JPH0570684B2 - - Google Patents

Info

Publication number
JPH0570684B2
JPH0570684B2 JP61280270A JP28027086A JPH0570684B2 JP H0570684 B2 JPH0570684 B2 JP H0570684B2 JP 61280270 A JP61280270 A JP 61280270A JP 28027086 A JP28027086 A JP 28027086A JP H0570684 B2 JPH0570684 B2 JP H0570684B2
Authority
JP
Japan
Prior art keywords
nbcn
rolling
hot
finish rolling
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61280270A
Other languages
Japanese (ja)
Other versions
JPS63134628A (en
Inventor
Shuichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28027086A priority Critical patent/JPS63134628A/en
Publication of JPS63134628A publication Critical patent/JPS63134628A/en
Publication of JPH0570684B2 publication Critical patent/JPH0570684B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、高強度および高靭性を有する熱延
厚鋼板の製造法に関するものである。 〔従来の技術〕 従来、一般に、熱延厚鋼板が、 (a) 重量%で(以下、%は重量%を示す)、 C:0.05〜0.15%、Si:0.001〜0.05%、 Mn:0.8〜2%、sol.Al:0.001〜0.06%、 Nb:0.005〜0.1%、N:0.002〜0.01%、 を含有する鋼の鋳塊を、1000℃以上の温度に加
熱後、 (b) 950℃以上の温度で粗圧延し、 (c) 900℃前後の温度範囲を圧延温度調整のため
に空冷した後、 (d) 700℃以上の温度で仕上圧延し、 (e) ついで500℃以下の温度まで急冷する、 以上(a)〜(e)の一連の工程からなる熱間圧延にて製
造されることは良く知られるところである。 〔発明が解決しようとする問題点〕 一方、近年、省エネルギー化並びに軽量化に対
する要求から、より高い強度と靭性をもつた熱厚
延鋼板の製造が強く望まれている。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、上記の従来法によつて製造された熱延厚鋼板
に比して強度および靱性の高い熱延厚鋼板を製造
すベく研究を行なつた結果、上記の従来熱延厚鋼
板の製造法では、上記の通り粗圧延後、仕上圧延
前の900℃前後の温度範囲を圧延温度調整のため
に空冷(通常、冷却速度は0.1℃/sec以下とな
る)していたが、これを0.5℃/sec以上の冷却速
度で急冷すると、前記空冷では、冷却速度が相対
的に遅いために、炭窒化ニオブ(以下NbCNで示
す)がほとんど析出してしまい、仕上圧延後の急
冷ではNbCNの析出がほとんどなく、一方結晶
粒、特にフエライトの粗大化が起つて強度および
靭性に改善が見られないのに対しえ、上記のよう
に粗圧延後に急冷して、NbCNの析出を抑制して
やると、この時点で固溶しているNbの一部が仕
上圧延時に微細なNbCNとして析出し、この微細
なNbCNが、仕上圧延後の急冷時に、変態して析
出をはじめるフエライトの生成核となることから
組織が微細化し、これによつて高い靭性が得られ
るようになり、さらに固溶したままの比較的多量
のNbは仕上圧延後の急冷で鋼の焼入れ性を高め
る効果を発揮すると共に、自身も微細なNbCNと
して析出するので高い強度が得られるようになる
という研究結果を得たのである。 したがつて、この発明は、上記の研究結果にも
とづいてなされたものであつて、 C:0.05〜0.15%、Si:0.001〜0.05%、 Mn:0.8〜2%、sol.Al:0.001〜0.06%、 Nb:0.005〜0.1%、N:0.002〜0.01%、 を含有する鋼の鋳塊から熱間圧延にて熱延厚鋼板
を製造するに際して、前記熱間圧延を、 (a) 粗圧延した後、 (b) 仕上圧延前における少なくともNbCNの析出
温度領域である870〜930℃の温度範囲を0.5
℃/sec以上の冷却速度で急冷して、NbCNの
析出を抑制し、 (c) ついで仕上圧延し、 (d) 引続いて急冷で微細なNbCNを析出させる、 以上(a)〜(d)の一連の工程にて行なうことをにより
高強度と高靱性を有する熱延厚鋼板を製造する方
法に特徴を有するものである。 つぎに、この発明の方法において、鋼の構成成
分含有量並びに粗圧延後の冷却速度を上記の通り
に限定した理由を説明する。 A 鋼の構成成分含有量 (a) C C成分には、鋼板の強度を向上させる作用
があるが、その含有量が0.05%未満では所望
の強度を確保することができず、一方その含
有量が0.15%を越えると、溶接性が劣化する
ようになることから、その含有量を0.05〜
0.15%と定めた。 (b) Si Si成分には、脱酸作用があるので、鋼溶製
時に脱酸剤といて使用されることから、
0.001%以上の含有は避けられず、一方その
含有量が0.5%を越えると溶接性が劣化する
ようになることから、その含有量を0.001〜
0.5%と定めた。 (c) Mn Mn成分には、鋼板の強度を向上させると
共に、圧延によつて靭性を改善する作用があ
るが、その含有量が0.8%未満では前記作用
に所望の効果が得られず、一方その含有量が
2%を越えると、溶接熱影響部が硬化して溶
接性が低下するようになることから、その含
有量を0.8〜2%と定めた。 (d) sol.Al Al成分には、強力な脱酸作用があるので、
Siと同様に脱酸剤とて用いられるため、
0.002%以上の含有は避けられず、一方その
含有量が0.06%を越えると、AlNを形成し、
反面NbCNの形成が少なくなつて所望の強度
および靭性を確保することができなくなるこ
とから、その含有量をsol.Alで0.001〜0.06%
と定めた。 (e) NbおよびN これらの成分には、C成分と共に、その一
部が仕上圧延時に微細なNbCNとして析出
し、これが仕上圧延後急冷時にγからα変態
で生成するフエライト粒を微細化し、もつて
鋼板の靭性を向上させる作用があり、さら
に、仕上圧延後も比較的多量に固溶するNb
自体には、仕上圧延後の急冷時における焼入
れ性を高めるほか、この仕上圧延後の急冷で
微細なNbCNとして析出して強度を向上させ
る作用があるが、その含有量がNb:0.005%
未満およびN:0.002%未満では、前記作用
に所望の効果が得られず、一方その含有量
が、それぞれNb:0.1%およびN:0.01%を
越えると、逆に靭性が低下するようになるこ
とから、その含有量をNb:0.005〜0.1%、
N:0.002〜0.01%と定めた。 B 粗圧延後の冷却速度 上記の通り、この種の鋼では、870〜930℃の
温度範囲でNbCNの析出が見られ、したがつ
て、870℃未満でも、930℃を越えてもNbCNの
析出は緩慢になるので、少なくとも870〜930℃
の温度範囲を急冷してNbCNの析出を抑制する
必要がある。このためには少なくともNbCNの
析出が顕著化する温度領域である870〜930℃の
温度範囲を0.5℃/sec以上の冷却速度で急冷す
る必要があるのであつて、0.5℃/sec未満の冷
却速度になると、NbCNの析出が顕著になつ
て、仕上圧延後の急冷で所望の強度と靭性が得
られないようになるのである。 〔実施例〕 つぎに、この発明の方法を実施例により具体的
に説明する。 通常の溶解法より、それぞれ第1表に示される
成分組成を有する溶鋼を調製し、鋳造することに
より250mm×2100mmの断面寸法をもつた鋳塊A
[Industrial Application Field] The present invention relates to a method for producing hot rolled thick steel plates having high strength and high toughness. [Prior Art] Conventionally, hot-rolled thick steel sheets generally contain (a) weight% (hereinafter, % indicates weight%), C: 0.05 to 0.15%, Si: 0.001 to 0.05%, Mn: 0.8 to After heating a steel ingot containing 2%, sol.Al: 0.001-0.06%, Nb: 0.005-0.1%, N: 0.002-0.01% to a temperature of 1000℃ or higher, (b) 950℃ or higher (c) After being air-cooled to adjust the rolling temperature within a temperature range of around 900°C, (d) finish rolling at a temperature of 700°C or higher, and (e) then rolling to a temperature of 500°C or lower. It is well known that it is manufactured by hot rolling, which consists of a series of steps (a) to (e), including rapid cooling. [Problems to be Solved by the Invention] On the other hand, in recent years, due to the demand for energy saving and weight reduction, there is a strong desire to produce hot rolled steel sheets with higher strength and toughness. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors have developed a hot-rolled steel plate that has higher strength and toughness than the hot-rolled thick steel plate manufactured by the above-mentioned conventional method. As a result of research into manufacturing thick steel plates, we found that in the conventional manufacturing method for hot-rolled thick steel plates, as mentioned above, after rough rolling and before finish rolling, a temperature range of around 900℃ is used to adjust the rolling temperature. Air cooling was used (usually the cooling rate is 0.1°C/sec or less), but when this was rapidly cooled at a cooling rate of 0.5°C/sec or more, carbonitriding occurred because the cooling rate was relatively slow with air cooling. Most of the niobium (hereinafter referred to as NbCN) was precipitated, and almost no NbCN was precipitated in the rapid cooling after finish rolling.On the other hand, the grains, especially the ferrite, were coarsened and no improvement was seen in the strength and toughness. On the other hand, if the precipitation of NbCN is suppressed by rapid cooling after rough rolling as described above, part of the Nb that is in solid solution at this point will precipitate as fine NbCN during finish rolling, and this fine NbCN will During rapid cooling after finish rolling, the structure becomes finer because it becomes the nucleus for the formation of ferrite that transforms and begins to precipitate, resulting in high toughness. The research results showed that Nb has the effect of increasing the hardenability of steel during rapid cooling after finish rolling, and that Nb itself precipitates as fine NbCN, resulting in high strength. Therefore, this invention was made based on the above research results, and includes C: 0.05 to 0.15%, Si: 0.001 to 0.05%, Mn: 0.8 to 2%, sol.Al: 0.001 to 0.06. %, Nb: 0.005 to 0.1%, N: 0.002 to 0.01%, when producing a hot rolled thick steel plate by hot rolling from a steel ingot containing: (a) rough rolling (b) At least the temperature range of 870 to 930°C, which is the precipitation temperature range of NbCN, before finish rolling is reduced by 0.5
Rapidly cooling at a cooling rate of ℃/sec or more to suppress the precipitation of NbCN, (c) then finish rolling, (d) successively rapid cooling to precipitate fine NbCN, above (a) to (d) This method is characterized by a method for manufacturing a hot rolled thick steel plate having high strength and high toughness by performing a series of steps. Next, in the method of the present invention, the reason why the content of the constituent components of the steel and the cooling rate after rough rolling are limited as described above will be explained. A Constituent component content of steel (a) C C component has the effect of improving the strength of steel sheets, but if its content is less than 0.05%, the desired strength cannot be secured; If it exceeds 0.15%, weldability will deteriorate, so the content should be reduced from 0.05% to
It was set at 0.15%. (b) Si The Si component has a deoxidizing effect and is used as a deoxidizing agent when making steel.
A content of 0.001% or more is unavoidable, and if the content exceeds 0.5%, weldability will deteriorate, so the content should be reduced from 0.001% to 0.001%.
It was set at 0.5%. (c) Mn The Mn component has the effect of increasing the strength of the steel sheet and improving the toughness during rolling, but if its content is less than 0.8%, the desired effect cannot be obtained; If the content exceeds 2%, the weld heat-affected zone hardens and weldability deteriorates, so the content was set at 0.8 to 2%. (d) sol.Al Al component has a strong deoxidizing effect, so
Like Si, it is used as a deoxidizer, so
A content of 0.002% or more is unavoidable, while if the content exceeds 0.06%, AlN is formed,
On the other hand, since the formation of NbCN decreases and it becomes impossible to secure the desired strength and toughness, its content is reduced to 0.001 to 0.06% in sol.Al.
It was determined that (e) Nb and N Some of these components, together with the C component, precipitate as fine NbCN during finish rolling, which refines the ferrite grains generated by γ to α transformation during quenching after finish rolling. This has the effect of improving the toughness of the steel sheet, and furthermore, even after finish rolling, a relatively large amount of Nb remains in solid solution.
Nb itself has the effect of increasing the hardenability during quenching after finish rolling, and also precipitates as fine NbCN during quenching after finish rolling to improve strength, but its content is 0.005%.
If the content exceeds Nb: 0.1% and N: 0.01%, the toughness will conversely decrease. From, its content is Nb: 0.005~0.1%,
N: determined to be 0.002 to 0.01%. B. Cooling rate after rough rolling As mentioned above, in this type of steel, NbCN precipitation is observed in the temperature range of 870 to 930°C. Therefore, NbCN precipitation occurs even below 870°C and above 930°C temperature becomes slow, so at least 870~930℃
It is necessary to suppress the precipitation of NbCN by rapidly cooling the temperature range. For this purpose, it is necessary to rapidly cool at least the temperature range of 870 to 930°C, which is the temperature range where NbCN precipitation becomes noticeable, at a cooling rate of 0.5°C/sec or more, and at a cooling rate of less than 0.5°C/sec. When this happens, the precipitation of NbCN becomes noticeable, making it impossible to obtain the desired strength and toughness during rapid cooling after finish rolling. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. Ingot A with cross-sectional dimensions of 250 mm x 2100 mm is obtained by preparing molten steel having the composition shown in Table 1 using a normal melting method and casting it.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第2表に示される結果から、本発明法1〜9で
製造された熱延厚鋼板は、いずれも高強度および
高靭性をもつのに対して、比較法1〜4に見られ
るように、粗圧延と仕上圧延の間の冷却条件がこ
の発明の範囲から外れると、強度および靭性のう
ちの少なくともいずれかが劣つた熱延厚鋼板しか
得られないことが明らかである。なお、比較法が
上記の従来法に相当するものである。 上述のように、この発明の方法によれば、粗圧
延と仕上圧延間でのNbCNの析出を抑制すること
により高強度と高靭性を具備した熱延厚鋼板を製
造することができるのである。
From the results shown in Table 2, hot-rolled thick steel plates manufactured by methods 1 to 9 of the present invention all have high strength and high toughness, whereas as seen in comparative methods 1 to 4, It is clear that if the cooling conditions between rough rolling and finish rolling are outside the scope of the present invention, only a hot rolled thick steel plate with poor strength and/or toughness will be obtained. Note that the comparative method corresponds to the above-mentioned conventional method. As described above, according to the method of the present invention, it is possible to produce a hot rolled thick steel plate with high strength and high toughness by suppressing the precipitation of NbCN between rough rolling and finish rolling.

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.05〜0.15%、Si:0.001〜0.05%、 Mn:0.8〜2%、sol.Al:0.001〜0.06%、 Nb:0.005〜0.1%、N:0.002〜0.01%、 を含有する鋼の鋳塊から熱間圧延にて熱延厚鋼板
を製造するに際して、前記熱間圧延を、 (a) 粗圧延した後、 (b) 仕上圧延前における少なくとも炭窒化ニオブ
の析出温度領域である870〜930℃の温度範囲を
0.5℃/sec以上の冷却速度で急冷して、炭窒化
ニオブの析出を抑制し、 (c) ついで仕上圧延し、 (d) 引続いて急冷で微細な炭窒化ニオブを析出さ
せる、 以上(a)〜(d)の一連の工程にて行なうことを特徴と
する高強度高靭性を有する熱延厚鋼板の製造法。
[Claims] 1% by weight: C: 0.05-0.15%, Si: 0.001-0.05%, Mn: 0.8-2%, sol.Al: 0.001-0.06%, Nb: 0.005-0.1%, N: 0.002 to 0.01%, when producing a hot rolled thick steel plate by hot rolling from a steel ingot containing The temperature range of 870 to 930℃, which is the precipitation temperature range of niobium nitride, is
Rapid cooling is performed at a cooling rate of 0.5°C/sec or more to suppress the precipitation of niobium carbonitride, (c) then finish rolling, (d) successive rapid cooling is performed to precipitate fine niobium carbonitride. 1. A method for producing a hot-rolled thick steel plate having high strength and high toughness, characterized by carrying out a series of steps from ) to (d).
JP28027086A 1986-11-25 1986-11-25 Production of hot rolled thick steel plate having high strength and high toughness Granted JPS63134628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28027086A JPS63134628A (en) 1986-11-25 1986-11-25 Production of hot rolled thick steel plate having high strength and high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28027086A JPS63134628A (en) 1986-11-25 1986-11-25 Production of hot rolled thick steel plate having high strength and high toughness

Publications (2)

Publication Number Publication Date
JPS63134628A JPS63134628A (en) 1988-06-07
JPH0570684B2 true JPH0570684B2 (en) 1993-10-05

Family

ID=17622651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28027086A Granted JPS63134628A (en) 1986-11-25 1986-11-25 Production of hot rolled thick steel plate having high strength and high toughness

Country Status (1)

Country Link
JP (1) JPS63134628A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166316A (en) * 1989-11-22 1991-07-18 Kobe Steel Ltd Production of hot rolled si-containing steel plate
KR100496563B1 (en) * 2000-12-23 2005-06-23 주식회사 포스코 Production method of high toughness low yield ratio steel strip in tandem mill
WO2012153009A1 (en) 2011-05-12 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Method for the production of very-high-strength martensitic steel and sheet thus obtained

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166620A (en) * 1983-03-09 1984-09-20 Nippon Steel Corp Preparation of highly tough and high tensile steel
JPS6056017A (en) * 1983-09-08 1985-04-01 Nippon Steel Corp Production of thick steel plate having excellent low- temperature toughness
JPS615801A (en) * 1984-06-18 1986-01-11 タマパック株式会社 Slipper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166620A (en) * 1983-03-09 1984-09-20 Nippon Steel Corp Preparation of highly tough and high tensile steel
JPS6056017A (en) * 1983-09-08 1985-04-01 Nippon Steel Corp Production of thick steel plate having excellent low- temperature toughness
JPS615801A (en) * 1984-06-18 1986-01-11 タマパック株式会社 Slipper

Also Published As

Publication number Publication date
JPS63134628A (en) 1988-06-07

Similar Documents

Publication Publication Date Title
JP2010133028A (en) Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JPH0570684B2 (en)
JPH0532442B2 (en)
JP2703162B2 (en) Thick steel plate for welded structure excellent in toughness of electron beam weld and manufacturing method thereof
JP3412997B2 (en) High tensile rolled steel and method of manufacturing the same
JPS642647B2 (en)
JPH10147835A (en) 590mpa class rolled shape steel and its production
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
KR102237486B1 (en) High strength ultra thick steel plate having excellent very low temperature strain aging impact toughness at the center of thickness and method of manufacturing the same
JP2823220B2 (en) Manufacturing method of steel plate with good weld joint toughness
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JP3174098B2 (en) Low-yield-ratio web thin-walled H-section steel and method for producing the same
JPS58197225A (en) Manufacture of superhigh strength steel sheet with superior workability and 84kgf/mm2 (120ksi) yield strength
JPS63109122A (en) Production of hot rolled sheet having excellent toughness
JPH06122921A (en) Production of wide-flange shape steel excellent in toughness
JP3426433B2 (en) High tensile rolled steel and method of manufacturing the same
JPH10219390A (en) 80kg steel with high productivity, and its production