JP2003037229A - Package for housing semiconductor element - Google Patents

Package for housing semiconductor element

Info

Publication number
JP2003037229A
JP2003037229A JP2001224107A JP2001224107A JP2003037229A JP 2003037229 A JP2003037229 A JP 2003037229A JP 2001224107 A JP2001224107 A JP 2001224107A JP 2001224107 A JP2001224107 A JP 2001224107A JP 2003037229 A JP2003037229 A JP 2003037229A
Authority
JP
Japan
Prior art keywords
semiconductor element
weight
copper
frame
shaped insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001224107A
Other languages
Japanese (ja)
Inventor
Yoshihiro Basho
義博 芭蕉
Masaaki Iguchi
公明 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001224107A priority Critical patent/JP2003037229A/en
Publication of JP2003037229A publication Critical patent/JP2003037229A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of heat generation, when a semiconductor element is operating being unable to be radiated externally efficiently and causing the element to be broken down thermally. SOLUTION: A package for housing the semiconductor element comprises a base 1, having a placing part 1a for placing the semiconductor element 4 on the upper surface, a frame-like insulator 2 mounted on the upper surface of the base 1 to surround the placing part 1a, and a cover 3 mounted on the insulator 2 to hermetically seal the inside of the insulator 2. The insulator 2 is made of ceramics, which have thermal expansion coefficient of 6.0 to 8.0 ppm/ deg.C (ambient temperature to 800 deg.C). The base 1 is made of a tungsten and a copper and has a three-layer structure, which has an intermediate layer 1c made of the tungsten of 30 to 60 wt.% and the copper of 40 to 70 wt.%, and upper and lower layers 1b and 1d, each being made of 75 to 90 wt.% tungsten and of 10 to 25 wt.% copper and is arranged on both the upper and lower surfaces of the layer 1c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はLSI(大規模集積
回路素子)等の半導体素子を収容するための半導体素子
収納用パッケージに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element housing package for housing a semiconductor element such as an LSI (Large Scale Integrated Circuit Element).

【0002】[0002]

【従来の技術】従来、半導体素子を収容するための半導
体素子収納用パッケージは、上面に半導体素子が載置さ
れる載置部を有する銅−タングステン合金や銅−モリブ
デン合金等の金属材料からなる基体と、該基体の上面に
前記載置部を囲繞するようにして取着された酸化アルミ
ニウム質焼結体やガラスセラミック焼結体等の電気絶縁
材料からなる枠状の絶縁体と、該枠状絶縁体の内周部か
ら外周部にかけて被着導出されているタングステン、モ
リブデン、銅、銀等の金属粉末からなる複数個の配線層
と、前記枠状絶縁体の上面に取着され、絶縁体の内側の
穴を塞ぐ蓋体とから構成されており、基体の半導体素子
載置部に半導体素子をガラス、樹脂、ロウ材等の接着剤
を介して接着固定するとともに該半導体素子の各電極を
ボンディングワイヤを介して枠状絶縁体に形成した配線
層に電気的に接続し、しかる後、枠状絶縁体に蓋体を該
絶縁体の内側の穴を塞ぐようにしてガラス、樹脂、ロウ
材等から封止材を介して接合させ、基体と枠状絶縁体と
蓋体とからなる容器内部に半導体素子を気密に収容する
ことによって製品としての半導体装置となる。
2. Description of the Related Art Conventionally, a semiconductor element accommodating package for accommodating a semiconductor element is made of a metal material such as a copper-tungsten alloy or a copper-molybdenum alloy having a mounting portion on which the semiconductor element is mounted. A base, a frame-shaped insulator made of an electrically insulating material such as an aluminum oxide sintered body or a glass ceramic sintered body attached to the upper surface of the base so as to surround the mounting portion, and the frame A plurality of wiring layers made of metal powder such as tungsten, molybdenum, copper, silver, etc., which are adhered and led from the inner peripheral portion to the outer peripheral portion of the frame-shaped insulator, and are attached to the upper surface of the frame-shaped insulator for insulation. It is composed of a lid that closes a hole inside the body, and the semiconductor element is adhered and fixed to the semiconductor element mounting portion of the base body through an adhesive such as glass, resin, or brazing material, and each electrode of the semiconductor element is formed. Bonding wire Is electrically connected to the wiring layer formed on the frame-shaped insulator via the glass substrate, and then the frame-shaped insulator is covered with a lid so as to close the inner hole of the insulator from glass, resin, brazing material, or the like. A semiconductor device as a product is obtained by bonding the semiconductor elements through a sealing material and hermetically housing the semiconductor element inside a container composed of a base, a frame-shaped insulator, and a lid.

【0003】なお上述の半導体素子収納用パッケージに
おいては、半導体素子が載置される基体が銅−タングス
テン合金や銅−モリブデン合金等の金属材料で形成され
ており、該銅−タングステン合金や銅−モリブデン合金
等は熱伝導率が約180W/m・Kと高く熱伝導性に優
れていることから基体は半導体素子の作動時に発する熱
を良好に吸収するとともに大気中に良好に放散させるこ
とができ、これによって半導体素子を常に適温とし半導
体素子に熱破壊が発生したり、特性に熱劣化が発生した
りするのを有効に防止している。
In the above-mentioned package for housing a semiconductor element, the base on which the semiconductor element is mounted is made of a metal material such as a copper-tungsten alloy or a copper-molybdenum alloy, and the copper-tungsten alloy or copper-tungsten alloy is used. Since the molybdenum alloy has a high thermal conductivity of about 180 W / m · K and is excellent in thermal conductivity, the base body can well absorb the heat generated during the operation of the semiconductor element and can dissipate it into the atmosphere. As a result, the semiconductor element is always kept at an appropriate temperature, and the semiconductor element is effectively prevented from suffering thermal breakdown or thermal deterioration of its characteristics.

【0004】また上述の半導体素子収納用パッケージの
基体として使用されている銅−タングステン合金や銅−
モリブデン合金はタングステン粉末やモリブデン粉末を
焼成して焼結多孔体を得、次に前記焼結多孔体の空孔内
に溶融させることによって製作されており、例えば、タ
ングステンから成る焼結多孔体に銅を含浸させる場合は
焼結多孔体が75乃至90重量%、銅が10乃至25重
量%の範囲に、モリブデンから成る焼結多孔体に銅を含
浸させる場合は焼結多孔体が80乃至90重量%、銅が
10乃至20重量%の範囲となっている。
Further, copper-tungsten alloys and copper-based materials used as the base body of the above-mentioned package for accommodating semiconductor elements.
The molybdenum alloy is manufactured by firing tungsten powder or molybdenum powder to obtain a sintered porous body, and then melting the sintered porous body in the pores of the sintered porous body. When impregnated with copper, the sintered porous body has a range of 75 to 90% by weight and copper has a range of 10 to 25% by weight. When the sintered porous body made of molybdenum has been impregnated with copper, the sintered porous body has a range of 80 to 90% by weight. % By weight, and copper is in the range of 10 to 20% by weight.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この従
来の半導体素子収納用パッケージにおいては、基体がタ
ングステン粉末やモリブデン粉末を焼成して焼結多孔体
を得るとともに該焼結多孔体の空孔内に溶融させた銅を
含浸させることによって形成されており、前記銅の量を
増加させればさせるほど前記基体の熱伝導率は高くなる
が、それにつれて基体の線熱膨張係数も大きくなる。前
記基体は上面に取着される酸化アルミニウム質焼結体や
ガラスセラミック焼結体等から成る枠状絶縁体の線熱膨
張係数(6.0ppm/℃乃至8.0ppm/℃:室温
〜800℃)と大きく相違すると、両者の線熱膨張係数
の相違により発生する応力が両者の接合界面に働き、該
応力により前記接合界面にクラックがはいったり、ひど
い場合には両者の接合界面に剥離が発生したりして、半
導体素子収納用パッケージの気密封止の信頼性が損なわ
れ、内部に収容する半導体素子を信頼性よく正常に作動
させることができなくなると言う問題が発生してしまう
ことから、前記基体の線熱膨張係数は前記枠状絶縁体の
線熱膨張係数と近似させる必要があり、前記基体の銅の
含有率は10乃至25重量%(基体が銅−タングステン
合金から成る場合は銅の含有率は10乃至25重量%、
銅−モリブデン合金から成る場合は銅の含有率は10乃
至20重量%)の範囲に限定されることとなり、前記基
体の熱伝導率は最大でも約180W/m・K程度であっ
た。
However, in this conventional package for accommodating semiconductor elements, the base body fires tungsten powder or molybdenum powder to obtain a sintered porous body, and the sintered porous body has pores inside. It is formed by impregnating molten copper, and the thermal conductivity of the base increases as the amount of copper increases, but the linear thermal expansion coefficient of the base also increases accordingly. The linear thermal expansion coefficient (6.0 ppm / ° C. to 8.0 ppm / ° C .: room temperature to 800 ° C.) of a frame-shaped insulator made of an aluminum oxide sintered body, a glass ceramic sintered body, or the like attached to the upper surface of the substrate. ), The stress generated by the difference in the linear thermal expansion coefficient of the two acts on the joint interface between the two, and the stress causes cracks in the joint interface, or in severe cases, peeling occurs at the joint interface between the two. Or, because the reliability of the hermetic sealing of the semiconductor element housing package is impaired, a problem occurs that the semiconductor element housed inside cannot be reliably and normally operated. The coefficient of linear thermal expansion of the substrate should be close to the coefficient of linear thermal expansion of the frame-shaped insulator, and the content of copper in the substrate is 10 to 25% by weight (when the substrate is made of copper-tungsten alloy). 10 to 25% by weight the content of copper,
When the copper-molybdenum alloy is used, the copper content is limited to the range of 10 to 20% by weight, and the thermal conductivity of the substrate is about 180 W / mK at the maximum.

【0006】そのためこの従来の半導体素子収納用パッ
ケージ内に近時の高密度化、高集積化が大きく進み、作
動時に多量の熱を発する半導体素子を収容した場合、半
導体素子が作動時に発する熱は基体を介して外部に完全
に放散させることができなくなり、その結果、半導体素
子が該素子自身の発する熱によって高温となり、半導体
素子に熱破壊を招来させたり、特性にばらつきを生じ安
定に作動させることができないという欠点を有してい
た。
Therefore, in the conventional package for accommodating semiconductor elements, the density and the degree of integration have greatly increased in recent years, and when a semiconductor element which generates a large amount of heat during operation is accommodated, the heat generated during operation of the semiconductor element is The semiconductor element cannot be completely diffused to the outside, and as a result, the semiconductor element becomes high temperature due to the heat generated by the element itself, causing thermal damage to the semiconductor element or causing a variation in characteristics to operate stably. It had the drawback of not being able to.

【0007】本発明は上記欠点に鑑み案出されたもの
で、その目的は高密度化、高集積化が進み、作動時に多
量の熱を発する半導体素子を常に適温に保持し、半導体
素子を長期間にわたり安定に機能させることができる半
導体素子収納用パッケージを提案することにある。
The present invention has been devised in view of the above-mentioned drawbacks, and its purpose is to increase the density and integration of semiconductor elements, to keep semiconductor elements that generate a large amount of heat during operation at an appropriate temperature, and to keep the semiconductor elements long. It is to propose a package for housing a semiconductor element, which can function stably over a period of time.

【0008】[0008]

【課題を解決するための手段】本発明は、上面に半導体
素子が載置される載置部を有する基体と、該基体の上面
に取着され、前記載置部を囲繞する枠状の絶縁体と、該
枠状絶縁体上に取着され、枠状絶縁体の内側を気密に封
止する蓋体とから成る半導体素子収納用パッケージであ
って、前記枠状絶縁体は線熱膨張係数が6.0ppm/
℃乃至8.0ppm/℃(室温〜800℃)のセラミッ
クスから成り、かつ前記基体はタングステンと銅とから
成り、タングステンが30乃至60重量%、銅が40乃
至70重量%から成る中間層の上下両面にタングステン
が75乃至90重量%、銅が10乃至25重量%から成
る上下層を配した3層構造を有していることを特徴とす
るものである。
According to the present invention, there is provided a base having a mounting portion on which a semiconductor element is mounted, and a frame-shaped insulating member attached to the upper surface of the base and surrounding the mounting portion. A semiconductor element housing package comprising a body and a lid body attached to the frame-shaped insulator to hermetically seal the inside of the frame-shaped insulator, wherein the frame-shaped insulator has a linear thermal expansion coefficient. Is 6.0 ppm /
C. to 8.0 ppm / .degree. C. (room temperature to 800.degree. C.) ceramics, and the base body is made of tungsten and copper. The upper and lower intermediate layers are made of 30 to 60% by weight of tungsten and 40 to 70% by weight of copper. It is characterized by having a three-layer structure in which upper and lower layers composed of 75 to 90% by weight of tungsten and 10 to 25% by weight of copper are arranged on both surfaces.

【0009】また本発明は、上面に半導体素子が載置さ
れる載置部を有する基体と、該基体の上面に取着され、
前記載置部を囲繞する枠状の絶縁体と、該枠状絶縁体上
に取着され、枠状絶縁体の内側を気密に封止する蓋体と
から成る半導体素子収納用パッケージであって、前記枠
状絶縁体は線熱膨張係数が6.0ppm/℃乃至8.0
ppm/℃(室温〜800℃)のセラミックスから成
り、かつ前記基体はモリブデンと銅とから成り、モリブ
デンが35乃至55重量%、銅が45乃至65重量%か
ら成る中間層の上下両面にモリブデンが80乃至90重
量%、銅が10乃至20重量%から成る上下層を配した
3層構造を有していることを特徴とするものである。
Further, according to the present invention, there is provided a base having a mounting portion on which a semiconductor element is mounted, and the base being attached to the upper surface of the base.
A package for storing a semiconductor element, comprising a frame-shaped insulator surrounding the mounting portion, and a lid attached to the frame-shaped insulator to hermetically seal the inside of the frame-shaped insulator. The frame-shaped insulator has a coefficient of linear thermal expansion of 6.0 ppm / ° C. to 8.0.
ppm / ° C. (room temperature to 800 ° C.), the substrate is made of molybdenum and copper, and molybdenum is formed on both upper and lower surfaces of the intermediate layer made of 35 to 55% by weight of molybdenum and 45 to 65% by weight of copper. It has a three-layer structure in which upper and lower layers of 80 to 90% by weight and copper of 10 to 20% by weight are arranged.

【0010】本発明の半導体素子収納用パッケージによ
れば、基体をタングステンが30乃至60重量%、銅が
40乃至70重量%から成る中間層の上下両面にタング
ステンが75乃至90重量%、銅が10乃至25重量%
から成る上下層を配した3層構造、またはモリブデンが
35乃至55重量%、銅が45乃至65重量%から成る
中間層の上下両面にモリブデンが80乃至90重量%、
銅が10乃至20重量%から成る上下層を配した3層構
造となしたことから基体の中間層の熱伝導率を250W
/m・K以上の高いものとし、基体上に載置される半導
体素子が作動時に多量の熱を発したとしてもその熱は基
体の半導体素子載置部である上層を介して前記中間層に
伝達されると同時に該中間層で平面方向に素早く広が
り、これによって半導体素子の熱は上層、中間層、下層
を介して外部に効率よく確実に放散させることができ、
その結果、半導体素子は常に適温となり、半導体素子を
長期間にわたり安定かつ正常に作動させることが可能と
なる。
According to the package for accommodating semiconductor elements of the present invention, the substrate is made of an intermediate layer consisting of 30 to 60% by weight of tungsten and 40 to 70% by weight of copper. 10 to 25% by weight
A three-layer structure in which upper and lower layers are formed, or 80 to 90% by weight of molybdenum on both upper and lower surfaces of an intermediate layer of 35 to 55% by weight of molybdenum and 45 to 65% by weight of copper,
The thermal conductivity of the intermediate layer of the base is 250 W because the three-layer structure is formed by arranging the upper and lower layers of 10 to 20% by weight of copper.
/ M · K or higher, and even if the semiconductor element mounted on the base body generates a large amount of heat during operation, the heat is transmitted to the intermediate layer through the upper layer which is the semiconductor element mounting portion of the base body. At the same time as being transmitted, the intermediate layer quickly spreads in the plane direction, whereby heat of the semiconductor element can be efficiently and surely dissipated to the outside through the upper layer, the intermediate layer, and the lower layer.
As a result, the semiconductor element is always at an appropriate temperature, and the semiconductor element can be stably and normally operated for a long period of time.

【0011】また本発明の半導体素子収納用パッケージ
によれば、基体をタングステンが30乃至60重量%、
銅が40乃至70重量%から成る中間層の上下両面にタ
ングステンが75乃至90重量%、銅が10乃至25重
量%から成る上下層を配した3層構造、またはモリブデ
ンが35乃至55重量%、銅が45乃至65重量%から
成る中間層の上下両面にモリブデンが80乃至90重量
%、銅が10乃至20重量%から成る上下層を配した3
層構造となし、線熱膨張係数が大きい中間層を線熱膨張
係数の小さい上下層で挟み込み、基体全体の線熱膨張係
数を枠状絶縁体の線熱膨張係数に近似する6.0ppm
/℃乃至8.0ppm/℃(室温〜800℃)となした
ことから基体上に枠状絶縁体を取着させる際や半導体素
子が作動した際等において基体と枠状絶縁体の両者に熱
が作用したとしても基体と枠状絶縁体との間には両者の
線熱膨張係数の相違に起因する大きな熱応力が発生する
ことはなく、これによって半導体素子を収納する空所の
気密封止が常に完全となり、半導体素子を安定かつ正常
に作動させることが可能となる。
Further, according to the package for accommodating semiconductor elements of the present invention, the base is made of tungsten in an amount of 30 to 60% by weight,
A three-layer structure in which tungsten is 75 to 90% by weight and copper is 10 to 25% by weight on the upper and lower surfaces of an intermediate layer of 40 to 70% by weight of copper, or 35 to 55% by weight of molybdenum, An upper and lower layer consisting of 80 to 90% by weight of molybdenum and 10 to 20% by weight of copper is provided on both upper and lower surfaces of the intermediate layer of 45 to 65% by weight of copper. 3
It has a layered structure, and an intermediate layer having a large linear thermal expansion coefficient is sandwiched between upper and lower layers having a small linear thermal expansion coefficient, and the linear thermal expansion coefficient of the entire substrate is approximately 6.0 ppm, which approximates the linear thermal expansion coefficient of the frame-shaped insulator.
/ ° C to 8.0 ppm / ° C (room temperature to 800 ° C), heat is applied to both the base and the frame-shaped insulator when attaching the frame-shaped insulator to the base or when the semiconductor element is operated. Does not cause a large thermal stress between the substrate and the frame-shaped insulator due to the difference in linear thermal expansion coefficient between the two, the air-tight sealing of the space containing the semiconductor element Is always complete, and the semiconductor element can be operated stably and normally.

【0012】[0012]

【発明の実施の形態】次に、本発明を添付図面に示す実
施例に基づき詳細に説明する。図1は本発明の半導体素
子収納用パッケージの一実施例を示す断面図である。図
1において、1は基体、2は枠状絶縁体、3は蓋体であ
る。この基体1と枠状絶縁体2と蓋体3とにより内部に
半導体素子4を気密に収容する容器5が構成される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail with reference to the embodiments shown in the accompanying drawings. FIG. 1 is a sectional view showing an embodiment of a package for housing a semiconductor device of the present invention. In FIG. 1, 1 is a base, 2 is a frame-shaped insulator, and 3 is a lid. The base 1, the frame-shaped insulator 2 and the lid 3 constitute a container 5 that hermetically houses the semiconductor element 4 therein.

【0013】前記基体1はその上面に半導体素子4が載
置される載置部1aを有するとともに上面外周部に該基
体1の上面に設けた半導体素子4が載置される載置部1
aを囲繞するようにして枠状絶縁体2がロウ材やガラ
ス、樹脂等の接着剤を介して取着されている。
The base 1 has a mounting portion 1a on which the semiconductor element 4 is mounted, and the mounting portion 1 on which the semiconductor element 4 provided on the upper surface of the base 1 is mounted on the outer peripheral portion of the upper surface.
The frame-shaped insulator 2 is attached so as to surround a through an adhesive such as a brazing material, glass, or resin.

【0014】前記基体1は半導体素子4を支持する支持
部材として作用するとともに半導体素子4が作動時に発
する熱を良好に吸収するとともに大気中に効率よく放散
させ、半導体素子4を常に適温とする作用をなし、枠状
絶縁体2に囲まれた基体1の載置部1a上に半導体素子
4がガラス、樹脂、ロウ材等の接着剤を介して固定され
る。
The substrate 1 acts as a support member for supporting the semiconductor element 4, and also absorbs heat generated by the semiconductor element 4 during operation and dissipates it efficiently into the atmosphere to keep the semiconductor element 4 at an appropriate temperature. The semiconductor element 4 is fixed on the mounting portion 1a of the base 1 surrounded by the frame-shaped insulator 2 with an adhesive such as glass, resin, or brazing material.

【0015】なお前記基体1はタングステンと銅とから
成り、タングステン粉末を焼成して得られる焼結多孔体
の空孔内に溶融させた銅を含浸させることによって製作
されている。
The substrate 1 is made of tungsten and copper, and is manufactured by impregnating molten copper into the pores of a sintered porous body obtained by firing tungsten powder.

【0016】また前記基体1の上面外周部には該基体1
の上面に設けた半導体素子4が載置される載置部1aを
囲繞するようにして枠状絶縁体2がロウ材やガラス、樹
脂等の接着剤を介して取着されており、基体1と枠状絶
縁体2とで半導体素子4を収容するための空所が内部に
形成される。
Further, on the outer peripheral portion of the upper surface of the base body 1, the base body 1 is provided.
The frame-shaped insulator 2 is attached via an adhesive such as a brazing material, glass, or resin so as to surround the mounting portion 1a on which the semiconductor element 4 mounted on the upper surface of the base 1 is mounted. With the frame-shaped insulator 2, a space for housing the semiconductor element 4 is formed inside.

【0017】前記基体1に取着される枠状絶縁体2は酸
化アルミニウム質焼結体やガラスセラミク焼結体等、線
熱膨張係数が6.0ppm/℃〜8.0ppm/℃(室
温〜800℃)の電気絶縁性のセラミックスから成り、
例えば、酸化アルミニウム質焼結体から成る場合には酸
化アルミニウム、酸化珪素、酸化マグネシウム、酸化カ
ルシウム等の原料粉末に適当な有機バインダー、可塑
剤、溶剤を添加混合して泥漿状となすとともに該泥漿物
を従来周知のドクターブレード法やカレンダーロール法
を採用することによってセラミックグリーンシート(セ
ラミック生シート)を形成し、次に前記セラミックグリ
ーンシートに適当な打ち抜き加工を施し、所定形状とな
すとともに必要に応じて複数枚を積層して成形体とな
し、しかる後、これを1600℃の温度で焼成すること
によって製作される。また、ガラスセラミック焼結体か
ら成る場合には、ホウ珪酸ガラス等のガラス粉末と酸化
アルミニウム等のセラミック粉末とから成る原料粉末に
適当な有機バインダ、溶剤等を添加混合して泥漿物を作
るとともに、この泥漿物をドクターブレード法やカレン
ダーロール法を採用することによってセラミックグリー
ンシート(セラミック生シート)を形成し、次に前記セ
ラミックグリーンシートに適当な打ち抜き加工を施して
所定の形状に成形するとともに必要に応じて複数枚を積
層して成形体となし、しかる後、これを約900℃の温
度で焼成することによって製作される。
The frame-shaped insulator 2 attached to the base 1 is made of an aluminum oxide sintered body, a glass ceramic sintered body, or the like and has a linear thermal expansion coefficient of 6.0 ppm / ° C. to 8.0 ppm / ° C. (room temperature to 800 ° C.). ℃) electrical insulating ceramics,
For example, in the case of an aluminum oxide sintered body, a suitable organic binder, a plasticizer, and a solvent are added to and mixed with a raw material powder of aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. to form a slurry and the slurry. A ceramic green sheet (ceramic green sheet) is formed by adopting the conventionally well-known doctor blade method or calendar roll method, and then the ceramic green sheet is subjected to appropriate punching processing to form a predetermined shape and necessary. Accordingly, a plurality of sheets are laminated to form a molded body, which is then fired at a temperature of 1600 ° C. When it is made of a glass-ceramic sintered body, an appropriate organic binder, a solvent, etc. are added to and mixed with a raw material powder made of glass powder such as borosilicate glass and ceramic powder such as aluminum oxide to form a sludge. A ceramic green sheet (ceramic green sheet) is formed by adopting a doctor blade method or a calendar roll method to this sludge, and then the ceramic green sheet is subjected to an appropriate punching process to form a predetermined shape. If necessary, a plurality of sheets may be laminated to form a molded body, which is then fired at a temperature of about 900 ° C.

【0018】前記枠状絶縁体2は更にその内周部から上
面にかけて導出する複数の配線層6が被着形成されてお
り、枠状絶縁体2の内周部に露出する配線層6の一端に
は半導体素子4の各電極がボンディングワイヤ7を介し
て電気的に接続され、また枠状絶縁体2の上面に導出さ
れた部位には外部電気回路と接続される外部リードピン
8が銀ロウ等のロウ材を介してロウ付け取着されてい
る。
A plurality of wiring layers 6 extending from the inner peripheral portion to the upper surface of the frame-shaped insulator 2 are adhered and formed, and one end of the wiring layer 6 exposed at the inner peripheral portion of the frame-shaped insulator 2 is adhered. The electrodes of the semiconductor element 4 are electrically connected to each other via the bonding wires 7, and the external lead pins 8 connected to an external electric circuit are connected to an external electric circuit at a portion led out to the upper surface of the frame-shaped insulator 2. It is attached by brazing through the brazing material.

【0019】前記配線層6は半導体素子4の各電極を外
部電気回路に接続する際の導電路として作用し、タング
ステン、モリブデン、マンガン、銅、銀等の金属粉末に
より形成されている。
The wiring layer 6 acts as a conductive path when connecting each electrode of the semiconductor element 4 to an external electric circuit, and is made of metal powder such as tungsten, molybdenum, manganese, copper, silver or the like.

【0020】前記配線層6はタングステン、モリブデ
ン、マンガン、銅、銀等の金属粉末に適当な有機バイン
ダー、溶剤等を添加混合して得られた金属ペーストを枠
状絶縁体2となるセラミックグリーンシートに予め従来
周知のスクリーン印刷法等の印刷法を用いることにより
所定パターンに印刷塗布しておくことによって枠状絶縁
体2の内周部から上面にかけて被着形成される。
The wiring layer 6 is a ceramic green sheet which becomes a frame-shaped insulator 2 with a metal paste obtained by adding and mixing an appropriate organic binder, a solvent and the like to a metal powder such as tungsten, molybdenum, manganese, copper and silver. Then, by printing and applying a predetermined pattern by using a printing method such as a conventionally known screen printing method, the frame-shaped insulator 2 is adhered and formed from the inner peripheral portion to the upper surface.

【0021】なお前記配線層6はその露出する表面にニ
ッケル、金等の耐蝕性に優れ、かつロウ材との濡れ性に
優れる金属を1μm〜20μmの厚みにメッキ法により
被着させておくと、配線層6の酸化腐蝕を有効に防止す
ることができるとともに外部リードピン8を強固に取着
することが可能となり、前記配線層6はその露出する表
面にニッケル、金等の耐蝕性に優れ、かつロウ材との濡
れ性に優れる金属を1μm〜20μmの厚みに被着させ
ておくことが好ましい。
The wiring layer 6 is formed by depositing a metal such as nickel or gold, which has excellent corrosion resistance and wettability with a brazing material, to a thickness of 1 to 20 μm by a plating method. It is possible to effectively prevent oxidative corrosion of the wiring layer 6 and to firmly attach the external lead pin 8, and the wiring layer 6 has excellent corrosion resistance against nickel, gold, etc. on its exposed surface, In addition, it is preferable to deposit a metal having excellent wettability with the brazing material to a thickness of 1 μm to 20 μm.

【0022】また前記配線層6には外部リードピン8が
銀ロウ等のロウ材を介してロウ付け取着されており、該
外部リードピン8は容器5内部に収容する半導体素子の
各電極を外部電気回路に電気的に接続する作用をなし、
外部リードピン8を外部電気回路に接続することによっ
て容器5内部に収容される半導体素子4は配線層6およ
び外部リードピン8を介して外部電気回路に電気的に接
続されることとなる。
External lead pins 8 are brazed and attached to the wiring layer 6 through a brazing material such as silver brazing, and the external lead pins 8 connect the electrodes of the semiconductor element housed inside the container 5 to the external electrical connection. It acts to electrically connect to the circuit,
By connecting the external lead pin 8 to an external electric circuit, the semiconductor element 4 housed inside the container 5 is electrically connected to the external electric circuit via the wiring layer 6 and the external lead pin 8.

【0023】前記外部リードピン8は鉄−ニッケル−コ
バルト合金や鉄−ニッケル合金等の金属材料から成り、
例えば、鉄−ニッケル−コバルト合金等の金属から成る
インゴット(塊)に圧延加工法や打ち抜き加工法等、従
来周知の金属加工法を施すことによって所定形状に形成
される。
The external lead pin 8 is made of a metal material such as iron-nickel-cobalt alloy or iron-nickel alloy.
For example, an ingot (lump) made of a metal such as an iron-nickel-cobalt alloy is formed into a predetermined shape by subjecting a conventionally known metal working method such as a rolling working method or a punching working method.

【0024】本発明の半導体素子収納用パッケージにお
いては、前記基体1をタングステンが30乃至60重量
%、銅が40乃至70重量%から成る中間層1cの上下
両面にタングステンが75乃至90重量%、銅が10乃
至25重量%から成る上下層1b、1dを配した3層構
造としておくことが重要である。
In the package for accommodating semiconductor elements of the present invention, the base 1 is 75 to 90% by weight of tungsten on the upper and lower surfaces of the intermediate layer 1c composed of 30 to 60% by weight of tungsten and 40 to 70% by weight of copper. It is important to have a three-layer structure in which upper and lower layers 1b and 1d composed of 10 to 25% by weight of copper are arranged.

【0025】前記基体1をタングステンが30乃至60
重量%、銅が40乃至70重量%から成る中間層1cの
上下両面にタングステンが75乃至90重量%、銅が1
0乃至25重量%から成る上下層1b、1dを配した3
層構造としたことから基体1の中間層1cの熱伝導率を
250W/m・K以上の高いものとし、基体1上に載置
される半導体素子4が作動時に多量の熱を発したとして
もその熱は基体1の半導体素子載置部1aである上層1
bを介して前記中間層1cに伝達されると同時に該中間
層1cで平面方向に素早く広がり、これによって半導体
素子4の熱は上層、中間層1c、下層1dを介して外部
に効率よく確実に放散させることができ、その結果、半
導体素子4は常に適温となり、半導体素子4を長期間に
わたり安定かつ正常に作動させることが可能となる。
The substrate 1 is made of tungsten 30 to 60.
% Of tungsten and 40 to 70% by weight of copper, 75 to 90% by weight of tungsten and 1% of copper on the upper and lower surfaces of the intermediate layer 1c.
Top and bottom layers 1b and 1d consisting of 0 to 25% by weight 3
Since the intermediate layer 1c of the substrate 1 has a high thermal conductivity of 250 W / m · K or more because of the layered structure, even if the semiconductor element 4 mounted on the substrate 1 emits a large amount of heat during operation. The heat is generated by the upper layer 1 which is the semiconductor element mounting portion 1a of the substrate 1.
At the same time as being transmitted to the intermediate layer 1c via b, the intermediate layer 1c quickly spreads in the plane direction, whereby the heat of the semiconductor element 4 is efficiently and reliably externally transmitted through the upper layer, the intermediate layer 1c and the lower layer 1d. As a result, the semiconductor element 4 is always kept at an appropriate temperature, and the semiconductor element 4 can be stably and normally operated for a long period of time.

【0026】また前記基体1はタングステンが30乃至
60重量%、銅が40乃至70重量%から成る中間層の
上下両面にタングステンが75乃至90重量%、銅が1
0乃至25重量%から成る上下層を配した3層構造とな
し、線熱膨張係数が大きい中間層1cを線熱膨張係数の
小さい上下層1b、1dで挟み込み、基体1全体の線熱
膨張係数を枠状絶縁体2の線熱膨張係数に近似する6.
0ppm/℃乃至8.0ppm/℃(室温〜800℃)
となしたことから基体1上に枠状絶縁体2を取着させる
際や半導体素子4が作動した際において基体1と枠状絶
縁体2の両者に熱が作用したとしても基体1と枠状絶縁
体2との間には両者の線熱膨張係数の相違に起因する大
きな熱応力が発生することはなく、これによって半導体
素子4を収納する空所の気密封止が常に完全となり、半
導体素子4を安定かつ正常に作動させることが可能とな
る。
The substrate 1 has an intermediate layer consisting of 30 to 60% by weight of tungsten and 40 to 70% by weight of copper, and 75 to 90% by weight of tungsten and 1% of copper on the upper and lower surfaces of the intermediate layer.
It has a three-layer structure in which upper and lower layers of 0 to 25% by weight are arranged, and an intermediate layer 1c having a large linear thermal expansion coefficient is sandwiched by upper and lower layers 1b and 1d having a small linear thermal expansion coefficient, and the linear thermal expansion coefficient of the entire substrate 1 is Is approximated to the linear thermal expansion coefficient of the frame-shaped insulator 2.
0 ppm / ° C to 8.0 ppm / ° C (room temperature to 800 ° C)
Therefore, even when heat is applied to both the base 1 and the frame-shaped insulator 2 when the frame-shaped insulator 2 is attached to the base 1 or when the semiconductor element 4 is activated, the base 1 and the frame-shaped insulator 2 Large thermal stress due to the difference in linear thermal expansion coefficient between the insulator 2 and the insulator 2 does not occur, and thus the airtight sealing of the space for accommodating the semiconductor element 4 is always perfect and the semiconductor element 4 can be operated stably and normally.

【0027】なお前記基体1はその上下層1b、1dの
タングステンの量が75重量%未満の場合、或いは90
重量%を超えた場合、基体1の線熱膨張係数が枠状絶縁
体2の線熱膨張係数に対して大きく相違することとな
り、その結果、基体1に枠状絶縁体2を強固に取着させ
ておくことができなくなってしまう。従って、前記基体
1の上下層1b、1dはそれを形成するタングステンの
量は75乃至90重量%の範囲に特定される。
The substrate 1 has upper and lower layers 1b and 1d in which the amount of tungsten is less than 75% by weight, or 90% by weight.
If it exceeds 5% by weight, the coefficient of linear thermal expansion of the base body 1 greatly differs from the coefficient of linear thermal expansion of the frame-shaped insulator 2, and as a result, the frame-shaped insulator 2 is firmly attached to the base body 1. I can't keep it. Therefore, the upper and lower layers 1b and 1d of the substrate 1 are specified in the range of 75 to 90% by weight in the amount of tungsten forming them.

【0028】また前記中間層1cのタングステンの量が
30重量%未満となると、言い換えれば銅が70重量%
を超えると、基体1の線熱膨張係数が枠状絶縁体2の線
熱膨張係数に対し大きく相違して基体1に枠状絶縁体2
を強固に取着させておくことができなくなってしまい、
またタングステンの量が60重量%を超えると、言い換
えれば銅が40重量%未満となると中間層1cの熱伝導
率を250W/m・K以上の高いものと成すことができ
ず、半導体素子4が作動時に多量の熱を発した場合、そ
の熱を基体1を介して外部に完全に放散させることがで
きなくなり、その結果、半導体素子4を高温として半導
体素子4に熱破壊を招来させたり、特性にばらつきが生
じ安定に作動させることができなくなってしまう。従っ
て前記基体1の中間層1cはタングステンが30乃至6
0重量%、銅が40乃至70重量%に特定される。
If the amount of tungsten in the intermediate layer 1c is less than 30% by weight, in other words, 70% by weight of copper is contained.
If it exceeds, the coefficient of linear thermal expansion of the base body 1 is greatly different from that of the frame-shaped insulator 2, and the frame-shaped insulator 2 is attached to the base body 1.
Can not be firmly attached,
When the amount of tungsten exceeds 60% by weight, in other words, when the amount of copper is less than 40% by weight, the thermal conductivity of the intermediate layer 1c cannot be as high as 250 W / m · K or more, and the semiconductor element 4 is When a large amount of heat is generated during operation, the heat cannot be completely dissipated to the outside via the base body 1, and as a result, the semiconductor element 4 is heated to a high temperature, causing thermal breakdown in the semiconductor element 4, and There will be variations, and stable operation will not be possible. Therefore, the intermediate layer 1c of the substrate 1 contains 30 to 6 tungsten.
0% by weight and 40 to 70% by weight of copper are specified.

【0029】更に前記上下層1b、1dはその組成、厚
みを略同一に形成しておくと上層1bと中間層1cの間
に発生する応力と、下層1dと中間層1cの間に発生す
る応力が相殺されて基体1の平坦度が良好となり、その
結果、基体1に枠状絶縁体2を極めて強固に接合させる
ことができ、容器5の気密封止の信頼性をより確実なも
のとして容器5内部に収納する半導体素子4の作動信頼
性を安定、確実なものと成すことができる。
When the upper and lower layers 1b and 1d are formed to have substantially the same composition and thickness, the stress generated between the upper layer 1b and the intermediate layer 1c and the stress generated between the lower layer 1d and the intermediate layer 1c. Are canceled out, and the flatness of the substrate 1 is improved. As a result, the frame-shaped insulator 2 can be bonded to the substrate 1 extremely strongly, and the reliability of the hermetic sealing of the container 5 is further ensured. 5 The operation reliability of the semiconductor element 4 housed inside 5 can be made stable and reliable.

【0030】また更に前記上下層1b、1dと中間層1
cの厚みは前記上下層1b、1dの厚みをX、中間層1
cの厚みをYとした場合、0.25Y≦X≦0.5Yの
範囲としておくと基体1を介して半導体素子4の発する
熱をより良好に外部に放散することができる。前記上下
層1b、1dの厚みをX、中間層1cの厚みをYとした
場合、0.5Y<Xとなると250W/m・K以上の高
熱伝導率である中間層1cが薄くなり半導体素子4の発
する熱を外部に効率よく放散させることができなくなる
危険性があり、0.25Y>Xとなると線熱膨張係数の
大きな中間層1cの基体1全体に及ぼす影響が大きくな
り、基体1の線熱膨張係数を前記枠状絶縁体2の線熱膨
張係数と近似させることが困難となる危険性があること
から、前記上下層1b、1dと中間層1cの厚みは前記
上下層1b、1dの厚みをX、中間層1cの厚みをYと
した場合、0.25Y≦X≦0.5Yの範囲が望まし
い。
Furthermore, the upper and lower layers 1b and 1d and the intermediate layer 1
c is the thickness of the upper and lower layers 1b and 1d, and X is the thickness of the intermediate layer 1.
When the thickness of c is Y, if the range of 0.25Y ≦ X ≦ 0.5Y is set, the heat generated by the semiconductor element 4 can be more effectively dissipated to the outside through the base 1. When the thicknesses of the upper and lower layers 1b and 1d are X and the thickness of the intermediate layer 1c is Y, when 0.5Y <X, the intermediate layer 1c having a high thermal conductivity of 250 W / m · K or more becomes thin and the semiconductor element 4 is obtained. There is a risk that the heat generated by will not be able to be efficiently dissipated to the outside, and if 0.25Y> X, the influence of the intermediate layer 1c having a large linear thermal expansion coefficient on the entire substrate 1 will be large, and the line of the substrate 1 will be large. Since it is difficult to approximate the coefficient of thermal expansion to the linear coefficient of thermal expansion of the frame-shaped insulator 2, the thicknesses of the upper and lower layers 1b and 1d and the intermediate layer 1c are the same as those of the upper and lower layers 1b and 1d. When the thickness is X and the thickness of the intermediate layer 1c is Y, the range of 0.25Y ≦ X ≦ 0.5Y is desirable.

【0031】なお前記3層構造の基体1は、中間層1c
となる所定量のタングステン焼結体に所定量の銅を含浸
させた所定厚みの板体と、上下層1b、1dとなる所定
量のタングステン焼結体に所定量の銅を含浸させた所定
厚みの板体とを準備し、前記中間層1cとなる板体の上
下を上下層となる板体で挟み込んだ後、銅の溶融温度
(1083℃)より20℃程度高い温度にて真空中もし
くは中性、還元雰囲気中で加圧しながら積層することに
よって製作される。
The substrate 1 having the three-layer structure is the intermediate layer 1c.
A plate body having a predetermined thickness obtained by impregnating a predetermined amount of tungsten sintered body with a predetermined amount of copper, and a predetermined thickness obtained by impregnating a predetermined amount of tungsten sintered body serving as the upper and lower layers 1b and 1d with a predetermined amount of copper. And the upper and lower plates of the intermediate layer 1c are sandwiched between the upper and lower plates, and then in a vacuum or in a medium at a temperature about 20 ° C. higher than the melting temperature of copper (1083 ° C.). It is manufactured by stacking under pressure in a reducing atmosphere.

【0032】かくして上述の半導体素子収納用パッケー
ジによれば、基体1の半導体素子載置部1a上に半導体
素子4をガラス、樹脂、ロウ材等の接着剤を介して接着
固定するとともに該半導体素子4の各電極をボンディン
グワイヤ7を介して所定の配線層6に接続させ、しかる
後、前記枠状絶縁体2の上面に蓋体3をガラス、樹脂、
ロウ材等から成る封止材を介して接合させ、基体1、枠
状絶縁体2及び蓋体3とから成る容器5内部に半導体素
子4を気密に収容することによって製品としての半導体
装置となる。
Thus, according to the above-mentioned package for housing a semiconductor element, the semiconductor element 4 is adhered and fixed onto the semiconductor element mounting portion 1a of the base body 1 via an adhesive such as glass, resin, or brazing material, and the semiconductor element is mounted. Each electrode 4 is connected to a predetermined wiring layer 6 through a bonding wire 7, and then the lid 3 is attached to the upper surface of the frame-shaped insulator 2 with glass, resin,
A semiconductor device as a product is obtained by airtightly housing the semiconductor element 4 inside a container 5 made up of a base body 1, a frame-shaped insulator 2 and a lid body 3 by joining them through a sealing material made of a brazing material or the like. .

【0033】次に本発明の他の実施例について説明す
る。上述の半導体素子収納用パッケージでは基体1をタ
ングステンが30乃至60重量%、銅が40乃至70重
量%から成る中間層の上下両面にタングステンが75乃
至90重量%、銅が10乃至25重量%から成る上下層
を配した3層構造としたが、これをモリブデンが35乃
至55重量%、銅が45乃至65重量%から成る中間層
の上下両面にモリブデンが80乃至90重量%、銅が1
0乃至20重量%から成る上下層を配した3層構造とし
てもよい。
Next, another embodiment of the present invention will be described. In the above-mentioned package for accommodating semiconductor elements, the substrate 1 is composed of tungsten in an amount of 30 to 60% by weight, copper in an amount of 40 to 70% by weight, and tungsten in an amount of 75 to 90% by weight, and copper in an amount of 10 to 25% by weight. The upper and lower layers are formed into a three-layer structure. This is an intermediate layer composed of 35 to 55% by weight of molybdenum and 45 to 65% by weight of molybdenum.
A three-layer structure in which upper and lower layers of 0 to 20% by weight are arranged may be used.

【0034】前記基体1をモリブデンが35乃至55重
量%、銅が45乃至65重量%から成る中間層の上下両
面にモリブデンが80乃至90重量%、銅が10乃至2
0重量%から成る上下層を配した3層構造とした場合、
基体1の中間層1cの熱伝導率を250W/m・K以上
の高いものとし、基体1上に載置される半導体素子4が
作動時に多量の熱を発したとしてもその熱は基体1の半
導体素子載置部1aである上層1bを介して前記中間層
1cに伝達されると同時に該中間層1cで平面方向に素
早く広がり、これによって半導体素子4の熱は上層1
b、中間層1c、下層1dを介して外部に効率よく確実
に放散させることができ、その結果、半導体素子4は常
に適温となり、半導体素子4を長期間にわたり安定かつ
正常に作動させることが可能となる。
80% to 90% by weight of molybdenum and 10 to 2% of copper are formed on the upper and lower surfaces of the base layer 1 which is an intermediate layer composed of 35 to 55% by weight of molybdenum and 45 to 65% by weight of copper.
In the case of a three-layer structure in which upper and lower layers of 0% by weight are arranged,
The heat conductivity of the intermediate layer 1c of the base 1 is set to be as high as 250 W / m · K or more, and even if the semiconductor element 4 mounted on the base 1 generates a large amount of heat during operation, the heat of the base 1 is not generated. The heat of the semiconductor element 4 is transferred to the intermediate layer 1c through the upper layer 1b which is the semiconductor element mounting portion 1a and at the same time spreads in the plane direction in the intermediate layer 1c.
b can be efficiently and reliably diffused to the outside through the intermediate layer 1c, the lower layer 1d, and as a result, the semiconductor element 4 is always at an appropriate temperature, and the semiconductor element 4 can be stably and normally operated for a long period of time. Becomes

【0035】また前記基体1はモリブデンが35乃至5
5重量%、銅が45乃至65重量%から成る中間層の上
下両面にモリブデンが80乃至90重量%、銅が10乃
至20重量%から成る上下層を配した3層構造となし、
線熱膨張係数が大きい中間層1cを線熱膨張係数の小さ
い上下層1b、1dで挟み込み、基体1全体の線熱膨張
係数を枠状絶縁体2の線熱膨張係数に近似する6.0p
pm/℃乃至8.0ppm/℃(室温〜800℃)とな
したことから基体1上に枠状絶縁体2を取着させる際や
半導体素子4が作動した際において基体1と枠状絶縁体
2の両者に熱が作用したとしても基体1と枠状絶縁体2
との間には両者の線熱膨張係数の相違に起因する大きな
熱応力が発生することはなく、これによって半導体素子
4を収納する空所の気密封止が常に完全となり、半導体
素子4を安定かつ正常に作動させることが可能となる。
Further, the substrate 1 contains 35 to 5 molybdenum.
It has a three-layer structure in which upper and lower layers of molybdenum of 80 to 90% by weight and copper of 10 to 20% by weight are arranged on both upper and lower surfaces of an intermediate layer of 5% by weight and 45 to 65% by weight of copper.
The intermediate layer 1c having a large linear thermal expansion coefficient is sandwiched between the upper and lower layers 1b and 1d having a small linear thermal expansion coefficient, and the linear thermal expansion coefficient of the entire substrate 1 is approximated to the linear thermal expansion coefficient of the frame-shaped insulator 2 6.0p.
Since pm / ° C. to 8.0 ppm / ° C. (room temperature to 800 ° C.), the base 1 and the frame-shaped insulator are attached when the frame-shaped insulator 2 is attached onto the base 1 or when the semiconductor element 4 is operated. Even if heat acts on both of the two, the base 1 and the frame-shaped insulator 2
A large thermal stress due to the difference in linear thermal expansion coefficient between the two does not occur between the two, and this ensures that the space for housing the semiconductor element 4 is completely hermetically sealed, and the semiconductor element 4 is stabilized. And it becomes possible to operate normally.

【0036】なお前記基体1はその上下層1b、1dの
モリブデンの量が80重量%未満の場合、或いは90重
量%を超えた場合、基体1の線熱膨張係数が枠状絶縁体
2の線熱膨張係数に対して大きく相違することとなり、
その結果、基体1に枠状絶縁体2を強固に取着させてお
くことができなくなってしまう。従って、前記基体1の
上下層1b、1dはそれを形成するモリブデンの量は8
0乃至90重量%の範囲に特定される。
When the amount of molybdenum in the upper and lower layers 1b, 1d of the substrate 1 is less than 80% by weight or more than 90% by weight, the coefficient of linear thermal expansion of the substrate 1 is the line of the frame-shaped insulator 2. It will be greatly different from the coefficient of thermal expansion,
As a result, the frame-shaped insulator 2 cannot be firmly attached to the base body 1. Therefore, the upper and lower layers 1b and 1d of the substrate 1 have an amount of molybdenum of 8%.
It is specified in the range of 0 to 90% by weight.

【0037】また前記中間層1cのモリブデンの量が3
5重量%未満となると、言い換えれば銅が65重量%を
超えると、基体1の線熱膨張係数が枠状絶縁体2の線熱
膨張係数に対し大きく相違して基体1に枠状絶縁体2を
強固に取着させておくことができなくなってしまい、ま
たモリブデンの量が55重量%を超えると、言い換えれ
ば銅が45重量%未満となると中間層1cの熱伝導率を
250W/m・K以上の高いものと成すことがでず、半
導体素子4が作動時に多量の熱を発した場合、その熱を
基体1を介して外部に完全に放散させることができなく
なり、その結果、半導体素子4を高温として半導体素子
4に熱破壊を招来させたり、特性にばらつきが生じ安定
に作動させることができなくなってしまう。従って前記
基体1の中間層1cはモリブデンが35乃至55重量
%、銅が45乃至65重量%に特定される。
The amount of molybdenum in the intermediate layer 1c is 3
If the amount is less than 5% by weight, in other words, if the amount of copper exceeds 65% by weight, the coefficient of linear thermal expansion of the base 1 greatly differs from the coefficient of linear thermal expansion of the frame-shaped insulator 2, and the frame-shaped insulator 2 is added to the substrate 1. When the amount of molybdenum exceeds 55% by weight, that is, when the amount of copper is less than 45% by weight, the thermal conductivity of the intermediate layer 1c is 250 W / mK. If the semiconductor element 4 emits a large amount of heat during operation, the heat cannot be completely dissipated to the outside through the base body 1, and as a result, the semiconductor element 4 cannot be made high. At a high temperature, the semiconductor element 4 may be thermally damaged, or the characteristics may vary, so that the semiconductor element 4 cannot be operated stably. Therefore, the intermediate layer 1c of the substrate 1 is specified to contain 35 to 55% by weight of molybdenum and 45 to 65% by weight of copper.

【0038】更に前記上下層1b、1dはその組成、厚
みを略同一に形成しておくと上層1bと中間層1cの間
に発生する応力と、下層1dと中間層1cの間に発生す
る応力が相殺されて基体1の平坦度が良好となり、その
結果、基体1に枠状絶縁体2を極めて強固に接合させる
ことができ、容器5の気密封止の信頼性をより確実なも
のとして容器5内部に収納する半導体素子4の作動信頼
性を安定、確実なものと成すことができる。
Further, if the upper and lower layers 1b and 1d are formed to have substantially the same composition and thickness, the stress generated between the upper layer 1b and the intermediate layer 1c and the stress generated between the lower layer 1d and the intermediate layer 1c. Are canceled out, and the flatness of the substrate 1 is improved. As a result, the frame-shaped insulator 2 can be bonded to the substrate 1 extremely strongly, and the reliability of the hermetic sealing of the container 5 is further ensured. 5 The operation reliability of the semiconductor element 4 housed inside 5 can be made stable and reliable.

【0039】また更に前記上下層1b、1dと中間層1
cの厚みは前記上下層1b、1dの厚みをX、中間層1
cの厚みをYとした場合、0.25Y≦X≦0.5Yの
範囲としておくと基体1を介して半導体素子4の発する
熱をより良好に外部に放散することができる。前記上下
層1b、1dの厚みをX、中間層1cの厚みをYとした
場合、0.5Y<Xとなると250W/m・K以上の高
熱伝導率である中間層1cが薄くなり半導体素子4の発
する熱を外部に効率よく放散させることができなくなる
危険性があり、0.25Y>Xとなると線熱膨張係数の
大きな中間層1cの基体1全体に及ぼす影響が大きくな
り、基体1の線熱膨張係数を前記枠状絶縁体2の線熱膨
張係数と近似させることが困難となる危険性があること
から、前記上下層1b、1dと中間層1cの厚みは前記
上下層1b、1dの厚みをX、中間層1cの厚みをYと
した場合、0.25Y≦X≦0.5Yの範囲が望まし
い。
Furthermore, the upper and lower layers 1b and 1d and the intermediate layer 1
c is the thickness of the upper and lower layers 1b and 1d, and X is the thickness of the intermediate layer 1.
When the thickness of c is Y, if the range of 0.25Y ≦ X ≦ 0.5Y is set, the heat generated by the semiconductor element 4 can be more effectively dissipated to the outside through the base 1. When the thicknesses of the upper and lower layers 1b and 1d are X and the thickness of the intermediate layer 1c is Y, when 0.5Y <X, the intermediate layer 1c having a high thermal conductivity of 250 W / m · K or more becomes thin and the semiconductor element 4 is obtained. There is a risk that the heat generated by will not be able to be efficiently dissipated to the outside, and if 0.25Y> X, the influence of the intermediate layer 1c having a large coefficient of linear thermal expansion on the entire substrate 1 will increase, and the line of the substrate 1 will increase. Since it is difficult to approximate the coefficient of thermal expansion to the linear coefficient of thermal expansion of the frame-shaped insulator 2, the thicknesses of the upper and lower layers 1b and 1d and the intermediate layer 1c are the same as those of the upper and lower layers 1b and 1d. When the thickness is X and the thickness of the intermediate layer 1c is Y, the range of 0.25Y ≦ X ≦ 0.5Y is desirable.

【0040】なお前記3層構造の基体1は、中間層1c
となる所定量のモリブデン焼結体に所定量の銅を含浸さ
せた所定厚みの板体と、上下層1b、1dとなる所定量
のモリブデン焼結体に所定量の銅を含浸させた所定厚み
の板体とを準備し、前記中間層となる板体の上下を上下
層となる板体で挟み込んだ後、銅の溶融温度(1083
℃)より20℃程度高い温度にて真空中もしくは中性、
還元雰囲気中で加圧しながら積層することによって製作
される。
The substrate 1 having the three-layer structure is the intermediate layer 1c.
A plate body having a predetermined thickness obtained by impregnating a predetermined amount of molybdenum sintered body with a predetermined amount of copper and a predetermined thickness obtained by impregnating a predetermined amount of molybdenum sintered body serving as the upper and lower layers 1b and 1d with a predetermined amount of copper. And the upper and lower plates of the intermediate layer are sandwiched by the plate layers of the upper and lower layers, and then the melting temperature of copper (1083
In vacuum or at a temperature about 20 ° C higher than
It is manufactured by stacking under pressure in a reducing atmosphere.

【0041】また、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能である。
The present invention is not limited to the above-described embodiments, but various modifications can be made without departing from the gist of the present invention.

【0042】[0042]

【発明の効果】本発明の半導体素子収納用パッケージに
よれば、基体をタングステンが30乃至60重量%、銅
が40乃至70重量%から中間層の上下両面にタングス
テンが75乃至90重量%、銅が10乃至25重量%か
ら成る上下層を配した3層構造、またはモリブデンが3
5乃至55重量%、銅が45乃至65重量%から成る中
間層の上下両面にモリブデンが80乃至90重量%、銅
が10乃至20重量%から成る上下層を配した3層構造
となしたことから基体の中間層の熱伝導率を250W/
m・K以上の高いものとし、基体上に載置される半導体
素子が作動時に多量の熱を発したとしてもその熱は基体
の半導体素子載置部である上層を介して前記中間層に伝
達されると同時に該中間層で平面方向に素早く広がり、
これによって半導体素子の熱は上層、中間層、下層を介
して外部に効率よく確実に放散させることができ、その
結果、半導体素子は常に適温となり、半導体素子を長期
間にわたり安定かつ正常に作動させることが可能とな
る。
According to the package for accommodating semiconductor elements of the present invention, the base is 30 to 60% by weight of tungsten, the copper is 40 to 70% by weight, and the upper and lower surfaces of the intermediate layer are 75 to 90% by weight of tungsten. Has a three-layer structure in which upper and lower layers are composed of 10 to 25% by weight, or molybdenum is 3
A three-layer structure in which upper and lower layers of molybdenum of 80 to 90% by weight and copper of 10 to 20% by weight are provided on both upper and lower surfaces of an intermediate layer of 5 to 55% by weight and copper of 45 to 65% by weight From the thermal conductivity of the intermediate layer of the substrate to 250 W /
Even if the semiconductor element mounted on the base body generates a large amount of heat during operation, the heat is transferred to the intermediate layer through the upper layer which is the semiconductor element mounting portion of the base body. At the same time, the intermediate layer quickly spreads in the plane direction,
As a result, the heat of the semiconductor element can be efficiently and surely dissipated to the outside through the upper layer, the intermediate layer, and the lower layer. As a result, the semiconductor element is always kept at an appropriate temperature, and the semiconductor element operates stably and normally for a long period of time. It becomes possible.

【0043】また本発明の半導体素子収納用パッケージ
によれば、基体をタングステンが30乃至60重量%、
銅が40乃至70重量%から成る中間層の上下両面にタ
ングステンが75乃至90重量%、銅が10乃至25重
量%から成る上下層を配した3層構造、またはモリブデ
ンが35乃至55重量%、銅が45乃至65重量%から
成る中間層の上下両面にモリブデンが80乃至90重量
%、銅が10乃至20重量%から成る上下層を配した3
層構造となし、線熱膨張係数が大きい中間層を線熱膨張
係数の小さい上下層で挟み込み、基体全体の線熱膨張係
数を枠状絶縁体の線熱膨張係数に近似する6.0ppm
/℃乃至8.0ppm/℃(室温〜800℃)となした
ことから基体上に枠状絶縁体を取着させる際や半導体素
子が作動した際等において基体と枠状絶縁体の両者に熱
が作用したとしても基体と枠状絶縁体との間には両者の
線熱膨張係数の相違に起因する大きな熱応力が発生する
ことはなく、これによって半導体素子を収納する空所の
気密封止が常に完全となり、半導体素子を安定かつ正常
に作動させることが可能となる。
Further, according to the package for accommodating semiconductor elements of the present invention, the base is made of 30 to 60% by weight of tungsten,
A three-layer structure in which tungsten is 75 to 90% by weight and copper is 10 to 25% by weight on the upper and lower surfaces of an intermediate layer of 40 to 70% by weight of copper, or 35 to 55% by weight of molybdenum, The upper and lower layers of molybdenum of 80 to 90% by weight and copper of 10 to 20% by weight are disposed on both upper and lower surfaces of the intermediate layer of 45 to 65% by weight of copper. 3
It has a layered structure, and an intermediate layer having a large linear thermal expansion coefficient is sandwiched between upper and lower layers having a small linear thermal expansion coefficient, and the linear thermal expansion coefficient of the entire substrate is approximately 6.0 ppm, which approximates the linear thermal expansion coefficient of the frame-shaped insulator.
/ ° C to 8.0 ppm / ° C (room temperature to 800 ° C), heat is applied to both the base and the frame-shaped insulator when attaching the frame-shaped insulator to the base or when the semiconductor element is operated. Does not cause a large thermal stress between the substrate and the frame-shaped insulator due to the difference in linear thermal expansion coefficient between the two, the air-tight sealing of the space containing the semiconductor element Is always complete, and the semiconductor element can be operated stably and normally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体素子収納用パッケージの一実施
例を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor element housing package of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・基体 1a・・・・載置部 1b・・・・上層 1c・・・・中間層 1d・・・・下層 2・・・・・枠状絶縁体 3・・・・・蓋体 4・・・・・半導体素子 5・・・・・容器 6・・・・・配線層 7・・・・・ボンディングワイヤ 8・・・・・外部リードピン 1 ... Base 1a ... ・ Mounting part 1b ... upper layer 1c ... Middle layer 1d ... Lower layer 2 ... Frame-shaped insulator 3 ... Lid 4 ... Semiconductor element 5 ... Container 6 ... Wiring layer 7 ... Bonding wire 8: External lead pin

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】上面に半導体素子が載置される載置部を有
する基体と、該基体の上面に取着され、前記載置部を囲
繞する枠状の絶縁体と、該枠状絶縁体上に取着され、枠
状絶縁体の内側を気密に封止する蓋体とから成る半導体
素子収納用パッケージであって、前記枠状絶縁体は線熱
膨張係数が6.0ppm/℃乃至8.0ppm/℃(室
温〜800℃)のセラミックスから成り、かつ前記基体
はタングステンと銅とから成り、タングステンが30乃
至60重量%、銅が40乃至70重量%から成る中間層
の上下両面にタングステンが75乃至90重量%、銅が
10乃至25重量%から成る上下層を配した3層構造を
有していることを特徴とする半導体素子収納用パッケー
ジ。
1. A base having a mounting portion on which a semiconductor element is mounted, a frame-shaped insulator attached to the upper surface of the base and surrounding the mounting portion, and the frame-shaped insulator. A package for housing a semiconductor element, which is attached to the top of the frame-shaped insulator and hermetically seals the inside of the frame-shaped insulator, wherein the frame-shaped insulator has a coefficient of linear thermal expansion of 6.0 ppm / ° C to 8 ppm. 0.0 ppm / ° C. (room temperature to 800 ° C.) ceramics, the substrate is made of tungsten and copper, and tungsten is formed on both upper and lower surfaces of an intermediate layer composed of 30 to 60% by weight of tungsten and 40 to 70% by weight of copper. Is a 75 to 90% by weight and 10 to 25% by weight of copper, and has a three-layer structure in which upper and lower layers are arranged.
【請求項2】上面に半導体素子が載置される載置部を有
する基体と、該基体の上面に取着され、前記載置部を囲
繞する枠状の絶縁体と、該枠状絶縁体上に取着され、枠
状絶縁体の内側を気密に封止する蓋体とから成る半導体
素子収納用パッケージであって、前記枠状絶縁体は線熱
膨張係数が6.0ppm/℃乃至8.0ppm/℃(室
温〜800℃)のセラミックスから成り、かつ前記基体
はモリブデンと銅とから成り、モリブデンが35乃至5
5重量%、銅が45乃至65重量%から成る中間層の上
下両面にモリブデンが80乃至90重量%、銅が10乃
至20重量%から成る上下層を配した3層構造を有して
いることを特徴とする半導体素子収納用パッケージ。
2. A base body having a mounting portion on which a semiconductor element is mounted, a frame-shaped insulator attached to the upper surface of the base body and surrounding the mounting portion, and the frame-shaped insulator. A package for housing a semiconductor element, which is attached to the top of the frame-shaped insulator and hermetically seals the inside of the frame-shaped insulator, wherein the frame-shaped insulator has a coefficient of linear thermal expansion of 6.0 ppm / ° C to 8 ppm. 0.0 ppm / ° C. (room temperature to 800 ° C.) ceramics, and the base body is made of molybdenum and copper.
It has a three-layer structure in which an intermediate layer of 5 wt% and 45 to 65 wt% of copper is provided with upper and lower layers of 80 to 90 wt% of molybdenum and 10 to 20 wt% of copper on both upper and lower surfaces. A package for semiconductor device storage characterized by.
JP2001224107A 2001-07-25 2001-07-25 Package for housing semiconductor element Pending JP2003037229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001224107A JP2003037229A (en) 2001-07-25 2001-07-25 Package for housing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001224107A JP2003037229A (en) 2001-07-25 2001-07-25 Package for housing semiconductor element

Publications (1)

Publication Number Publication Date
JP2003037229A true JP2003037229A (en) 2003-02-07

Family

ID=19057329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001224107A Pending JP2003037229A (en) 2001-07-25 2001-07-25 Package for housing semiconductor element

Country Status (1)

Country Link
JP (1) JP2003037229A (en)

Similar Documents

Publication Publication Date Title
JP2000183253A (en) Package for housing semiconductor element
JP3659306B2 (en) Package for storing semiconductor elements
JP2003037229A (en) Package for housing semiconductor element
JP2003037204A (en) Package for accommodating semiconductor element
JP2003037200A (en) Package for housing semiconductor element
JP3752447B2 (en) Package for storing semiconductor elements
JP2006041288A (en) Package for containing electronic component and electronic device
JP3792561B2 (en) Package for storing semiconductor elements
JP3971592B2 (en) Package for storing semiconductor elements
JP2003068911A (en) Package for semiconductor element storage
JP3659467B2 (en) Package for storing semiconductor elements
JP3752440B2 (en) Package for storing semiconductor elements
JP2003100931A (en) Package for accommodating semiconductor device
JP2003100930A (en) Package for accommodating semiconductor device
JP4360567B2 (en) Package for storing semiconductor elements
JP2003037196A (en) Package for housing optical semiconductor element
JP2003068914A (en) Package for semiconductor element storage
JP2003037230A (en) Package for housing semiconductor element
JP2003100932A (en) Package for accommodating semiconductor device
JP2003068918A (en) Package for semiconductor element storage
JP3638547B2 (en) Package for storing semiconductor elements
JPH09162337A (en) Semiconductor element encapsulating package
JP2003100933A (en) Package for accommodating semiconductor device
JP2003068913A (en) Package for semiconductor element storage
JP2003124376A (en) Package for housing semiconductor device