JPH06112347A - Package for accommodating semiconductor element - Google Patents

Package for accommodating semiconductor element

Info

Publication number
JPH06112347A
JPH06112347A JP26165092A JP26165092A JPH06112347A JP H06112347 A JPH06112347 A JP H06112347A JP 26165092 A JP26165092 A JP 26165092A JP 26165092 A JP26165092 A JP 26165092A JP H06112347 A JPH06112347 A JP H06112347A
Authority
JP
Japan
Prior art keywords
semiconductor element
insulating base
sealing layer
thermal expansion
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26165092A
Other languages
Japanese (ja)
Inventor
Ryuichi Imura
隆一 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26165092A priority Critical patent/JPH06112347A/en
Publication of JPH06112347A publication Critical patent/JPH06112347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To radiate outside efficiently heat generated from a semiconductor element accommodated inside and, moreover, to prevent cracking of a part of an insulating base or a sealing layer constituting a package. CONSTITUTION:This package has an insulating base 2 which is constituted of ceramic of aluminum nitride material and accommodates a semiconductor element 5 inside, a cover body 3 which is so provided on the insulating base 2 as to cover the semiconductor element 5, and a sealing layer 9 which joins the insulating base 2 and the cover body 3 made of metal together. In a temperature range from normal temperatures or above to a sealing temperature of the sealing layer 9 or below, the thermal expansion coefficient of the cover body 3 made of metal is smaller than the thermal expansion coefficient of the insulating base 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子収納用パッ
ケージ、特に、半導体素子を収納する絶縁基体が窒化ア
ルミニウム質セラミックスからなる半導体素子収納用パ
ッケージに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element housing package, and more particularly to a semiconductor element housing package in which an insulating substrate for housing a semiconductor element is made of aluminum nitride ceramics.

【0002】[0002]

【従来の技術】一般に半導体素子収納用パッケージは、
アルミナセラミックス等からなる絶縁基体を有してい
る。この絶縁基体の上面ほぼ中央部には、半導体素子を
収納するための凹部が形成されている。また、絶縁基体
の上面には、凹部に収納された半導体素子を覆うように
金属製の蓋体が金−錫共晶はんだからなる封止層によっ
て接合されている。
2. Description of the Related Art Generally, a package for housing a semiconductor element is
It has an insulating base made of alumina ceramics or the like. A recess for accommodating a semiconductor element is formed in a substantially central portion of the upper surface of the insulating base. Further, a metallic lid is joined to the upper surface of the insulating base by a sealing layer made of gold-tin eutectic solder so as to cover the semiconductor element housed in the recess.

【0003】ところで、最近半導体素子の高集積度化、
高密度化が急激に進んでおり、このため半導体素子を作
動させたときの発熱量が大きなものとなってきている。
しかし、従来の半導体素子収納用パッケージを構成する
絶縁基体はアルミナセラミックスであるために、その熱
伝導率が20W/m・Kと低い。このため、半導体素子
が発生する熱を外部に効率良く放散させることができ
ず、半導体素子が高温となって誤動作や熱破壊を引き起
こす場合がある。
By the way, recently, the degree of integration of semiconductor elements has increased,
The densification is rapidly progressing, and as a result, the amount of heat generated when a semiconductor element is operated is becoming large.
However, since the insulating substrate that constitutes the conventional semiconductor device housing package is made of alumina ceramics, its thermal conductivity is as low as 20 W / m · K. Therefore, the heat generated by the semiconductor element cannot be efficiently dissipated to the outside, and the semiconductor element may reach a high temperature to cause malfunction or thermal destruction.

【0004】このため、半導体素子収納用パッケージの
絶縁基体を窒化アルミニウム質セラミックスで構成する
ことが提案されている。この場合には、熱伝導率が約8
0W/m・Kであり、アルミナセラミックスに比較して
高いため、半導体素子の発生する熱を外部に効率良く放
散させることができる。
For this reason, it has been proposed that the insulating base of the package for housing the semiconductor element be made of aluminum nitride ceramics. In this case, the thermal conductivity is about 8
Since it is 0 W / m · K, which is higher than that of alumina ceramics, the heat generated by the semiconductor element can be efficiently dissipated to the outside.

【0005】[0005]

【発明が解決しようとする課題】前記絶縁基体として利
用される窒化アルミニウム質セラミックスの熱膨張係数
は3.8〜4.3×10-6/℃(20〜350℃)であ
り、金属製蓋体を構成するコバールの熱膨張係数は4.
6〜5.0×10-6/℃(20〜350℃)である。ま
た、封止層を構成する金−錫合金は17.5×10-6
℃である。このように、特に封止層と絶縁基体の熱膨張
係数は大きく異なっている。このため、窒化アルミニウ
ム質セラミックスによって絶縁基体を構成し、これと金
属製蓋体とを金−錫合金のはんだからなる封止層によっ
て接合する場合、接合時の熱や半導体素子が作動する際
の熱が加わると、絶縁基体と封止層との間の熱膨張係数
の差に起因する大きな応力が発生する。このような応力
が発生すると、蓋体側は強度が高いために、絶縁基体や
封止層の側にクラックが入る場合がある。この場合に
は、半導体素子を気密に封止することができなくなって
しまうという問題がある。
The coefficient of thermal expansion of the aluminum nitride ceramics used as the insulating substrate is 3.8 to 4.3 × 10 −6 / ° C. (20 to 350 ° C.), and the metallic lid is used. The thermal expansion coefficient of Kovar that composes the body is 4.
It is 6 to 5.0 × 10 −6 / ° C. (20 to 350 ° C.). The gold-tin alloy forming the sealing layer is 17.5 × 10 −6 /
℃. As described above, the thermal expansion coefficients of the sealing layer and the insulating substrate are very different from each other. For this reason, when an insulating substrate is made of aluminum nitride ceramics and the lid is made of metal and is joined by a sealing layer made of solder of a gold-tin alloy, heat at the time of joining and when the semiconductor element operates When heat is applied, a large stress is generated due to the difference in thermal expansion coefficient between the insulating substrate and the sealing layer. When such a stress is generated, cracks may occur on the insulating substrate side and the sealing layer side because the lid side has high strength. In this case, there is a problem that the semiconductor element cannot be hermetically sealed.

【0006】本発明の目的は、半導体素子の発生する熱
を効率良く放散させるとともに、絶縁基体等にクラック
が発生するのを防止することにある。
An object of the present invention is to efficiently dissipate heat generated by a semiconductor element and prevent cracks from occurring in an insulating substrate or the like.

【0007】[0007]

【課題を解決するための手段】本発明に係る半導体素子
収納用パッケージは、窒化アルミニウム質セラミックス
からなり内部に半導体素子を収納する絶縁基体と、半導
体素子を覆うように絶縁基体上に設けられた金属製蓋体
と、絶縁基体と金属製蓋体とを接合する封止層とを備え
ている。そして、常温以上封止層の封止温度以下の温度
範囲において、金属製蓋体の熱膨張係数は絶縁基体の熱
膨張係数より小さい。
A package for accommodating a semiconductor element according to the present invention comprises an insulating base made of aluminum nitride ceramics for accommodating a semiconductor element therein, and an insulating base covering the semiconductor element. It is provided with a metallic lid and a sealing layer for joining the insulating base and the metallic lid. In the temperature range from room temperature to the sealing temperature of the sealing layer, the coefficient of thermal expansion of the metallic lid is smaller than that of the insulating substrate.

【0008】[0008]

【作用】本発明に係る半導体素子収納用パッケージで
は、常温以上封止層の封止温度以下の温度範囲におい
て、金属製蓋体の熱膨張係数が絶縁基体の熱膨張係数よ
りも小さい。ここで、前述のように、窒化アルミニウム
質セラミックスからなる絶縁基体と金属製蓋体とを接合
した場合に絶縁基体や封止層にクラックが生ずるのは、
特に封止層(主に金属製)の熱膨張係数が絶縁基体のそ
れと大きく異なることに起因している。この場合に、金
属製蓋体の熱膨張係数を絶縁基体のそれより小さくする
ことにより、封止層で発生した熱応力が金属製蓋体で吸
収緩和され、絶縁基体や封止層部分にクラックが発生し
にくくなる。
In the package for housing a semiconductor element according to the present invention, the coefficient of thermal expansion of the metallic lid is smaller than the coefficient of thermal expansion of the insulating substrate in the temperature range from room temperature to the sealing temperature of the sealing layer. Here, as described above, when the insulating base made of aluminum nitride ceramics and the metallic lid are joined, the insulating base and the sealing layer are cracked.
In particular, the thermal expansion coefficient of the sealing layer (mainly made of metal) is largely different from that of the insulating substrate. In this case, by making the thermal expansion coefficient of the metallic lid smaller than that of the insulating base, the thermal stress generated in the sealing layer is absorbed and relaxed by the metallic lid, and the insulating base and the sealing layer are cracked. Is less likely to occur.

【0009】[0009]

【実施例】図1は本発明の一実施例による半導体素子収
納用パッケージを示している。このパッケージ1は、主
に、絶縁基体2と、蓋体3と、複数の外部リード端子4
とを有している。絶縁基体2は窒化アルミニウム質セラ
ミックスからなり、その熱膨張係数は、3.8〜4.3
×10-6/℃(20〜350℃)である。絶縁基体2上
面のほぼ中央部には、半導体素子5を収容するための凹
部2aが形成されている。凹部2aの底面には、半導体
素子5がガラス、樹脂、はんだ等の接着剤を介して固定
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a semiconductor device housing package according to an embodiment of the present invention. The package 1 mainly includes an insulating base 2, a lid 3, and a plurality of external lead terminals 4.
And have. The insulating substrate 2 is made of aluminum nitride ceramics and has a coefficient of thermal expansion of 3.8 to 4.3.
× 10 −6 / ° C. (20 to 350 ° C.). A recess 2a for accommodating the semiconductor element 5 is formed substantially in the center of the upper surface of the insulating base 2. The semiconductor element 5 is fixed to the bottom surface of the recess 2a with an adhesive such as glass, resin, or solder.

【0010】絶縁基体2は以下のようにして形成され
る。まず、たとえば、窒化アルミニウム、イットリア、
カルシア等の粉末に適当なバインダー及び溶剤を添加混
合して泥漿状とし、これを従来から周知のドクターブレ
ード法を採用することによってセラミックグリーンシー
トを得る。次に、セラミックグリーンシートに適当な打
ち抜き加工を施してこれを複数枚積層する。そして、約
1800℃の温度で焼成する。
The insulating substrate 2 is formed as follows. First, for example, aluminum nitride, yttria,
A ceramic green sheet is obtained by adding a suitable binder and a solvent to powder such as calcia and mixing them to form a slurry, which is then subjected to a conventionally known doctor blade method. Next, the ceramic green sheet is subjected to an appropriate punching process to laminate a plurality of sheets. Then, it is fired at a temperature of about 1800 ° C.

【0011】また、絶縁基体2の凹部2a周辺から外周
部にかけて複数のメタライズ配線層6が形成されてい
る。メタライズ配線層6の凹部2a周辺部には、半導体
素子5の電極がボンディングワイヤ7を介して電気的に
接続されている。また、メタライズ配線層6の外周部に
は、外部リード端子4が銀ロウ等のロウ材を介して接続
されている。
A plurality of metallized wiring layers 6 are formed from the periphery of the recess 2a of the insulating base 2 to the outer peripheral portion. The electrode of the semiconductor element 5 is electrically connected to the peripheral portion of the recess 2 a of the metallized wiring layer 6 via the bonding wire 7. The external lead terminals 4 are connected to the outer peripheral portion of the metallized wiring layer 6 via a brazing material such as silver brazing.

【0012】外部リード端子4は、42アロイ、コバー
ル等の鉄合金系の金属材料から形成されており、たとえ
ば、鉄51.0〜64.0重量%、ニッケル29.0〜
34.0重量%、コバルト7.0〜15.0重量%の合
金で形成されている。この場合には、外部リード端子4
の熱膨張係数は、4.0〜6.0×10-6/℃(20〜
400℃)である。このため、絶縁基体2との間の熱膨
張係数の差に起因して発生する熱応力を少なくでき、メ
タライズ配線層6に外部リード端子4を強固に接続させ
ることができる。
The external lead terminal 4 is made of an iron alloy type metal material such as 42 alloy or Kovar, for example, iron 51.0 to 64.0% by weight, nickel 29.0.
It is formed of an alloy of 34.0% by weight and cobalt 7.0 to 15.0% by weight. In this case, the external lead terminal 4
Has a thermal expansion coefficient of 4.0 to 6.0 × 10 −6 / ° C. (20 to
400 ° C.). Therefore, the thermal stress generated due to the difference in the coefficient of thermal expansion from the insulating base 2 can be reduced, and the external lead terminal 4 can be firmly connected to the metallized wiring layer 6.

【0013】絶縁基体2の上面にはメタライズ層8が形
成されており、このメタライズ層8の上部に封止層9を
介して金属製蓋体3が固着されている。封止層9は金−
錫合金によって形成されており、その熱膨張係数は、1
7.5×10-6/℃である。また金属製蓋体3は、たと
えば鉄53〜64重量%、ニッケル29〜34重量%、
コバルト5〜13重量%の合金からなり、その熱膨張係
数は3.0〜3.8×10-6/℃(20〜350℃)で
ある。すなわち、絶縁基体2の熱膨張係数3.8〜4.
3×10-6/℃(20〜350℃)よりも小さい。
A metallized layer 8 is formed on the upper surface of the insulating substrate 2, and a metallic lid 3 is fixed to the upper portion of the metallized layer 8 with a sealing layer 9 interposed therebetween. The sealing layer 9 is gold-
It is made of tin alloy and its coefficient of thermal expansion is 1
It is 7.5 × 10 −6 / ° C. Further, the metallic lid 3 is made of, for example, iron 53 to 64% by weight, nickel 29 to 34% by weight,
It is made of an alloy containing 5 to 13% by weight of cobalt and has a thermal expansion coefficient of 3.0 to 3.8 × 10 −6 / ° C. (20 to 350 ° C.). That is, the thermal expansion coefficient of the insulating base 2 is 3.8 to 4.
It is smaller than 3 × 10 −6 / ° C. (20 to 350 ° C.).

【0014】このような本実施例では、常温〜金−錫合
金の封止温度(20〜350℃)の範囲において、金属
製蓋体3の熱膨張係数は絶縁基体2のそれよりも小さ
い。このため、半導体素子の作動時等に、熱膨張係数の
差により封止層9に引っ張り応力が発生するが、蓋体3
側に逆向きの圧縮応力が生じ、封止層9に発生する応力
が吸収緩和される。このため、封止層9あるいは絶縁体
2側にクラックが発生するのを抑えることができる。
In this embodiment, the coefficient of thermal expansion of the metallic lid 3 is smaller than that of the insulating base 2 in the range of room temperature to the sealing temperature of gold-tin alloy (20 to 350 ° C.). Therefore, a tensile stress is generated in the sealing layer 9 due to the difference in the coefficient of thermal expansion during operation of the semiconductor element, etc.
A compressive stress in the opposite direction is generated on the side, and the stress generated in the sealing layer 9 is absorbed and relaxed. Therefore, it is possible to suppress the occurrence of cracks on the sealing layer 9 or the insulator 2 side.

【0015】また、絶縁基体2が熱伝導率の良好な窒化
アルミニウム質セラミックスで形成されているので、半
導体素子5から発生した熱を効率よく外部に放散させる
ことができ、半導体素子5の誤動作や熱破壊が少なくな
る。なお、金属製蓋体3の熱膨張係数が絶縁基体2の熱
膨張係数(3.8×10-6/℃(20〜350℃))を
超えると、あるいは蓋体3の熱膨張係数が3.0×10
-6/℃(20〜350℃)未満では、封止層9を構成す
る金−錫合金の引っ張り応力だけでなく、蓋体3の応力
が絶縁基体2に加わり、封止層9にクラックが入りやす
い。したがって、蓋体3の熱膨張係数は、3.0〜3.
8×10-6/℃(20〜350℃)の範囲が好ましい。
Further, since the insulating base 2 is made of aluminum nitride ceramics having a good thermal conductivity, the heat generated from the semiconductor element 5 can be efficiently dissipated to the outside, and malfunction of the semiconductor element 5 or Less heat destruction. When the thermal expansion coefficient of the metallic lid 3 exceeds the thermal expansion coefficient of the insulating substrate 2 (3.8 × 10 −6 / ° C. (20 to 350 ° C.)), or the thermal expansion coefficient of the lid 3 is 3 or more. 0.0 x 10
Below −6 / ° C. (20 to 350 ° C.), not only the tensile stress of the gold-tin alloy forming the sealing layer 9 but also the stress of the lid 3 is applied to the insulating substrate 2, and the sealing layer 9 is cracked. Easy to enter. Therefore, the thermal expansion coefficient of the lid 3 is 3.0 to 3.
The range of 8 × 10 −6 / ° C. (20 to 350 ° C.) is preferable.

【0016】[0016]

【発明の効果】以上のように本発明では、金属製蓋体の
熱膨張係数を絶縁基体のそれより小さくしたので、封止
層に熱応力が発生しても蓋体の圧縮応力によって前記熱
応力が吸収緩和され、封止層や絶縁基体にクラックが入
るのを抑えることができる。
As described above, according to the present invention, the coefficient of thermal expansion of the metallic lid is smaller than that of the insulating base. Therefore, even if thermal stress is generated in the sealing layer, the thermal stress is increased by the compressive stress of the lid. It is possible to suppress stress from being absorbed and relaxed and to prevent cracks from being generated in the sealing layer and the insulating substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体素子収納用パッ
ケージの縦断面構成図。
FIG. 1 is a vertical cross-sectional configuration diagram of a package for housing a semiconductor device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体素子収納用パッケージ 2 絶縁基体 3 金属製蓋体 5 半導体素子 9 封止層 1 Package for Semiconductor Element Storage 2 Insulating Base 3 Metal Lid 5 Semiconductor Element 9 Encapsulation Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウム質セラミックスからなり
内部に半導体素子を収納する絶縁基体と、 前記半導体素子を覆うように前記絶縁基体上に設けられ
た金属製蓋体と、 前記絶縁基体と金属製蓋体とを接合する封止層とを備
え、 常温以上前記封止層の封止温度以下の範囲において、前
記金属製蓋体の熱膨張係数が前記絶縁基体の熱膨張係数
より小さいことを特徴とする半導体素子収納用パッケー
ジ。
1. An insulating base made of aluminum nitride ceramics for housing a semiconductor element therein, a metal lid provided on the insulating base so as to cover the semiconductor element, the insulating base and a metal lid. A sealing layer for joining a body, wherein the thermal expansion coefficient of the metal lid is smaller than the thermal expansion coefficient of the insulating substrate in a range of room temperature or higher and a sealing temperature of the sealing layer or lower. Package for semiconductor device storage.
JP26165092A 1992-09-30 1992-09-30 Package for accommodating semiconductor element Pending JPH06112347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26165092A JPH06112347A (en) 1992-09-30 1992-09-30 Package for accommodating semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26165092A JPH06112347A (en) 1992-09-30 1992-09-30 Package for accommodating semiconductor element

Publications (1)

Publication Number Publication Date
JPH06112347A true JPH06112347A (en) 1994-04-22

Family

ID=17364857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26165092A Pending JPH06112347A (en) 1992-09-30 1992-09-30 Package for accommodating semiconductor element

Country Status (1)

Country Link
JP (1) JPH06112347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007890A (en) * 2001-06-26 2003-01-10 Kyocera Corp Package for storing semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007890A (en) * 2001-06-26 2003-01-10 Kyocera Corp Package for storing semiconductor element

Similar Documents

Publication Publication Date Title
JPH06112347A (en) Package for accommodating semiconductor element
JP2000183253A (en) Package for housing semiconductor element
JP2750237B2 (en) Electronic component storage package
JP2763417B2 (en) Manufacturing method of semiconductor device storage package
JP2631397B2 (en) Package for storing semiconductor elements
JP2740605B2 (en) Manufacturing method of semiconductor device storage package
JP2783735B2 (en) Package for storing semiconductor elements
JP2001267446A (en) Package for containing semiconductor element and semiconductor device using it
JP2724083B2 (en) Package for storing semiconductor elements
JP2746841B2 (en) Wiring board
JP3117387B2 (en) Package for storing semiconductor elements
JP2003037229A (en) Package for housing semiconductor element
JPS63228741A (en) Package for containing semiconductor element
JPH11238820A (en) Package for accommodating electronic component
JPH09162337A (en) Semiconductor element encapsulating package
JP2002353360A (en) Container for storing electronic part
JP2003100932A (en) Package for accommodating semiconductor device
JP2003037200A (en) Package for housing semiconductor element
JPH098169A (en) Ceramic package base body for mounting of semiconductor element
JPH11126846A (en) Case for electronic component
JPH05136311A (en) Package for integrated circuit
JPH11238818A (en) Package for accommodating electronic component
JPH06120400A (en) Semiconductor-device storing package
JP2003068913A (en) Package for semiconductor element storage
JPH06236936A (en) Package for housing semiconductor-element