
ト絶縁膜3を形成すると同時に画素電極を含む全面を被
覆する保護絶縁膜15を形成する。
As shown in FIGS. 4A and 4B, the a-Si film 4 is deposited on the surface including the gate electrode 2, the source electrode 6 and the drain electrode 7 in the same process as in the first embodiment. After patterning, the a-Si film 4 is etched so as to have a space spaced apart from the side surface of the gate electrode 2 facing the source electrode 6 and the drain electrode 7 by a constant distance, and an insulating film is formed on the surface including the space. A gate insulating film 3 is formed by depositing and filling the gap, and at the same time, a protective insulating film 15 covering the entire surface including the pixel electrode is formed.

【0033】この第2の実施例では、ゲート絶縁膜3と
保護絶縁膜15を同時に形成することができるので第1
の実施例に対して工程を短縮できる利点がある。
In the second embodiment, the gate insulating film 3 and the protective insulating film 15 can be formed at the same time.
There is an advantage that the process can be shortened as compared with the embodiment.

【0034】なお、絶縁基板1上に形成されたゲート電
極2を含む表面に窒化シリコン膜を堆積してパターニン
グし、ゲート絶縁膜3を形成しても良い。
The gate insulating film 3 may be formed by depositing and patterning a silicon nitride film on the surface including the gate electrode 2 formed on the insulating substrate 1.

【0035】図5は本発明の第3の実施例を示す平面図
である。
FIG. 5 is a plan view showing a third embodiment of the present invention.

【0036】図5に示すように、先端を台形状にパター
ニングしたゲート電極2の側斜辺に相当する部分の側面
に形成したゲート絶縁膜3およびその外側面に設けたa
−Si膜4を介してゲート電極2と対向する側面を有す
るソース電極6およびドレイン電極7を設けた以外は第
1の実施例と同様の構成を有しており、第1および第2
の実施例に比較して、同じチャネル長に設定した薄膜ト
ランジスタの素子サイズを小さくすることができる。
As shown in FIG. 5, the gate insulating film 3 formed on the side surface of the portion corresponding to the side oblique side of the gate electrode 2 whose tip is patterned in a trapezoidal shape and a provided on the outer surface thereof.
The structure is the same as that of the first embodiment except that the source electrode 6 and the drain electrode 7 having the side surface facing the gate electrode 2 via the -Si film 4 are provided.
It is possible to reduce the element size of the thin film transistors set to the same channel length, as compared with the above embodiment.

【0037】[0037]

【発明の効果】以上説明したように本発明は、ゲート電
極、ソース電極およびドレイン電極を同一平面上に設け
ることでパターニングの目合わせマージンを不要にして
ゲート電極とソース電極およびドレイン電極との間に発
生する寄生容量を低減することができ、トランジスタの
応答特性を改善することができる。また、ゲート電極、
ソース電極およびドレイン電極を1回のフォトリソグラ
フィ工程でパターン化できるため、トランジスタの特性
のばらつきが小さくなり、信頼性を向上させることがで
きると共に、電極間の目合わせずれを考慮せずに設計が
できるため、オフセットを自由に調節することができ
る。
As described above, according to the present invention, by providing the gate electrode, the source electrode and the drain electrode on the same plane, the alignment margin for patterning is unnecessary and the gap between the gate electrode and the source electrode and the drain electrode is eliminated. It is possible to reduce the parasitic capacitance generated in the transistor and improve the response characteristics of the transistor. Also, the gate electrode,
Since the source electrode and the drain electrode can be patterned by one photolithography process, variations in transistor characteristics can be reduced, reliability can be improved, and design can be performed without considering misalignment between electrodes. Therefore, the offset can be adjusted freely.

【0038】また、ゲート電極、ソース電極およびドレ
イン電極を1回のフォトリソグラフィー工程でパターン
化し、さらにゲート絶縁膜を半導体膜に窒素を注入する
方法等で形成しているため、製造工程を簡略化すること
ができる。
Further, since the gate electrode, the source electrode and the drain electrode are patterned by one photolithography process and the gate insulating film is formed by a method of implanting nitrogen into the semiconductor film, the manufacturing process is simplified. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す平面図およびA−
O−A′線断面図。
FIG. 1 is a plan view and A- showing a first embodiment of the present invention.
OA 'sectional view taken on the line.

【図2】本発明の第1の実施例の製造方法を説明するた
めの工程順に示した断面図。
2A to 2D are sectional views showing the manufacturing method according to the first embodiment of the present invention in the order of steps.

【図3】本発明の薄膜トランジスタを用いて構成したア
クティブマトリクス型液晶表示装置の一例を示す平面図
およびB−B′線断面図。
3A and 3B are a plan view and a cross-sectional view taken along the line BB ′ showing an example of an active matrix type liquid crystal display device configured by using the thin film transistor of the invention.

【図4】本発明の第2の実施例を示す平面図およびC−
P−C′線断面図。
FIG. 4 is a plan view and C- showing a second embodiment of the present invention.
Sectional drawing of the PC 'line.

【図5】本発明の第3の実施例を示す平面図。FIG. 5 is a plan view showing a third embodiment of the present invention.

【図6】従来の薄膜トランジスタの製造方法を説明する
ための工程順に示した断面図。
6A to 6C are cross-sectional views showing the order of steps for explaining a conventional method of manufacturing a thin film transistor.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 ゲート電極 3 ゲート絶縁膜 4 a−Si膜 5 n+ 型シリコン層 6 ソース電極 7 ドレイン電極 8 金属膜 9 窒素イオン注入層 10 フォトレジスト膜 12 走査線 13 データ線 14 画素電極 15 保護絶縁膜 16 層間絶縁膜 17 上層配線DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Gate electrode 3 Gate insulating film 4 a-Si film 5 n + type silicon layer 6 Source electrode 7 Drain electrode 8 Metal film 9 Nitrogen ion implantation layer 10 Photoresist film 12 Scan line 13 Data line 14 Pixel electrode 15 Protection Insulation film 16 Inter-layer insulation film 17 Upper layer wiring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に形成したゲート電極と、前
記ゲート電極と同一平面の前記絶縁基板上に形成して前
記ゲート電極端部の側面から一定距離に隔て且つ互に対
向させて配置したソース電極およびドレイン電極と、前
記ゲート電極端部の側面および上面を被覆して形成した
ゲート絶縁膜と、少くとも前記ゲート絶縁膜の側面と前
記ソースおよびドレイン電極の側面との間に埋込み且つ
前記ソース電極および前記ドレイン電極を共通に含む領
域に形成した半導体層とを有することを特徴とする薄膜
トランジスタ。
1. A gate electrode formed on an insulating substrate and a gate electrode formed on the insulating substrate in the same plane as the gate electrode and spaced from the side surface of the end of the gate electrode at a constant distance and facing each other. A source electrode and a drain electrode, a gate insulating film formed by covering the side surface and the upper surface of the end portion of the gate electrode, embedded at least between the side surface of the gate insulating film and the side surface of the source and drain electrode, and A thin film transistor having a semiconductor layer formed in a region including a source electrode and the drain electrode in common.
【請求項2】 ソース電極およびドレイン電極の上面と
半導体層との間に設けたオーミックコンタクト層を有す
る請求項1記載の薄膜トランジスタ。
2. The thin film transistor according to claim 1, further comprising an ohmic contact layer provided between the upper surface of the source electrode and the drain electrode and the semiconductor layer.
【請求項3】 絶縁基板上に金属膜および不純物を含む
半導体層からなるコンタクト層を順次堆積して形成する
工程と、前記コンタクト層および金属膜を選択的に順次
エッチングしてゲート電極および、前記ゲート電極端部
の側面から一定距離に隔て且つ互に対向させて配置した
ソース電極およびドレイン電極を形成する工程と、前記
ゲート電極,ソース電極およびドレイン電極を含む表面
にノンドープのアモルファスシリコン膜を堆積してパタ
ーニングし前記ゲート電極,ソース電極およびドレイン
電極の各端部を共通に含む領域に半導体層を形成する工
程と、前記ゲート電極の上面および側面を含む領域の前
記半導体層に選択的に窒素イオンをイオン注入した後熱
処理し、前記ゲート電極の上面および側面にゲート絶縁
膜を形成する工程とを含むことを特徴とする薄膜トラン
ジスタの製造方法。
3. A step of sequentially depositing and forming a contact layer consisting of a metal film and a semiconductor layer containing impurities on an insulating substrate, and a step of selectively sequentially etching the contact layer and the metal film to form a gate electrode, and Forming a source electrode and a drain electrode that are arranged at a certain distance from the side surface of the end of the gate electrode and opposed to each other, and depositing a non-doped amorphous silicon film on the surface including the gate electrode, the source electrode, and the drain electrode And patterning to form a semiconductor layer in a region including the ends of the gate electrode, the source electrode, and the drain electrode in common, and nitrogen selectively in the semiconductor layer in a region including the upper surface and the side surface of the gate electrode. A step of forming a gate insulating film on the upper surface and the side surface of the gate electrode by performing heat treatment after implanting ions. A method of manufacturing a thin film transistor, comprising:
JP15581495A 1995-06-22 1995-06-22 Thin film transistor and method of manufacturing the same Expired - Lifetime JP2699933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15581495A JP2699933B2 (en) 1995-06-22 1995-06-22 Thin film transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15581495A JP2699933B2 (en) 1995-06-22 1995-06-22 Thin film transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH098312A true JPH098312A (en) 1997-01-10
JP2699933B2 JP2699933B2 (en) 1998-01-19

Family

ID=15614064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15581495A Expired - Lifetime JP2699933B2 (en) 1995-06-22 1995-06-22 Thin film transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2699933B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737302B2 (en) 2001-10-31 2004-05-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
US6828584B2 (en) 2001-05-18 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR100571827B1 (en) * 2003-12-17 2006-04-17 삼성전자주식회사 Thin film transistor and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828584B2 (en) 2001-05-18 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7078277B2 (en) 2001-05-18 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7253038B2 (en) 2001-05-18 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6737302B2 (en) 2001-10-31 2004-05-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
US7157317B2 (en) 2001-10-31 2007-01-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
US7718478B2 (en) 2001-10-31 2010-05-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
US8420461B2 (en) 2001-10-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor
KR100571827B1 (en) * 2003-12-17 2006-04-17 삼성전자주식회사 Thin film transistor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2699933B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US7087962B1 (en) Method for forming a MOS transistor having lightly dopped drain regions and structure thereof
KR100540947B1 (en) Display device and method of manufacturing the same
US5998230A (en) Method for making liquid crystal display device with reduced mask steps
KR20000010123A (en) Thin film transistor and its manufacturing method
JPH04348077A (en) Thin-film transistor
JP3401036B2 (en) Semiconductor device structure
KR100552296B1 (en) Manufacturing Method of Polycrystalline Silicon Thin Film Transistor Board
JPH07211912A (en) Thin film transistor and its manufacture
JP2699933B2 (en) Thin film transistor and method of manufacturing the same
JPH10173195A (en) Thin film transistor and its manufacturing method
KR100870017B1 (en) Method of fabricating for thin film transistor array panel
JPH0384963A (en) Thin film transistor
JPH03163833A (en) Semiconductor device and manufacture thereof
JPH0691105B2 (en) Method of manufacturing thin film transistor
JP3419073B2 (en) Thin film transistor, method of manufacturing the same, and active matrix liquid crystal display device
JPH0677486A (en) Thin-film transistor element
JP2694912B2 (en) Active matrix substrate manufacturing method
JPH10173197A (en) Thin film transistor and its manufacturing method
JPH077157A (en) Manufacture of thin film transistor
JPH0936340A (en) Thin film semiconductor device
KR100254924B1 (en) Method of fabricating image display device
KR0172880B1 (en) Method of manufacturing liquid crystal display device
JP2669399B2 (en) Semiconductor device and manufacturing method thereof
KR970003742B1 (en) Thin film transistor manufacturing method
JP2884724B2 (en) Thin film semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term