JPH06104500A - Manufacture of oxide superconductor - Google Patents
Manufacture of oxide superconductorInfo
- Publication number
- JPH06104500A JPH06104500A JP4252856A JP25285692A JPH06104500A JP H06104500 A JPH06104500 A JP H06104500A JP 4252856 A JP4252856 A JP 4252856A JP 25285692 A JP25285692 A JP 25285692A JP H06104500 A JPH06104500 A JP H06104500A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- pinning
- oxide superconductor
- substance
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 230000004907 flux Effects 0.000 claims abstract description 37
- 239000000126 substance Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 10
- 239000008188 pellet Substances 0.000 description 20
- 239000013078 crystal Substances 0.000 description 18
- 239000000843 powder Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁束ピン止(ピンニン
グ)力の優れた酸化物超電導体の製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor having an excellent magnetic flux pinning force.
【0002】[0002]
【従来の技術】超電導と常電導(磁場)とが共存する混
合状態を維持できる第二種超電導体の1つである酸化物
超電導体においては、超電導体中に電流が流れると超電
導体中の磁束にローレンツの力が働くが、これによって
磁束が移動してしまうと、電流の方向に電界が生じて抵
抗を生ずることになる。このため、この磁束を動かない
ようにすることが臨界電流密度等を向上させるために極
めて重要な事項となる。この磁束を動かないようにする
ことを磁束ピン止という。この磁束ピン止を行うものを
ピン止め中心(ピンニングセンタ)といい、このピンニ
ングセンタとして、双晶面、点欠陥、析出物もしくは空
隙やクラック等が考えられている(応用物理第58巻第
5号pp762-765 参照)。酸化物超電導体の場合、数十オ
ングストロームオーダーの大きさの微細なピンニングセ
ンタが超電導体中に均一に分散していることが必要であ
る。2. Description of the Related Art In an oxide superconductor, which is one of the second type superconductors capable of maintaining a mixed state in which superconductivity and normal conduction (magnetic field) coexist, when an electric current flows in the superconductor, The Lorentz force acts on the magnetic flux, but if the magnetic flux moves due to this, an electric field is generated in the direction of the current and resistance is generated. Therefore, it is extremely important to prevent the magnetic flux from moving in order to improve the critical current density and the like. Preventing this magnetic flux from moving is called magnetic flux pinning. What pinches this magnetic flux is called a pinning center (pinning center), and twin planes, point defects, precipitates or voids and cracks are considered as this pinning center (Applied Physics Vol. 58, No. 5). No. pp762-765). In the case of an oxide superconductor, it is necessary that fine pinning centers with a size of several tens of angstroms are uniformly dispersed in the superconductor.
【0003】このピンニングセンタを超電導体中に形成
する方法として、従来行われていた方法は、酸化物超電
導体を構成する原料物質を所定の割合で混合してなる母
材料中に予めピンニングセンタの核となる磁束ピン止物
質を均一に混入しておき、これを所定の形状に形成した
後、熱処理して結晶粒の成長及び結晶粒の焼結を行って
超電導体にするものであった。すなわち、この方法は、
熱処理を施す前の段階の母材料中に磁束ピン止物質とな
るべき物質を均一に分散させておき、その後に熱処理を
施して超電導体結晶粒中に不純物たる磁束ピン止物質を
拡散させるものであった。As a method of forming this pinning center in a superconductor, a conventional method is that a pinning center of a pinning center is preliminarily prepared in a base material obtained by mixing raw material substances constituting an oxide superconductor in a predetermined ratio. A magnetic flux pinning substance serving as a core is uniformly mixed and formed into a predetermined shape, followed by heat treatment to grow crystal grains and sinter the crystal grains to obtain a superconductor. That is, this method
A substance that should be a flux pinning substance is uniformly dispersed in the base material before the heat treatment, and then heat treatment is performed to diffuse the flux pinning substance that is an impurity in the superconductor crystal grains. there were.
【0004】[0004]
【発明が解決しようとする課題】しかし、上述の従来の
方法では、数十オングストロームオーダーの大きさの微
細なピンニングセンタを超電導体中に均一に分散させる
ことが必ずしも容易にできなかった。これがため、超電
導特性の向上に一定の限界が生じていた。However, in the above-mentioned conventional method, it was not always easy to uniformly disperse fine pinning centers having a size of several tens of angstroms in a superconductor. For this reason, there has been a certain limit in improving superconducting properties.
【0005】本発明者の究明によれば、上述の従来の方
法では、超電導体結晶となる超電導体母材料と磁束ピン
止物質とが均一に混合されてあるので、熱処理によって
超電導体母材物質が所定の大きさの超電導体結晶に成長
しようとする際に、超電導体母材物質の間にある磁束ピ
ン止物質が邪魔になって結晶粒が大きく成長することを
阻害し、しかも、この磁束ピン止物質が核になって多数
の微細な結晶を形成してしまいがちであることがわかっ
た。また、場合によっては熱処理中に超電導体母材物質
と磁束ピン止物質とが反応して超電導体でない大きな反
応生成物が生じてしまったり、あるいは、熱処理中に磁
束ピン止物質だけが凝集してしまい、超電導体中に適切
なピンニングセンタを構成する程度に微細に分散されな
いことも少なくないことがわかった。According to the investigation by the present inventor, in the above-mentioned conventional method, the superconductor base material to be the superconductor crystal and the magnetic flux pinning substance are uniformly mixed. When trying to grow into a superconducting crystal of a predetermined size, the magnetic flux pinning substance between the superconducting matrix materials interferes with the growth of crystal grains and prevents the magnetic flux from growing. It was found that the pinning substance becomes a nucleus and tends to form many fine crystals. Also, in some cases, the superconductor base material and the flux pinning substance react during heat treatment to generate large reaction products that are not superconductors, or only the flux pinning substance aggregates during heat treatment. Therefore, it has been found that it is not rare that they are not finely dispersed to the extent that an appropriate pinning center is formed in the superconductor.
【0006】本発明は、上述の背景のもとでなされたも
のであり、比較的簡単な方法により、微細なピンニング
センタを超電導体中に均一に分散させた酸化物超電導体
を製造することができる酸化物超電導体の製造方法を提
供することを目的としたものである。The present invention has been made under the above background, and an oxide superconductor in which fine pinning centers are uniformly dispersed in a superconductor can be manufactured by a relatively simple method. The object is to provide a method for producing an oxide superconductor that can be manufactured.
【0007】[0007]
【課題を解決するための手段】上述の課題を解決するた
めに、本発明は、所定の形状に形成された酸化物超電導
体に、酸化物超電導体中にあって磁束の移動を止める磁
束ピン止物質となるべき物質を接触させながら熱処理を
施して前記酸化物超電導体中に磁束ピン止物質を熱拡散
させることにより、微細なピンニングセンタが均一に分
散されて形成された酸化物超電導体を得ることを特徴と
した構成としたものである。In order to solve the above problems, the present invention provides an oxide superconductor formed in a predetermined shape with a magnetic flux pin in the oxide superconductor for stopping the movement of magnetic flux. A heat treatment is performed while contacting a substance to be a stopping substance to thermally diffuse the magnetic flux pinning substance in the oxide superconductor, thereby forming an oxide superconductor formed by evenly dispersing fine pinning centers. The configuration is characterized by obtaining.
【0008】[0008]
【作用】上述の構成によって製造した酸化物超電導体
は、超電導体中にピンニングセンタが均一に分散された
ものであり、超電導特性にすぐれるものであった。The oxide superconductor manufactured according to the above-mentioned structure has the pinning centers uniformly dispersed in the superconductor, and has excellent superconducting properties.
【0009】これは、所定の形状に形成した酸化物超電
導体に磁束ピン止物質を接触させて熱拡散させるように
したことから、磁束ピン止物質は原子レベルで母材料中
に侵入することになる。このため、従来の方法のよう
に、磁束ピン止物質が超電導体の結晶粒の成長を阻害し
たり、あるいは、微細結晶の核となることがないととも
に、母材料と反応して超電導体でない大きな反応生成物
を形成したりすることもなく、結晶粒中に侵入型原子や
置換型原子による格子欠陥からなる微細なピンニングセ
ンタを均一に分散した状態で形成することになるからで
あると考えられる。This is because the flux pinning substance is made to come into contact with the oxide superconductor formed in a predetermined shape to cause thermal diffusion, so that the flux pinning substance penetrates into the base material at the atomic level. Become. Therefore, unlike the conventional method, the magnetic flux pinning substance does not hinder the growth of crystal grains of the superconductor, or does not become the nucleus of the fine crystal, and reacts with the base material and is not a superconductor. It is considered that the reaction product is not formed and fine pinning centers composed of lattice defects due to interstitial atoms and substitutional atoms are uniformly dispersed in the crystal grains. .
【0010】[0010]
【実施例】実施例1 この実施例は、ペロブスカイト構造の酸化物超電導体Y
1 Ba2 Cu3 Oy (ただし、6.5≦y≦7.0;Y
系123相超電導体)のペレットを製造した場合の例で
ある。EXAMPLES Example 1 This example is an oxide superconductor Y having a perovskite structure.
1 Ba 2 Cu 3 O y (however, 6.5 ≦ y ≦ 7.0; Y
This is an example of the case where a pellet of a system 123 phase superconductor) is manufactured.
【0011】まず、粒径1μm以下のY2 O3 、BaC
uO2 、CuOの各粉末を、Y:Ba:Cuの組成が1.
6 :2.2 :3.3 となるように秤量し、ポットミルにてよ
く混合した。First, Y 2 O 3 and BaC having a particle size of 1 μm or less are used.
Each powder of uO 2 and CuO has a composition of Y: Ba: Cu of 1.
It was weighed to be 6: 2.2: 3.3 and mixed well with a pot mill.
【0012】次に、これらの混合粉を一軸金型成形装置
で圧力1t/cm3 で成形して直径40mmφ、厚さ1
0mmのペレット状に形成した。Next, these mixed powders are molded at a pressure of 1 t / cm 3 by a uniaxial mold molding device to have a diameter of 40 mmφ and a thickness of 1
It was formed into a pellet shape of 0 mm.
【0013】次に、このペレットを、電気炉を用い、大
気雰囲気中で、1100°Cで30分間焼成後、300
°C/時間の降温速度で1000°Cまで下げ、しかる
後、この焼成体を0.5 〜2 °C/時間の降温速度で90
0°Cまで徐冷して結晶化を行った。次いで、10°C
/hで室温まで徐冷した後、酸素アニールを施した。こ
れにより、ペレット中に5〜10mm程度の結晶が成長
しているY1 Ba2 Cu3 O6.8 の超電導体ペレットが
得られた。この超電導体は臨界温度が90Kであり、臨
界電流密度が1.8 ×104 A/cm2 であった。Next, the pellets were calcined in an air atmosphere at 1100 ° C. for 30 minutes in an electric furnace, and then 300
The temperature was lowered to 1000 ° C at a temperature lowering rate of ° C / hour, and then the fired body was heated to 90 ° C at a temperature lowering rate of 0.5 to 2 ° C / hour.
Crystallization was performed by gradually cooling to 0 ° C. Then 10 ° C
After gradually cooling to room temperature at / h, oxygen annealing was performed. As a result, a Y 1 Ba 2 Cu 3 O 6.8 superconductor pellet in which crystals of about 5 to 10 mm were grown was obtained. This superconductor had a critical temperature of 90 K and a critical current density of 1.8 × 10 4 A / cm 2 .
【0014】次に、このペレットの表面に、粒径1μm
以下、好ましくは0.5μm程度の微粒子状のFe2 O
4 粉(磁束ピン止物質)を軽く押し付けるようにして薄
く均一に付着塗布した後、電機炉を用い、大気雰囲気に
おいて、900°Cで約20時間焼成し、しかる後に室
温まで徐冷して酸素アニールを施した。Next, on the surface of the pellet, a particle size of 1 μm
Below, preferably about 0.5 μm of fine Fe 2 O
After 4 powders (flux pinning substances) are lightly pressed and applied uniformly and thinly, it is baked in an electric furnace in an air atmosphere at 900 ° C for about 20 hours, and then slowly cooled to room temperature to obtain oxygen. Annealed.
【0015】これにより、結晶中にFe2 O4 がピンニ
ングセンタとして均一に分散された酸化物超電導体が得
られた。この超電導体の臨界温度は90Kであり、臨界
電流は2.5 ×104 A/cm2 であった。As a result, an oxide superconductor in which Fe 2 O 4 was uniformly dispersed as a pinning center in the crystal was obtained. The critical temperature of this superconductor was 90 K, and the critical current was 2.5 × 10 4 A / cm 2 .
【0016】実施例2 実施例1において、結晶化を行って超電導体化した後の
ペレットの表面に、スパッタ装置を用いてSnO2 の薄
膜を約1μm厚に成膜した後、実施例1と同様の熱処理
を行って、結晶中にSnO2 がピンニングセンタとして
均一に分散された酸化物超電導体を得た。この超電導体
の臨界温度は90Kであり、臨界電流は2.6 ×104 A
/cm2 であった。 Example 2 A thin film of SnO 2 having a thickness of about 1 μm was formed on the surface of the pellet after being crystallized to be a superconductor in Example 1 by using a sputtering apparatus, and then, as in Example 1. The same heat treatment was performed to obtain an oxide superconductor in which SnO 2 was uniformly dispersed as a pinning center in the crystal. The critical temperature of this superconductor is 90K and the critical current is 2.6 × 10 4 A
Was / cm 2 .
【0017】実施例3 実施例1において、結晶化を行って超電導体化した後の
ペレットの表面に、Sb2 O3 粉を1μm以下の厚さに
付着塗布した後、実施例1と同様の熱処理を行って、結
晶中にSb2 O3 がピンニングセンタとして均一に分散
された酸化物超電導体を得た。この超電導体の臨界温度
は90Kであり、臨界電流は2.3 ×104 A/cm2 で
あった。 Example 3 Sb 2 O 3 powder having a thickness of 1 μm or less was adhered and coated on the surface of the pellet after crystallization to form a superconductor in Example 1, and then the same procedure as in Example 1 was performed. Heat treatment was performed to obtain an oxide superconductor in which Sb 2 O 3 was uniformly dispersed as a pinning center in the crystal. The critical temperature of this superconductor was 90 K, and the critical current was 2.3 × 10 4 A / cm 2 .
【0018】実施例4 実施例1において、結晶化を行って超電導体化した後の
ペレットを、Bi有機金属Bi(DPM)3 ガスと酸素
ガスとの混合気体中で、900°Cで約20時間焼成
し、しかる後に室温まで徐冷して酸素アニールを施し
た。これにより、結晶中にBi2 O3 がピンニングセン
タとして均一に分散された酸化物超電導体を得た。この
超電導体の臨界温度は90Kであり、臨界電流は2.4 ×
104 A/cm2 であった。 Example 4 The pellets after being crystallized to form a superconductor in Example 1 are heated to about 20 ° C. at 900 ° C. in a mixed gas of Bi organometallic Bi (DPM) 3 gas and oxygen gas. It was fired for an hour, then slowly cooled to room temperature and oxygen-annealed. As a result, an oxide superconductor in which Bi 2 O 3 was uniformly dispersed as a pinning center in the crystal was obtained. The critical temperature of this superconductor is 90K, and the critical current is 2.4 ×
It was 10 4 A / cm 2 .
【0019】実施例5 実施例1において、粒径1μm以下のY2 O3 、BaC
uO2 、CuOの各粉末を、Y:Ba:Cuの組成が1.
6 :2.2 :3.3 となるように秤量した混合粉にさらに、
Pt粉を0.5wt%添加した後、これをポットミルに
てよく混合した。 Example 5 In Example 1, Y 2 O 3 and BaC having a particle size of 1 μm or less were used.
Each powder of uO 2 and CuO has a composition of Y: Ba: Cu of 1.
In addition to the mixed powder weighed to be 6: 2.2: 3.3,
After adding 0.5 wt% of Pt powder, this was mixed well in a pot mill.
【0020】次に、この混合粉を実施例1と同様に成形
して熱処理を施して結晶化し、超電導体ペレットを得
た。Next, this mixed powder was molded in the same manner as in Example 1 and heat-treated to crystallize to obtain a superconductor pellet.
【0021】次いで、この超電導体ペレットの表面に、
SnO粉を1μm以下の厚さに付着塗布した後、実施例
1と同様の熱処理を行って、結晶中にSnO及びPtが
ピンニングセンタとして均一に分散された酸化物超電導
体を得た。この超電導体の臨界温度は90Kであり、臨
界電流は3.0 ×104 A/cm2 であった。Then, on the surface of the superconductor pellet,
After SnO powder was applied and applied to a thickness of 1 μm or less, the same heat treatment as in Example 1 was performed to obtain an oxide superconductor in which SnO and Pt were uniformly dispersed as pinning centers in the crystal. The critical temperature of this superconductor was 90 K, and the critical current was 3.0 × 10 4 A / cm 2 .
【0022】実施例6 この実施例は、ペロブスカイト構造の酸化物超電導体B
i系2223相のペレットを製造した場合の例である。 Example 6 This example is an oxide superconductor B having a perovskite structure.
This is an example in the case of producing i-type 2223 phase pellets.
【0023】まず、粒径1μmのBi2 O3 、PbO、
SrO、CaO、CuOの各粉末を、Bi:Pb:S
r:Ca:Cuの組成が1.9 :0.2 :2 :2 :3 となる
ように秤量し、ポットミルにてよく混合した。First, Bi 2 O 3 , PbO having a particle size of 1 μm,
Each powder of SrO, CaO, CuO was added to Bi: Pb: S.
The r: Ca: Cu composition was weighed so as to be 1.9: 0.2: 2: 2: 3, and mixed well in a pot mill.
【0024】次に、上記混合粉を850°Cで50時間
焼成後、粉砕して粒径3μm以下の合成粉(超電導体の
母材料)を得た。Next, the mixed powder was fired at 850 ° C. for 50 hours and then pulverized to obtain a synthetic powder having a particle size of 3 μm or less (base material of superconductor).
【0025】次にこの合成粉を一軸金型成形装置で圧力
1t/cm3 で成形して直径40mmφ、厚さ10mm
のペレット状に形成した。Next, this synthetic powder is molded at a pressure of 1 t / cm 3 by a uniaxial mold molding device to have a diameter of 40 mmφ and a thickness of 10 mm.
Formed into pellets.
【0026】次に、このペレットを、電気炉を用い、空
気中において、850°Cで80時間焼成して、Bi系
2223相の多結晶ペレットを得た。Next, the pellets were fired at 850 ° C. for 80 hours in air using an electric furnace to obtain Bi type 2223 phase polycrystalline pellets.
【0027】次いで、このペレットの表面に、粒径1μ
m以下、好ましくは0.5μm程度の微粒子状のSb2
O3 粉(磁束ピン止物質)を1μm以下の厚さに付着塗
布した後、電機炉を用い、大気雰囲気で700°Cで約
20時間焼成し、しかる後、室温まで徐冷して酸素アニ
ールを施した。Then, on the surface of the pellet, a particle size of 1 μm
m or less, preferably about 0.5 μm in the form of fine particles of Sb 2
After applying O 3 powder (flux pinning substance) to a thickness of 1 μm or less, it is fired in an electric furnace at 700 ° C. for about 20 hours in an air atmosphere, then slowly cooled to room temperature and oxygen annealed. Was applied.
【0028】これにより、結晶中にSb2 O3 がピンニ
ングセンタとして均一に分散された酸化物超電導体が得
られた。この超電導体の臨界温度は105Kであり、臨
界電流は2×104 A/cm2 であった。As a result, an oxide superconductor in which Sb 2 O 3 was uniformly dispersed as a pinning center in the crystal was obtained. The critical temperature of this superconductor was 105 K, and the critical current was 2 × 10 4 A / cm 2 .
【0029】また、このペレットの一部を切り取って振
動試料型磁力計で評価した結果、最大磁化は250ガウ
スであった。なお、磁束ピン止物質を接触させないで同
じものを製造した場合は最大磁化が120ガウスであっ
た。すなわち、上記結果から、本実施例の方法によって
磁束ピン止物質を拡散させた場合と、拡散させない場合
とで顕著な特性差が認められる。この特性差は磁束ピン
止の作用の有無によるものと推定され、したがって、本
実施例の方法によって製造した超電導体は、微細なピン
ニングセンタが均一に分散されて形成されているものと
考えられる。As a result of cutting a part of this pellet and evaluating it with a vibrating sample magnetometer, the maximum magnetization was 250 gauss. In addition, when the same thing was manufactured without making a magnetic flux pinning material contact, the maximum magnetization was 120 gauss. That is, from the above results, a remarkable characteristic difference is observed between the case where the magnetic flux pinning substance is diffused and the case where the magnetic flux pinning substance is not diffused by the method of this embodiment. It is presumed that this characteristic difference is due to the presence or absence of the effect of magnetic flux pinning, and therefore it is considered that the superconductor manufactured by the method of the present embodiment is formed with fine pinning centers uniformly dispersed.
【0030】実施例7 実施例6の途中の工程で得られた多結晶体ペレット表面
に、Sb2 O3 粉のかわりにY2 O3 粉を付着塗布した
ほかは実施例6と全く同様の処理を施して結晶中にY2
O3 がピンニングセンタとして均一に分散された酸化物
超電導体を得た。この超電導体の臨界温度は105K、
臨界電流は2×104 A/cm2 、最大磁化は200ガ
ウスであった。 Example 7 Exactly the same as Example 6 except that Y 2 O 3 powder was adhered and applied instead of Sb 2 O 3 powder on the surface of the polycrystalline pellets obtained in the middle of Example 6. Y 2 is added to the crystal after treatment.
An oxide superconductor in which O 3 was uniformly dispersed as a pinning center was obtained. The critical temperature of this superconductor is 105K,
The critical current was 2 × 10 4 A / cm 2 and the maximum magnetization was 200 gauss.
【0031】以上の各実施例で説明したように、本発明
は、酸化物超電導体に接触させる磁束ピン止物質の形態
は、粉状、ペレット状、薄膜状、ガス状のいずれの形態
のものであってもよいもので、物質の形態を問わない。
また、磁束ピン止物質の種類としてFe2 O3 、SnO
2 、Bi(DPM)3 、Ptを掲げたが、この他にもT
iO2 、Bi2 O3 、Ag2 WO4 ,SmF3 ,PtC
l2 ,FeSO4 等を用いてもよい。As described in each of the above embodiments, according to the present invention, the form of the magnetic flux pinning substance brought into contact with the oxide superconductor is any one of powder form, pellet form, thin film form, and gas form. The substance may be in any form.
Fe 2 O 3 and SnO are used as types of magnetic flux pinning substances.
2 , Bi (DPM) 3 and Pt are listed, but in addition to these, T
iO 2 , Bi 2 O 3 , Ag 2 WO 4 , SmF 3 , PtC
L 2 , FeSO 4 or the like may be used.
【0032】また、上述の各実施例では、Y1 Ba2 C
u3 O7 のペレットと、Bi系2223相のペレットを
製造する場合に適用した例を掲げたが、本発明は、ペロ
ブスカイト構造を有する他の酸化物超電導体、例えば、
遷移金属(Cu、Ni、Co、Ti、V、Bi等)に酸
素分子が4〜6配位した構造を有する酸化物超電導体そ
の他の酸化物超電導体にも適用でき、また、ペレット以
外にもバルク、厚膜、薄膜、ロッドあるいは線材その他
任意の形状ものにも適用できることは勿論である。In each of the above embodiments, Y 1 Ba 2 C is used.
Although an example applied in the case of producing a pellet of u 3 O 7 and a pellet of Bi type 2223 phase is given, the present invention shows that another oxide superconductor having a perovskite structure, for example,
It can be applied to oxide superconductors and other oxide superconductors having a structure in which oxygen molecules are coordinated with 4 to 6 transition metals (Cu, Ni, Co, Ti, V, Bi, etc.). It is needless to say that it can be applied to bulk, thick film, thin film, rod, wire or any other shape.
【0033】[0033]
【発明の効果】以上詳述したように、本発明は、所定の
形状に形成した酸化物超電導体に、酸化物超電導体中に
あって磁束の移動を止める磁束ピン止物質となるべき物
質を接触させながら熱処理を施して酸化物超電導体中に
磁束ピン止物質を熱拡散させることにより、微細なピン
ニングセンタが均一に分散されて形成された超電導特性
にすぐれた酸化物超電導体を得ているものである。As described above in detail, according to the present invention, the oxide superconductor formed into a predetermined shape is provided with a substance which should be a magnetic flux pinning substance in the oxide superconductor to stop the movement of magnetic flux. By heat-treating while contacting and thermally diffusing the magnetic flux pinning substance into the oxide superconductor, we have obtained an oxide superconductor with excellent superconducting properties that is formed by evenly distributing fine pinning centers. It is a thing.
Claims (1)
に、酸化物超電導体中にあって磁束の移動を止める磁束
ピン止物質となるべき物質を接触させながら熱処理を施
して前記酸化物超電導体中に磁束ピン止物質を熱拡散さ
せることにより、微細なピンニングセンタが均一に分散
されて形成された酸化物超電導体を得ることを特徴とし
た酸化物超電導体の製造方法。1. An oxide superconductor formed in a predetermined shape is heat-treated while being in contact with a substance to be a flux pinning substance that stops the movement of magnetic flux in the oxide superconductor. A method for producing an oxide superconductor, which comprises obtaining an oxide superconductor formed by uniformly dispersing fine pinning centers by thermally diffusing a magnetic flux pinning substance in the superconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4252856A JPH06104500A (en) | 1992-09-22 | 1992-09-22 | Manufacture of oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4252856A JPH06104500A (en) | 1992-09-22 | 1992-09-22 | Manufacture of oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06104500A true JPH06104500A (en) | 1994-04-15 |
Family
ID=17243128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4252856A Pending JPH06104500A (en) | 1992-09-22 | 1992-09-22 | Manufacture of oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06104500A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210142683A (en) | 2019-03-22 | 2021-11-25 | 닛토덴코 가부시키가이샤 | adhesive sheet |
-
1992
- 1992-09-22 JP JP4252856A patent/JPH06104500A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210142683A (en) | 2019-03-22 | 2021-11-25 | 닛토덴코 가부시키가이샤 | adhesive sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2839415B2 (en) | Method for producing rare earth superconducting composition | |
US5278137A (en) | YBa2 Cu3 O7-y type oxide superconductive material containing dispersed Y2 BaCuO5 phase and having high critical current density | |
US5434125A (en) | Rare earth oxide superconducting material and process for producing the same | |
JP2672926B2 (en) | Method for producing yttrium-based superconductor | |
JPH06104500A (en) | Manufacture of oxide superconductor | |
JPH0664921A (en) | Production of oxide superconductor | |
JP3155333B2 (en) | Method for producing oxide superconductor having high critical current density | |
US5545610A (en) | Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same | |
JPH07115924B2 (en) | Method for manufacturing oxide superconductor | |
JP2931446B2 (en) | Method for producing rare earth oxide superconductor | |
JPH0532403A (en) | Oxide superconductor and its production | |
JP2914799B2 (en) | Manufacturing method of oxide superconducting bulk material | |
JP2774219B2 (en) | Manufacturing method of oxide superconductor | |
JP2004203727A (en) | Oxide superconductor having high critical current density | |
JPH10510799A (en) | Improved superconductor | |
JP3314102B2 (en) | Manufacturing method of oxide superconductor | |
JP3217727B2 (en) | Manufacturing method of oxide superconductor | |
JP2971504B2 (en) | Method for producing Bi-based oxide superconductor | |
JP4153651B2 (en) | Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same | |
JP2709000B2 (en) | Superconductor and method of manufacturing the same | |
JPH01160861A (en) | Anisotropic growth of superconducting ceramic | |
JP2004035371A (en) | Oxide superconductor having high critical current density | |
JPH05279027A (en) | Rare-earth superconductor | |
JPH01203257A (en) | Production of superconductor | |
JPH04124013A (en) | Oxide superconductor |