JP2703162B2 - Thick steel plate for welded structure excellent in toughness of electron beam weld and manufacturing method thereof - Google Patents

Thick steel plate for welded structure excellent in toughness of electron beam weld and manufacturing method thereof

Info

Publication number
JP2703162B2
JP2703162B2 JP4324213A JP32421392A JP2703162B2 JP 2703162 B2 JP2703162 B2 JP 2703162B2 JP 4324213 A JP4324213 A JP 4324213A JP 32421392 A JP32421392 A JP 32421392A JP 2703162 B2 JP2703162 B2 JP 2703162B2
Authority
JP
Japan
Prior art keywords
less
toughness
content
steel plate
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4324213A
Other languages
Japanese (ja)
Other versions
JPH05295480A (en
Inventor
正徳 西森
智也 小関
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPH05295480A publication Critical patent/JPH05295480A/en
Application granted granted Critical
Publication of JP2703162B2 publication Critical patent/JP2703162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、溶接構造用厚鋼板、
とくに電子ビーム溶接部の衝撃特性に優れ、しかも引張
強さが590MPa超級の高張力厚鋼板およびその製造方法に
関するものである。
The present invention relates to a steel plate for a welded structure,
More particularly, the present invention relates to a high-strength steel plate excellent in impact characteristics of an electron beam weld and having a tensile strength exceeding 590 MPa, and a method for producing the same.

【0002】[0002]

【従来の技術】原子力プラントや化学プラントの圧力容
器や反応容器に用いられる鋼板としては、高い引張強さ
の他、優れた低温靱性や良好な溶接性などが要求され
る。しかも、これらの鋼板は、板厚が50mmを超える厚肉
材となることが多く、最近では、例えば反応効率の向上
や原子炉の高出力化等から、板厚が 200mmにも及ぶ極厚
鋼板の使用が検討されるまでに至っている。従来、この
種の用途に適した鋼材としては、Mn−Ni−Mo系を主成分
としたASTM規格の A 533系や JIS規格の SQV系などの鋼
材が使用されている。
2. Description of the Related Art In addition to high tensile strength, steel sheets used in pressure vessels and reaction vessels of nuclear power plants and chemical plants are required to have excellent low-temperature toughness and good weldability. In addition, these steel sheets are often thick materials with a thickness exceeding 50 mm, and recently, for example, ultra-thick steel sheets with a thickness of as much as 200 mm due to improvements in reaction efficiency and higher output of reactors. The use of has been considered. Conventionally, as a steel material suitable for this kind of application, a steel material such as A533 system of ASTM standard or SQV system of JIS standard, which is mainly composed of Mn-Ni-Mo system, has been used.

【0003】一方、近年の溶接工の不足並びに溶接施工
能率の向上の観点から、厚鋼板を1パスで溶接でき、溶
接効率と品質の両者を同時に向上させ得る新しい溶接法
として、電子ビーム溶接法(以下、単にEBWと言う)
が開発され、現在、急速にその実用化が進められてい
る。しかし、上述の厚鋼板にEBWを適用した場合、溶
接のままは勿論のこと、溶接後に熱処理を施した場合で
あっても溶接金属の低温衝撃特性が低いため、重要構造
物にはEBWを適用することができなかった。
On the other hand, from the viewpoint of recent shortage of welders and improvement of welding work efficiency, electron beam welding is a new welding method capable of welding thick steel plates in one pass and simultaneously improving both welding efficiency and quality. (Hereinafter simply referred to as EBW)
Has been developed, and its practical use is rapidly progressing. However, when EBW is applied to the above thick steel plate, EBW is applied to important structures because the low-temperature impact characteristics of the weld metal are low even when heat treatment is performed after welding, not to mention welding. I couldn't.

【0004】上記の問題を解決するものとして、特開昭
61−246345号公報では、TiNとV炭化物を共存させるこ
とによってEB溶接金属の靱性の改善を図っているが、
発明者らの実験によれば、EB溶接後に熱処理した場合
に靱性のばらつきが認められ、効果が十分とは言い難か
った。
To solve the above problem, Japanese Patent Application Laid-Open
In JP 61-246345 A, the toughness of the EB weld metal is improved by coexisting TiN and V carbide.
According to experiments by the inventors, when heat treatment was performed after EB welding, variation in toughness was observed, and it was difficult to say that the effect was sufficient.

【0005】また、特開昭64-15321号公報には、Al無添
加成分系で Ti2O3とNbを共存させることによってEB溶
接金属の靱性が確保できることが開示されている。しか
し、この技術で対象とする鋼材は、元々強度レベルが低
く、またEB溶接後の熱処理でEB溶接金属の靱性がば
らつくため、その効果は十分とは言い難い。しかも母材
の靱性とくにNRL落重特性の安定確保も難しい。
JP-A-64-15321 discloses that the toughness of an EB weld metal can be ensured by coexisting Ti 2 O 3 and Nb in an Al-free component system. However, the steel material targeted by this technique originally has a low strength level, and the toughness of the EB weld metal varies during the heat treatment after the EB welding, so that its effect is hardly sufficient. In addition, it is difficult to secure the toughness of the base material, especially the stability of the NRL drop weight characteristics.

【0006】さらに特公昭61−3376号公報には、EB溶
接した極厚鋼板を再度 880〜920 ℃のオーステナイト化
温度に加熱後、冷却処理することによって靱性の改善を
図る方法が提案されているが、溶接後の大型構造物を高
温度に加熱するのは現実性および経済性の面で困難なだ
けでなく、寸法や形状に変化が生じ実際的でない。
Furthermore, Japanese Patent Publication No. 61-3376 proposes a method for improving the toughness by heating an EB-welded extra-thick steel sheet again to an austenitizing temperature of 880-920 ° C. and then cooling it. However, heating a large structure after welding to a high temperature is not only difficult in terms of reality and economy, but also changes dimensions and shapes and is not practical.

【0007】またさらに、特開平2-77557号公報には、
PおよびNの鋼中含有量を低減することにより電子ビー
ム溶接部の靱性が向上することが開示されている。しか
し、コスト的に有利な連続鋳造法によるスラブから製造
される鋼板では、板厚中心部にPが偏析し、しかもEB
Wによる再度の溶融と凝固によって、EBW部最終凝固
部では偏析が一層進むことから、靱性に優れた溶接部を
得ることは難しい。
Further, Japanese Patent Application Laid-Open No. 2-77557 discloses that
It is disclosed that the toughness of an electron beam weld is improved by reducing the contents of P and N in steel. However, in a steel sheet manufactured from a slab by a continuous casting method, which is advantageous in cost, P segregates at the center of the sheet thickness, and EB
Due to the re-melting and solidification by W, segregation further progresses in the final solidified portion of the EBW portion, so that it is difficult to obtain a weld having excellent toughness.

【0008】このような弊害をもたらす中心偏析は、連
続鋳造の場合、凝固先端部の凝固収縮のほか、凝固シェ
ルのバルジングなどによって生じる空隙の真空吸引力に
よって、凝固先端部にC,P,Cr等の濃化溶鋼成分が吸
い込まれることによって形成されたものである。その防
止策として、例えば2次冷却帯域における電磁撹拌等が
試みられたが、セミミクロ偏析を軽減するまでには至ら
なかった。また、凝固末期に一対のロールを用いて大圧
下を施すいわゆるインラインリダクション法{鉄と鋼
第60年 (1974) 第7号 875〜884 頁}の適用も試みられ
たが、未凝固層の大きい鋳片領域における圧下が不十分
だと、凝固界面に割れが発生し、逆に圧下が十分すぎる
場合には鋳片の厚み方向中心部に強い負偏析が生じるな
どの問題があった。
In the case of continuous casting, in addition to the solidification shrinkage of the solidification front end, the center segregation causing such an adverse effect is caused by C, P, Cr at the solidification front end due to the vacuum suction force of the void generated by bulging of the solidified shell. Etc. are formed by sucking the concentrated molten steel component. As a preventive measure, for example, electromagnetic stirring in a secondary cooling zone has been attempted, but it has not been possible to reduce semi-micro segregation. In addition, the so-called in-line reduction method in which a large reduction is performed using a pair of rolls at the end of solidification
60th year (1974) No. 7 pp. 875-884 was attempted, but if the reduction in the slab area with a large unsolidified layer was insufficient, cracks occurred at the solidification interface, and conversely the reduction was reduced. If it is too large, there is a problem that a strong negative segregation occurs at the center in the thickness direction of the slab.

【0009】この点について、特開昭49−121738号公報
では、鋳片の凝固先端部付近でロール対による軽圧下を
施し、該部分の凝固収縮量を圧下により補償する方法
が、また特開昭52-54625号公報では、鍛造金型を用いて
鋳片の凝固完了点近傍を大圧下する方法が、それぞれ提
案されている。しかしながら、ロールによる軽圧下の場
合には、複数対のロールによる数mmの圧下を施したとし
ても、ロールピッチ間で生じる凝固収縮やバルジングを
十分に防止することができず、また圧下位置が適正でな
いとかえって中心偏析が悪化するといった問題があっ
た。他方、鍛造金型を用いて鋳片の凝固完了点近傍を大
圧下する場合は、インラインリダクション法のようなロ
ールによる大圧下に比べて凝固界面が割れにくく、ま
た、負偏析さらにはセミマクロ偏析をも飛躍的に改善で
きることが明らかになってはいるけれども、未凝固層の
大きい鋳片領域での圧下が不十分であると凝固界面に割
れが発生し、逆に圧下が十分すぎると鋳片の中心部に強
い負偏析を生じる不利があり、さらには、未凝固厚の小
さい領域を圧下してもその効果は得られないことから、
最適な圧下条件を模索しているのが実情である。
In this regard, Japanese Patent Application Laid-Open No. 49-121738 discloses a method in which a light reduction is performed by a pair of rolls near the solidification front end of a slab, and the amount of solidification shrinkage of the portion is compensated by reduction. JP 52-54625 A proposes a method of using a forging die to greatly reduce the pressure near the solidification completion point of a slab. However, in the case of light rolling with rolls, solidification shrinkage and bulging that occur between roll pitches cannot be sufficiently prevented even if rolling down several mm by multiple pairs of rolls, and the rolling position is appropriate. Otherwise, there is a problem that the center segregation worsens. On the other hand, when a forging die is used to greatly reduce the vicinity of the solidification completion point of a slab, the solidification interface is less likely to crack than in the case of a large reduction by a roll such as an in-line reduction method, and negative segregation and even semi-macro segregation occur. Although it has been clarified that the slab can be improved drastically, cracking occurs at the solidification interface if the reduction in the slab area where the unsolidified layer is large is insufficient, and conversely if the reduction is too large, the slab There is a disadvantage that a strong negative segregation occurs in the center, and furthermore, even if the unsolidified thickness is reduced, the effect cannot be obtained.
The reality is that we are searching for optimal rolling conditions.

【0010】[0010]

【発明が解決しようとする課題】上述したように、EB
溶接金属の低温靱性改善を目的とした従来技術は、経済
性や寸法精度の面、また特性のばらつきや強度、さらに
は中心偏析等の面でなにかしらの問題を残していた。こ
の発明の目的は、上記各従来技術が抱えているそれぞれ
の問題を悉く解決できる溶接構造用厚鋼板を開発するこ
とにあり、とくに連鋳スラブを素材とする場合であって
も、EB溶接部の低温靱性に優れ、しかも590MPa以上の
引張強さを併せ持つ溶接構造用厚鋼板を、その有利な製
造方法と共に提案する。
As described above, EB
The prior art aimed at improving the low-temperature toughness of the weld metal has had some problems in terms of economy, dimensional accuracy, characteristic dispersion and strength, and furthermore, center segregation and the like. SUMMARY OF THE INVENTION An object of the present invention is to develop a steel plate for a welding structure capable of solving all of the problems of the above prior arts. We propose a thick steel plate for welded structures that has excellent low-temperature toughness and a tensile strength of 590 MPa or more, together with its advantageous production method.

【0011】[0011]

【課題を解決するための手段】さて、発明者らは、上掲
の目的を達成すべく、EB溶接部の靱性に及ぼす各種元
素の影響を、まず検討した。その結果、C含有量の比較
的高い場合には、Tiを添加した上で、さらにNbやVを複
合添加した成分系では、良好な低温靱性を安定して確保
することはできないことが判明した。その理由として
は、EB溶接時に固溶、溶解したTiやNbおよびVが、そ
の後の熱処理(溶接後熱処理)で炭化物として析出する
ことおよびEB溶接金属部に脆弱な島状マルテンサイト
が生成することが挙げられる。
Means for Solving the Problems The inventors first studied the effects of various elements on the toughness of the EB weld in order to achieve the above-mentioned object. As a result, when the C content was relatively high, it was found that good low-temperature toughness could not be stably secured in a component system in which Ti was added and Nb and V were added in combination. . The reason is that Ti, Nb and V dissolved and dissolved during EB welding precipitate as carbides in the subsequent heat treatment (heat treatment after welding) and fragile island martensite is formed in the EB weld metal part. Is mentioned.

【0012】そこで、発明者らは、TiやNb, Vを無添加
とした成分系を基本として、島状マルテンサイトの生成
を抑制しかつ母材靱性を確保し得る新しい成分系を開発
すべく鋭意実験と検討を重ねた結果、Si, AlおよびN並
びにP, Sの調整のみで、優れた低温靱性並びに引張強
さが得られることの知見を得た。また、発明者らは、連
続鋳造工程において鍛圧加工を活用することにより、P
の偏析を有利に防止できることも併せて見出した。この
発明は上記の知見に立脚するものである。
Therefore, the present inventors have attempted to develop a new component system which can suppress the formation of island-like martensite and secure the base material toughness based on a component system in which Ti, Nb, and V are not added. As a result of intensive experiments and studies, it was found that excellent low-temperature toughness and tensile strength can be obtained only by adjusting Si, Al and N and P and S. In addition, the present inventors utilize the forging process in the continuous casting process, so that P
It has also been found that segregation of can be advantageously prevented. The present invention is based on the above findings.

【0013】すなわち、この発明の要旨構成は次のとお
りである。 1.C:0.07〜0.20wt%(以下、単に「%」で示す)、 Si:0.05〜0.20%、 Mn:0.20〜1.80%、 P:0.008 %以下、 S:0.005 %以下、 solAl:0.005 〜0.040 %、N:0.0020〜0.0070%、 Ni:0.05〜1.50%、 Cr:0.05〜0.50%、 Mo:0.05〜1.00%およびO:0.0040%以下 を、N/Al:0.11〜0.40の範囲で含有し、残部はFeおよ
び不可避的不純物の組成になり、かつ鋼中平均P含有量
(P0 )に対する板厚中心部のP含有量(P)の比P/
0 が 1.3以下である電子ビーム溶接部の靱性に優れた
溶接構造用厚鋼板(第1発明)。
That is, the gist configuration of the present invention is as follows. 1. C: 0.07 to 0.20 wt% (hereinafter simply indicated by "%"), Si: 0.05 to 0.20%, Mn: 0.20 to 1.80%, P: 0.008% or less, S: 0.005% or less, solAl: 0.005 to 0.040% , N: 0.0020 to 0.0070%, Ni: 0.05 to 1.50%, Cr: 0.05 to 0.50%, Mo: 0.05 to 1.00%, and O: 0.0040% or less N / Al: 0.11 to 0.40, with the balance being the balance. Is the composition of Fe and unavoidable impurities, and the ratio P / of the P content (P) at the center of the plate thickness to the average P content (P 0 ) in steel.
A thick steel plate for a welded structure having excellent toughness in an electron beam weld having a P 0 of 1.3 or less (first invention).

【0014】 2.C:0.07〜0.20%、 Si:0.05〜0.20%、 Mn:0.20〜1.80%、 P:0.008 %以下、 S:0.005 %以下、 solAl:0.005 〜0.040 %、 N:0.0020〜0.0070%、 Ni:0.05〜1.50%、 Cr:0.05〜0.50%、 Mo:0.05〜1.00% およびO:0.0040%以下を、N/Al:0.11〜0.40の範囲
で含み、かつ Ca:0.0005〜0.0050%および REM:0.0005〜0.0050%、
のうちから選んだ一種又は二種を含有し、残部はFeおよ
び不可避的不純物の組成になり、かつ鋼中平均P含有量
(P0 )に対する板厚中心部のP含有量(P)の比P/
0 が 1.3以下である電子ビーム溶接部の靱性に優れた
溶接構造用厚鋼板(第2発明)。
[0014] 2. C: 0.07 to 0.20%, Si: 0.05 to 0.20%, Mn: 0.20 to 1.80%, P: 0.008% or less, S: 0.005% or less, solAl: 0.005 to 0.040%, N: 0.0020 to 0.0070%, Ni: 0.05 1.50%, Cr: 0.05-0.50%, Mo: 0.05-1.00% and O: 0.0040% or less, N / Al: 0.11-0.40, Ca: 0.0005-0.0050%, and REM: 0.0005-0.0050 %,
One or two selected from the group consisting of: Fe and the unavoidable impurities, and the ratio of the P content (P) at the center of the sheet thickness to the average P content (P 0 ) in steel P /
A thick steel plate for a welded structure having excellent toughness of an electron beam weld having a P 0 of 1.3 or less (second invention).

【0015】 3.C:0.07〜0.20%、 Si:0.05〜0.20%、 Mn:0.20〜1.80%、 P:0.008 %以下、 S:0.005 %以下、 solAl:0.005 〜0.040 %、 N:0.0020〜0.0070%、 Ni:0.05〜1.50%、 Cr:0.05〜0.50%、 Mo:0.05〜1.00% およびO:0.0040%以下 を、N/Al:0.11〜0.40の範囲で含有し、残部はFeおよ
び不可避的不純物の組成になる溶鋼を、連続鋳造し、熱
間圧延または鍛造により厚鋼板とした後、焼入れ−焼戻
しを施すことによって、溶接構造用厚鋼板を製造するに
際し、連続鋳造工程において、連鋳片の内部溶鋼が凝固
を完了するクレータエンド近傍に対し、取鍋中溶鋼のP
含有量(P0 )に対する板厚中心部におけるP含有量
(P)の比P/P0 が 1.3以下となる鍛圧加工を施すこ
とを特徴とする電子ビーム溶接部の靱性に優れた溶接構
造用厚鋼板の製造方法。
[0015] 3. C: 0.07 to 0.20%, Si: 0.05 to 0.20%, Mn: 0.20 to 1.80%, P: 0.008% or less, S: 0.005% or less, solAl: 0.005 to 0.040%, N: 0.0020 to 0.0070%, Ni: 0.05 -1.50%, Cr: 0.05-0.50%, Mo: 0.05-1.00% and O: 0.0040% or less, N / Al: 0.11-0.40, the balance being molten steel with composition of Fe and unavoidable impurities Is continuously cast, and after hot rolling or forging to form a thick steel plate, by performing quenching and tempering, when manufacturing a thick steel plate for a welding structure, in the continuous casting process, the internal molten steel of the continuous cast piece solidifies. In the vicinity of the crater end to be completed,
Forging structure excellent in toughness of electron beam welded part, characterized by performing forging processing in which the ratio P / P 0 of the P content (P) at the center of the sheet thickness to the content (P 0 ) is 1.3 or less. A method for manufacturing thick steel plates.

【0016】 4.C:0.07〜0.20%、 Si:0.05〜0.20%、 Mn:0.20〜1.80%、 P:0.008 %以下、 S:0.005 %以下、 solAl:0.005 〜0.040 %、 N:0.0020〜0.0070%、 Ni:0.05〜1.50%、 Cr:0.05〜0.50%、 Mo:0.05〜1.00% およびO:0.0040%以下を、N/Al:0.11〜0.40の範囲
で含み、かつ Ca:0.0005〜0.0050%および REM:0.0005〜0.0050%、
のうちから選んだ一種又は二種を含有し、残部はFeおよ
び不可避的不純物の組成になる溶鋼を、連続鋳造し、熱
間圧延または鍛造により厚鋼板とした後、焼入れ−焼戻
しを施すことによって、溶接構造用厚鋼板を製造するに
際し、連続鋳造工程において、連鋳片の内部溶鋼が凝固
を完了するクレータエンド近傍に対し、取鍋中溶鋼のP
含有量(P0 )に対する板厚中心部におけるP含有量
(P)の比P/P0 が 1.3以下となる鍛圧加工を施すこ
とを特徴とする電子ビーム溶接部の靱性に優れた溶接構
造用厚鋼板の製造方法。
[0016] 4. C: 0.07 to 0.20%, Si: 0.05 to 0.20%, Mn: 0.20 to 1.80%, P: 0.008% or less, S: 0.005% or less, solAl: 0.005 to 0.040%, N: 0.0020 to 0.0070%, Ni: 0.05 1.50%, Cr: 0.05-0.50%, Mo: 0.05-1.00% and O: 0.0040% or less, N / Al: 0.11-0.40, Ca: 0.0005-0.0050%, and REM: 0.0005-0.0050 %,
Containing one or two selected from the other, the remainder is molten steel having a composition of Fe and unavoidable impurities, by continuous casting, after hot rolling or forging into a thick steel plate, by quenching-tempering In manufacturing a thick steel plate for a welded structure, in the continuous casting process, the molten steel in the ladle is placed near the crater end where the molten steel inside the continuous cast piece completes solidification.
Forging structure excellent in toughness of electron beam welded part, characterized by performing forging processing in which the ratio P / P 0 of the P content (P) at the center of the sheet thickness to the content (P 0 ) is 1.3 or less. A method for manufacturing thick steel plates.

【0017】[0017]

【作用】以下、この発明の開発経過について説明する。
発明者らの研究によれば、EB溶接金属の靱性劣化は、
(1) Ti、NbおよびVによる析出脆化、(2) 脆弱な島状マ
ルテンサイトの生成、(3) PとSがEB溶接金属の樹枝
状晶間に偏析し、一般に考えられている以上に悪影響を
及ぼす、(4) 固有N量が 70ppmを超えると著しく靱性が
劣化することに起因するものであることが判明した。こ
のうち (2)に関しては、Al含有量の多寡が大きく影響す
るという知見も新たに見出した。
The development of the present invention will be described below.
According to the study of the inventors, the toughness degradation of the EB weld metal is
(1) precipitation embrittlement due to Ti, Nb and V, (2) formation of brittle island-like martensite, (3) P and S segregate between dendrites of EB weld metal, which is generally considered It has been found that (4) when the specific N content exceeds 70 ppm, the toughness is significantly deteriorated. Regarding (2), a new finding was found that the amount of Al content had a significant effect.

【0018】さらに、この種の鋼材には、母材の靱性、
特に落重特性も良好なことが要求されている。一般に、
この種の厚肉鋼板で良好な落重特性を確保する手段とし
ては、結晶粒の細粒化が知られていて、具体的にはN含
有量を約100ppm以上としてAlNを析出させ、このAlNに
よって粒の細粒化が図られている。この場合、NとAl量
のバランスはN/Al≧0.5 となるように調整して添加さ
れている。しかし、上述したような従来の成分設計、す
なわちN/Al≧0.5 となるような高N成分系ではEB溶
接金属の低温靱性が劣化してしまう。とはいえEB溶接
金属の靱性改善の面から単に低N化をはかった場合に
は、母材の高靱性が確保できないという新たな問題が生
じる。
Further, this kind of steel material has a toughness of a base material,
In particular, good falling weight characteristics are also required. In general,
As means for securing good dropping weight characteristics with this kind of thick steel plate, grain refinement of the crystal grains is known. Specifically, AlN is precipitated by setting the N content to about 100 ppm or more, and this AlN is deposited. Thereby, the grains are refined. In this case, the balance between the amounts of N and Al is adjusted and added so that N / Al ≧ 0.5. However, in the conventional component design described above, that is, in a high N component system in which N / Al ≧ 0.5, the low temperature toughness of the EB weld metal deteriorates. However, simply reducing the N in terms of improving the toughness of the EB weld metal causes a new problem that high toughness of the base material cannot be secured.

【0019】そこで発明者らは、上記した相反する特性
の両立を目指して、鋭意研究を重ねた。その結果、添加
合金元素としては一般的なSi, Al, N, PおよびSの量
的バランスを調整するだけで、特に特別な合金元素を必
要とすることなしに、所期した目的が有利に達成できる
という思いもかけない新規知見が得られたのである。す
なわち、PとSを極力低減させると共に、低Siとくに好
ましくは0.15%以下とし、さらに低NとしてN/Alが0.
11〜0.40となるように調整することにより、良好な母材
靱性とEB溶接部靱性を兼備できることが究明されたの
である。
Accordingly, the inventors have conducted intensive studies aiming at achieving both of the above-mentioned conflicting characteristics. As a result, the intended purpose can be advantageously achieved by simply adjusting the general balance of Si, Al, N, P and S as an additional alloying element without requiring a special alloying element. It was an unexpected new finding that could be achieved. That is, P and S are reduced as much as possible, and low Si, particularly preferably 0.15% or less, and N / Al is set to 0.1 as low N.
It has been found that by adjusting to be 11 to 0.40, both good base material toughness and EB weld portion toughness can be achieved.

【0020】以下、まず各合金元素添加量の限定理由を
説明する。 C:0.07〜0.20% Cは、強度を確保するために少なくとも0.07%を必要と
するが、0.20%を超えると母材およびEB溶接金属の低
温靱性が劣化するため、0.07〜0.20%の範囲とした。
First, the reasons for limiting the amount of each alloy element to be added will be described. C: 0.07 to 0.20% C requires at least 0.07% to secure the strength, but if it exceeds 0.20%, the low-temperature toughness of the base metal and the EB weld metal deteriorates. did.

【0021】Si:0.05〜0.20% Siは、脱酸に有効なだけでなく、強度向上にも有用な元
素であるが、EB溶接部靱性に大きく影響する元素で、
多量添加は望ましくない。有効利用のためには少なくと
も0.05%を必要とするが、0.20%を超えるとEB溶接金
属の低温靱性が劣化するだけでなく、本発明組成鋼では
母材特性とくに落重特性が満足されなくなるので、0.05
〜0.20%(好ましくは0.05〜0.15%未満)の範囲とし
た。
Si: 0.05 to 0.20% Si is an element that is effective not only for deoxidation but also for improving the strength, but is an element that greatly affects the toughness of the EB weld.
Large additions are undesirable. At least 0.05% is required for effective use, but if it exceeds 0.20%, not only does the low-temperature toughness of the EB weld metal deteriorate, but also the base metal properties, particularly the dropping weight properties, are not satisfied with the composition steel of the present invention. , 0.05
0.20.20% (preferably 0.05 to less than 0.15%).

【0022】Mn:0.20〜1.80% Mnは、所望の強度を確保のために少なくとも0.20%を必
要とするが、1.80%を超えると溶接性およびEB溶接金
属の低温靱性を低下させるため、0.20〜1.80%の範囲と
した。
Mn: 0.20 to 1.80% Mn requires at least 0.20% to secure desired strength, but if it exceeds 1.80%, the weldability and the low-temperature toughness of the EB weld metal are reduced. The range was 1.80%.

【0023】P:0.008 %以下、S:0.005 %以下、 PおよびSはいずれも、EB溶接金属の低温靱性を著し
く劣化させるので、極力低減するのが望ましく、併せて
良好な母材靱性を確保するには、それぞれの上限はPは
0.008%、Sは 0.005%までである。
P: 0.008% or less, S: 0.005% or less Since both P and S significantly deteriorate the low-temperature toughness of the EB weld metal, it is desirable to reduce it as much as possible, and to secure good base metal toughness. To make each upper limit P
0.008%, S is up to 0.005%.

【0024】sol Al:0.005 〜0.040 % Alは、鋼材の脱酸に使用される元素であり、この発明で
はNと共に重要な役割を果たす。すなわち低Si、低P、
低Sおよび低N鋼において、Al添加量を0.005%未満ま
で低減すると粗大な島状マルテンサイトがEB溶接金属
中に生成して低温靱性は著しく劣化し、また 0.005%未
満ではAlNによる母材の粒の細粒化効果も全く期待でき
ず、母材の低温靱性も劣化するので、下限を 0.005%と
した。一方この発明の低N系鋼において、Alを0.040 %
を超えて多量に添加すると粗大なAlNが生成し母材の低
温靱性が劣化するため、上限を 0.040%とした。
Sol Al: 0.005 to 0.040% Al is an element used for deoxidizing steel, and plays an important role together with N in the present invention. That is, low Si, low P,
In low S and low N steels, when the Al content is reduced to less than 0.005%, coarse island martensite is formed in the EB weld metal and the low temperature toughness is significantly deteriorated. Since the effect of grain refinement cannot be expected at all, and the low-temperature toughness of the base material also deteriorates, the lower limit is set to 0.005%. On the other hand, in the low-N steel of the present invention, 0.040% of Al
If a large amount is added beyond that, coarse AlN is formed and the low-temperature toughness of the base material is degraded, so the upper limit was made 0.040%.

【0025】N:0.0020〜0.0070% Nは、EB溶接金属の低温靱性を劣化させるので、この
種の汎用鋼よりも低減するが、本発明組成鋼においては
0.0070%以下にすれば十分なEB溶接金属の低温靱性が
確保できる。しかし、0.0020%に満たないほど低減する
とAlNの析出が生じなくなって母材の低温靱性が損なわ
れるので、0.0020〜0.0070%(好ましくは0.0020〜0.00
50%未満)の範囲とした。
N: 0.0020 to 0.0070% N degrades the low-temperature toughness of the EB weld metal, so that it is lower than that of this type of general-purpose steel.
If it is 0.0070% or less, sufficient low-temperature toughness of the EB weld metal can be secured. However, if it is reduced to less than 0.0020%, precipitation of AlN will not occur and the low-temperature toughness of the base material will be impaired, so that 0.0020 to 0.0070% (preferably 0.0020 to 0.00
(Less than 50%).

【0026】Ni:0.05〜1.50% Niは、EB溶接金属の低温靱性を害することなく、母材
の強度と靱性を向上させる有用元素であり、目標の特性
を得るには0.05%以上が必要である。しかし、1.50%を
超えて添加しても特性改善効果は少なく、しかも高価な
元素であることから、0.05〜1.50%の範囲とした。
Ni: 0.05-1.50% Ni is a useful element for improving the strength and toughness of the base metal without impairing the low-temperature toughness of the EB weld metal, and 0.05% or more is required to obtain the target properties. is there. However, even if added in excess of 1.50%, the effect of improving the characteristics is small, and it is an expensive element. Therefore, the content is set in the range of 0.05 to 1.50%.

【0027】Cr:0.05〜0.50% Crは、焼き入れ性を向上させ、ひいては母材おびEB溶
接金属部の強度を高める有用元素であり、少なくとも0.
05%を必要とするが、0.50%を超えると溶接性やEB溶
接金属の低温靱性を劣化させるため、0.05〜0.50%の範
囲とした。
Cr: 0.05 to 0.50% Cr is a useful element for improving the hardenability and, consequently, the strength of the base metal and the EB weld metal part.
However, if the content exceeds 0.50%, the weldability and the low-temperature toughness of the EB weld metal are degraded.

【0028】Mo:0.05〜1.00% Moは、母材の強度および靱性を共に向上させる元素であ
り、0.05%以上を必要とするが、1.00%を超えると溶接
性やEB溶接金属の低温靱性の劣化を招くため、0.05〜
1.00%の範囲とした。
Mo: 0.05 to 1.00% Mo is an element that improves both the strength and toughness of the base material, and requires 0.05% or more. If it exceeds 1.00%, the weldability and the low-temperature toughness of the EB weld metal are increased. 0.05 ~
The range was 1.00%.

【0029】O:0.0040%以下 Oが多すぎると、EB溶接金属にブローホールを生じさ
せるため、極力低減する必要があるが、0.0040%までな
らば許容できる。
O: 0.0040% or less If O is too much, blowholes are generated in the EB weld metal, so it is necessary to reduce it as much as possible. However, up to 0.0040% is acceptable.

【0030】N/Al:0.11〜0.40% 以上、基本成分について説明したが、この発明では成分
組成を上記の範囲に限定するだけでは不十分で、NとAl
との比N/Alを所定の範囲に制限することが肝要であ
る。すなわち、この発明は、厚鋼板の母材靱性とEB溶
接金属靱性の両特性を同時に良好なものとするため、両
特性に影響を及ぼす固溶N量、固溶Al量およびAlN析出
形態を規制、制御することに加えて、さらに添加N量と
Al量との比N/Alを上記の範囲に規制することにした。
この理由は、N/Alが0.11に満たないと、AlN析出量が
少なく、たとえこの発明の組成範囲内であっても母材の
低温靱性が著しく劣化するからであり、一方、N/Alが
0.40を超えると、母材靱性は良好であるもののEB溶接
金属の低温靱性が著しく劣化するからである。
N / Al: 0.11 to 0.40% Although the basic components have been described above, it is not enough to limit the component composition to the above range in the present invention.
It is important to limit the ratio N / Al to a predetermined range. In other words, the present invention regulates the amount of solute N, the amount of solute Al and the precipitation form of AlN, which affect both properties, in order to simultaneously improve both the base metal toughness and the EB weld metal toughness of a thick steel plate. , In addition to controlling, the amount of added N and
The ratio N / Al to the amount of Al was determined to be within the above range.
The reason for this is that if N / Al is less than 0.11, the precipitation amount of AlN is small, and even if it is within the composition range of the present invention, the low-temperature toughness of the base material is significantly deteriorated.
If it exceeds 0.40, the base material toughness is good, but the low-temperature toughness of the EB weld metal is significantly deteriorated.

【0031】C:0.18%、Si:0.15%、Mn:1.45%、
P:0.004 %、S:0.002 %、Ni:0.65%、Cr:0.13
%、Mo:0.55%およびO:0.0020%を基本成分とし、Al
とN量を、Al:0.006 〜0.050 %、N:0.0020〜0.0120
%の範囲で変化させて、N/Alを種々に変化させたとき
の、N/Alと母材の低温靱性(vTrs)およびEB溶接金
属の吸収エネルギー(vE-40)との関係について調べた結
果を、図1に示す。同図より明らかなように、N/Alが
0.11〜0.40を満足している場合に限り、優れた母材靱性
と良好なEB溶接金属の靱性の両者を兼備することがで
きる。
C: 0.18%, Si: 0.15%, Mn: 1.45%,
P: 0.004%, S: 0.002%, Ni: 0.65%, Cr: 0.13
%, Mo: 0.55% and O: 0.0020% as basic components, Al
And N amount, Al: 0.006 to 0.050%, N: 0.0020 to 0.0120
%, And the relationship between N / Al and the low-temperature toughness (vTrs) of the base metal and the absorbed energy (vE- 40 ) of the EB weld metal were examined when N / Al was variously changed. The results are shown in FIG. As is clear from FIG.
Only when 0.11 to 0.40 is satisfied, both excellent base metal toughness and good EB weld metal toughness can be obtained.

【0032】さらにこの発明では、上記の基本成分に加
えてCaやREM を以下の範囲で添加することができる。 Ca:0.0005〜0.0050% Caは、硫化物(MnS)の形態を制御し、母材の低温靱性
や異方性の改善および耐水素誘起割れ性の向上に効果を
発揮する有用元素であるが、含有量が0.0005%に満たな
いとその添加効果に乏しく、一方0.0050%を超えるとCa
オキシサルファイド(介在物)が生成し、低温靱性や清
浄度を害するため、0.0005〜0.0050%の範囲とした。
Further, in the present invention, Ca and REM can be added in the following range in addition to the above basic components. Ca: 0.0005% to 0.0050% Ca is a useful element that controls the morphology of sulfide (MnS) and has an effect on improving the low-temperature toughness and anisotropy of the base metal and improving the resistance to hydrogen-induced cracking. If the content is less than 0.0005%, the effect of the addition is poor, while if it exceeds 0.0050%, Ca
Oxysulfides (inclusions) are formed and impair the low-temperature toughness and cleanliness. Therefore, the content is set in the range of 0.0005 to 0.0050%.

【0033】REM :0.0005〜0.0050% REMは、Caと同様、硫化物(MnS)の形態制御並びに母
材の低温靱性や異方性の改善および耐水素誘起割れ性の
向上に有効に寄与するが、含有量が0.0005%に満たない
とその添加効果に乏しく、一方0.0050%を超えると低温
靱性や清浄度が劣化するので、0.0005〜0.0050%の範囲
とした。
REM: 0.0005% to 0.0050% REM, like Ca, effectively contributes to controlling the morphology of sulfide (MnS), improving the low-temperature toughness and anisotropy of the base metal, and improving the resistance to hydrogen-induced cracking. If the content is less than 0.0005%, the effect of the addition is poor. On the other hand, if it exceeds 0.0050%, the low-temperature toughness and cleanliness deteriorate, so the content was made 0.0005 to 0.0050%.

【0034】この発明鋼板は、上記の如く化学組成を調
整した溶鋼を、連続鋳造によって鋳片とする際、連鋳片
の内部溶鋼が凝固を完了するクレータエンド近傍に対
し、取鍋中溶鋼のP含有量(P0 )(これは、鋼中平均
P含有量にほぼ等しい)に対するクレータエンド部にお
ける板厚中心部のP含有量(P)の比P/P0 が、 1.3
以下となる鍛圧加工を施し、ついで熱間圧延または鍛造
後、常法による焼入れ−焼戻し処理あるいは熱間圧延後
の直接焼入れ−焼戻し処理のいずれかの製造法によって
得ることができる。上記の鍛圧加工により、電子ビーム
溶接部の靱性に害を及ぼすPの偏析が効果的に防止され
るのである。
In the steel sheet according to the present invention, when the molten steel whose chemical composition is adjusted as described above is made into a slab by continuous casting, the molten steel in the ladle is placed near the crater end where the internal molten steel of the continuous slab completes solidification. The ratio P / P 0 of the P content (P) at the center of the plate thickness at the crater end to the P content (P 0 ) (which is approximately equal to the average P content in steel) is 1.3
Forging can be performed by the following forging process, followed by hot rolling or forging, followed by quenching and tempering by a conventional method or direct quenching and tempering after hot rolling. By the forging described above, segregation of P, which harms the toughness of the electron beam weld, is effectively prevented.

【0035】ここに、上記の如き鍛圧加工によってP/
0 比の制御が可能な理由は、次のとおりである。すな
わち内部溶鋼の凝固末期には、Pの濃化が進んだ溶鋼が
クレータエンド近傍に存在するため、このまま凝固する
と中心偏析となるわけであるが、凝固前に鍛圧加工を施
すと、かようなP濃化溶鋼は上方に押し出される結果、
中心部におけるP濃度はさほど上昇することはない。従
って、鍛圧加工の実施時期をPの濃化程度に応じて調節
すれば、板厚中心部におけるP含有量を調整できるわけ
である。この点、かかる制御を行わない、従来のような
P/P0 比が 1.3を超える鋼板では、中心偏析部がさら
にEBWによって溶融と凝固を繰り返すことにより、E
BW最終凝固部ではなお一層Pの濃化した偏析部が生じ
る。その結果、Pの鋼中含有量を低減した鋼であって
も、EBW部に局所的に靱性の劣化した部分が存在し、
破壊の起点となるおそれがある。また、Pの鋼中含有量
の低減は現在の製鋼技術では経済的に非常に不利である
が、P/P0 比を 1.3以下にすることによって、かかる
製鋼上の経済的負担を軽減することもできる。なお、P
/P0 比を 1.3以下とするのに好適な、鍛圧加工におけ
る圧下率は、5%以上、15%以下程度である。また、P
/P0 比を 1.3以下とするための手段としては、鍛圧加
工のみではなく、拡散焼鈍等の処理も有効である。
Here, P /
The reason why the P 0 ratio can be controlled is as follows. That is, in the final stage of solidification of the internal molten steel, since the molten steel in which P has been enriched is present near the crater end, if it is solidified as it is, central segregation will occur, but if forging is performed before solidification, As a result of the P-enriched molten steel being pushed upward,
The P concentration at the center does not increase so much. Therefore, if the forging process is performed in accordance with the concentration of P, the P content at the center of the sheet thickness can be adjusted. In this regard, in the case of a conventional steel sheet in which such control is not performed and the P / P 0 ratio exceeds 1.3, the center segregation portion further repeats melting and solidification by EBW, thereby reducing the E value.
In the BW final solidification part, a segregation part in which P is further concentrated occurs. As a result, even in a steel in which the content of P in the steel is reduced, there is a locally deteriorated toughness portion in the EBW portion,
It may be a starting point of destruction. Further, it is reduced in the steel in the content of P is economically very disadvantageous in current steelmaking technology, by the P / P 0 ratio than 1.3, to reduce the economic burden on such steel Can also. Note that P
The rolling reduction in forging, suitable for setting the / P 0 ratio to 1.3 or less, is about 5% or more and about 15% or less. Also, P
As a means for controlling the / P 0 ratio to 1.3 or less, not only forging processing but also processing such as diffusion annealing is effective.

【0036】[0036]

【実施例】【Example】

実施例1 表1に化学組成を示す溶鋼を、連続鋳造し、その際クレ
ーターエンド近傍で鍛圧加工(圧下率:5〜15%)を施
し、ついで熱間圧延により120 mm厚の鋼板とした。これ
らの鋼板について、 900℃に加熱後空冷し、さらに 880
℃で3時間加熱保持後、水焼き入れしたのち、 645℃に
加熱後空冷した。ついで、かかる板厚 120mmの鋼板に1
パスの電子ビーム溶接を行った。その後、 615℃で5時
間の溶接後熱処理を行った後の、鋼板の引張特性と衝撃
特性およびEB溶接金属の衝撃特性について調べた結果
を、表1に併記する。なお表1には、比較のため、この
発明のような鍛圧加工を施さない従来法に従って得た鋼
板の調査結果についても併せて示す。
Example 1 Molten steel having a chemical composition shown in Table 1 was continuously cast, forged at the vicinity of the crater end (rolling reduction: 5 to 15%), and then hot-rolled into a 120 mm thick steel sheet. These steel sheets were heated to 900 ° C, air-cooled, and further cooled to 880
After heating and holding at 3 ° C. for 3 hours, the mixture was quenched with water, heated to 645 ° C., and air-cooled. Then, for such a 120mm thick steel plate,
Pass electron beam welding was performed. Then, Table 1 also shows the results of examining the tensile properties and impact properties of the steel sheet and the impact properties of the EB weld metal after performing the post-weld heat treatment at 615 ° C. for 5 hours. Table 1 also shows, for comparison, the results of an investigation on steel sheets obtained according to the conventional method without forging as in the present invention.

【0037】[0037]

【表1】 [Table 1]

【0038】同表から明らかなように、この発明に従い
得られた鋼板は引張強さが 590 MPa以上の高い強度を有
し、かつ母材およびEB溶接金属の低温靱性も良好であ
ったのに対し、Al含有量が多すぎたり、少なすぎた場合
には、主に母材の靱性が劣化し、またN量の多い鋼では
EB溶接金属の靱性が劣化した。さらにN/Alが適正範
囲外の鋼もEB溶接部の靱性が劣化した。また従来法に
従い得られた鋼材は、Pの中心偏析により、良好な低温
靱性は得られなかった。
As is clear from the table, the steel sheet obtained according to the present invention has a high tensile strength of 590 MPa or more, and has good low-temperature toughness of the base metal and the EB weld metal. On the other hand, when the Al content was too large or too small, the toughness of the base material was mainly deteriorated, and the toughness of the EB weld metal was deteriorated in steels with a large amount of N. Further, the toughness of the EB weld also deteriorated for steels with N / Al outside the proper range. Further, in the steel material obtained according to the conventional method, good low-temperature toughness was not obtained due to the central segregation of P.

【0039】実施例2 表2に化学組成を示す溶鋼を、連続鋳造し、その際クレ
ーターエンド近傍で鍛圧加工(圧下率:5〜15%)を施
し、ついで熱間圧延により100 mm厚の鋼板とした。これ
らの鋼板について、 880℃で3時間加熱保持後、水焼き
入れしたのち、 645℃に加熱後空冷した。ついで、かか
る板厚 100mmの鋼板に1パスの電子ビーム溶接を行っ
た。その後、 615℃で5時間の溶接後熱処理を行った後
の、鋼板の引張特性と衝撃特性およびEB溶接金属の衝
撃特性について調べた結果を、表2に併記する。また表
2には、比較のため、この発明のような鍛圧加工を施さ
ない従来法に従って得た鋼板の調査結果についても併せ
て示す。
Example 2 Molten steel having the chemical composition shown in Table 2 was continuously cast, in which case a forging process (reduction rate: 5 to 15%) was performed in the vicinity of the crater end, and a 100 mm-thick steel sheet was hot-rolled. And These steel sheets were heated at 880 ° C. for 3 hours, quenched with water, heated to 645 ° C., and air-cooled. Then, one-pass electron beam welding was performed on the steel sheet having a thickness of 100 mm. Then, Table 2 also shows the results of examining the tensile properties and impact properties of the steel sheet and the impact properties of the EB weld metal after the post-weld heat treatment at 615 ° C. for 5 hours. Table 2 also shows, for comparison, the results of a survey on steel sheets obtained according to the conventional method without forging as in the present invention.

【0040】[0040]

【表2】 [Table 2]

【0041】同表から明らかなように、この発明に従い
得られた鋼板は引張強さが 590 MPa以上の高い強度を有
し、母材およびEB溶接金属の低温靱性も良好であっ
た。これに対し、AlやN含有量が多すぎた場合にはEB
溶接金属の低温靱性が劣化し、またP含有量が許容上限
を超えた場合には母材およびEB溶接金属の低温靱性と
も劣化した。さらに従来法に従い得られた鋼材は、Pの
中心偏析により、とくにEB溶接金属の低温靱性が大幅
に劣化した。
As is clear from the table, the steel sheet obtained according to the present invention had a high tensile strength of 590 MPa or more, and also had good low-temperature toughness of the base metal and the EB weld metal. On the other hand, if the content of Al or N is too large, EB
The low-temperature toughness of the weld metal deteriorated, and when the P content exceeded the allowable upper limit, the low-temperature toughness of the base metal and the EB weld metal also deteriorated. Further, in the steel material obtained according to the conventional method, the low-temperature toughness of the EB weld metal, in particular, was significantly deteriorated due to the central segregation of P.

【0042】実施例3 表3に示す成分組成の鋼片に、拡散焼鈍処理を施し、次
いで熱間圧延により 100mm厚の鋼板とした。これらの鋼
板について、 880℃で3時間加熱保持後、水焼き入れし
たのち、 645℃に加熱空冷した。次いで、かかる板厚 1
00mmの鋼板に1パスの電子ビーム溶接を行った。その
後、 615℃で5時間の溶接後熱処理を行った後の、鋼板
の引張特性と衝撃特性およびEB溶接金属の衝撃特性に
ついて調べた結果を、表3に併記する。同表から明らか
なように、この発明に従い得られた鋼板は引張強さが 5
90 MPa以上の高い強度を有し、母材およびEB溶接金属
の低温靱性も良好であった。
Example 3 A steel slab having the composition shown in Table 3 was subjected to a diffusion annealing treatment, and then hot-rolled to obtain a steel sheet having a thickness of 100 mm. These steel sheets were heated and maintained at 880 ° C. for 3 hours, then water-quenched, and then air-cooled to 645 ° C. Then, the sheet thickness 1
One pass electron beam welding was performed on a 00 mm steel plate. Then, Table 3 also shows the results of examining the tensile properties and impact properties of the steel sheet and the impact properties of the EB weld metal after the post-weld heat treatment at 615 ° C. for 5 hours. As is clear from the table, the steel sheet obtained according to the present invention has a tensile strength of 5%.
It had a high strength of 90 MPa or more, and the low-temperature toughness of the base metal and the EB weld metal was also good.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】この発明に従うMn−Ni−Mo鋼は、原子力
プラントや化学プラントの圧力容器や反応容器に使用さ
れる厚肉溶接構造用鋼として、引張強さ580MPa以上の高
い強度と良好な低温靱性を有し、しかも電子ビーム溶接
を適用した場合にも十分な継手部の靱性が確保される。
従って溶接効率の著しい向上と構造物としての高い信頼
性が得られ、その工業的価値は大きい。
As described above, the Mn-Ni-Mo steel according to the present invention has a high strength of at least 580 MPa and a good tensile strength as a steel for a thick-walled welding structure used in a pressure vessel or a reaction vessel of a nuclear power plant or a chemical plant. It has low-temperature toughness and ensures sufficient toughness of the joint even when electron beam welding is applied.
Accordingly, remarkable improvement in welding efficiency and high reliability as a structure can be obtained, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】母材の低温靱性(vTrs)およびEB溶接金属の
吸収エネルギー(vE-40)に及ぼすN/Alの影響を示した
グラフである。
FIG. 1 is a graph showing the effect of N / Al on the low-temperature toughness (vTrs) of a base metal and the absorbed energy (vE- 40 ) of an EB weld metal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B23K 103:04 (56)参考文献 特開 平2−77562(JP,A) 特開 平2−77561(JP,A) 特開 平3−254340(JP,A) 日本学術振興会製鋼第19委員会編「鉄 鋼と合金元素(下)」(昭41−3−25) 誠文堂新光社p.135 日本学術振興会製鋼第19委員会編「鉄 鋼と合金元素(上)」(昭41−2−28) 誠文堂新光社p.230−231──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location // B23K 103: 04 (56) References JP-A-2-77562 (JP, A) JP-A 2-77561 (JP, A) JP-A-3-254340 (JP, A) Japan Society for the Promotion of Science, Steelmaking 19th Committee, “Iron and Alloy Elements (2)” (Showa 41-3-25) Seibundo Shinkosha p. 135 Steelmaking and Alloying Elements (1), 19th Committee of Steelmaking, Japan Society for the Promotion of Science (Showa 41-2-28) Seibundo Shinkosha p. 230−231

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.07〜0.20wt%、 Si:0.05〜0.20wt%、 Mn:0.20〜1.80wt%、 P:0.008 wt%以下、 S:0.005 wt%以下、 solAl:0.005 〜0.040 wt%、 N:0.0020〜0.0070wt%、 Ni:0.05〜1.50wt%、 Cr:0.05〜0.50wt%、 Mo:0.05〜1.00wt% およびO:0.0040wt%以下 を、N/Al:0.11〜0.40の範囲で含有し、残部はFeおよ
び不可避的不純物の組成になり、かつ鋼中平均P含有量
(P0 )に対する板厚中心部のP含有量(P)の比P/
0 が 1.3以下であることを特徴とする電子ビーム溶接
部の靱性に優れた溶接構造用厚鋼板。
1. C: 0.07 to 0.20 wt%, Si: 0.05 to 0.20 wt%, Mn: 0.20 to 1.80 wt%, P: 0.008 wt% or less, S: 0.005 wt% or less, solAl: 0.005 to 0.040 wt% , N: 0.0020 to 0.0070 wt%, Ni: 0.05 to 1.50 wt%, Cr: 0.05 to 0.50 wt%, Mo: 0.05 to 1.00 wt% and O: 0.0040 wt% or less, N / Al: 0.11 to 0.40 And the balance has the composition of Fe and unavoidable impurities, and the ratio of the P content (P) of the central portion of the sheet thickness to the average P content (P 0 ) in the steel, P /
A thick steel plate for a welded structure excellent in toughness of an electron beam weld, wherein P 0 is 1.3 or less.
【請求項2】 C:0.07〜0.20wt%、 Si:0.05〜0.20wt%、 Mn:0.20〜1.80wt%、 P:0.008 wt%以下、 S:0.005 wt%以下、 solAl:0.005 〜0.040 wt%、 N:0.0020〜0.0070wt%、 Ni:0.05〜1.50wt%、 Cr:0.05〜0.50wt%、 Mo:0.05〜1.00wt% およびO:0.0040wt%以下を、N/Al:0.11〜0.40の範
囲で含み、かつ Ca:0.0005〜0.0050wt%および REM:0.0005〜0.0050wt
%、のうちから選んだ一種又は二種を含有し、残部はFe
および不可避的不純物の組成になり、かつ鋼中平均P含
有量(P0 )に対する板厚中心部のP含有量(P)の比
P/P0 が 1.3以下であることを特徴とする電子ビーム
溶接部の靱性に優れた溶接構造用厚鋼板。
2. C: 0.07 to 0.20 wt%, Si: 0.05 to 0.20 wt%, Mn: 0.20 to 1.80 wt%, P: 0.008 wt% or less, S: 0.005 wt% or less, solAl: 0.005 to 0.040 wt% N: 0.0020 to 0.0070 wt%, Ni: 0.05 to 1.50 wt%, Cr: 0.05 to 0.50 wt%, Mo: 0.05 to 1.00 wt% and O: 0.0040 wt% or less, N / Al: 0.11 to 0.40 And Ca: 0.0005-0.0050wt% and REM: 0.0005-0.0050wt%
%, One or two selected from the following, with the balance being Fe
An electron beam having a composition of unavoidable impurities and a ratio P / P 0 of the P content (P) at the center of the plate thickness to the average P content (P 0 ) in the steel of 1.3 or less. Thick steel plate for welded structures with excellent toughness in welds.
【請求項3】 C:0.07〜0.20wt%、 Si:0.05〜0.20wt%、 Mn:0.20〜1.80wt%、 P:0.008 wt%以下、 S:0.005 wt%以下、 solAl:0.005 〜0.040 wt%、 N:0.0020〜0.0070wt%、 Ni:0.05〜1.50wt%、 Cr:0.05〜0.50wt%、 Mo:0.05〜1.00wt% およびO:0.0040wt%以下 を、N/Al:0.11〜0.40の範囲で含有し、残部はFeおよ
び不可避的不純物の組成になる溶鋼を、連続鋳造し、熱
間圧延または鍛造により厚鋼板とした後、焼入れ−焼戻
しを施すことによって、溶接構造用厚鋼板を製造するに
際し、 連続鋳造工程において、連鋳片の内部溶鋼が凝固を完了
するクレータエンド近傍に対し、取鍋中溶鋼のP含有量
(P0 )に対する板厚中心部におけるP含有量(P)の
比P/P0 が 1.3以下となる鍛圧加工を施すことを特徴
とする電子ビーム溶接部の靱性に優れた溶接構造用厚鋼
板の製造方法。
3. C: 0.07 to 0.20 wt%, Si: 0.05 to 0.20 wt%, Mn: 0.20 to 1.80 wt%, P: 0.008 wt% or less, S: 0.005 wt% or less, solAl: 0.005 to 0.040 wt% , N: 0.0020 to 0.0070 wt%, Ni: 0.05 to 1.50 wt%, Cr: 0.05 to 0.50 wt%, Mo: 0.05 to 1.00 wt% and O: 0.0040 wt% or less, N / Al: 0.11 to 0.40 , The remainder is molten steel that has a composition of Fe and unavoidable impurities, continuously cast, after hot rolling or forging into a thick steel plate, by quenching-tempering, to produce a thick steel plate for welding structure In the continuous casting process, the ratio of the P content (P) at the center of the plate thickness to the P content (P 0 ) of the molten steel in the ladle with respect to the vicinity of the crater end where the internal molten steel of the continuous cast piece completes solidification P / P 0 of 1.3 or less and comprising forged machining of welding structural steel plate superior in toughness of the electron beam weld, wherein the subjecting Production method.
【請求項4】 C:0.07〜0.20wt%、 Si:0.05〜0.20wt%、 Mn:0.20〜1.80wt%、 P:0.008 wt%以下、 S:0.005 wt%以下、 solAl:0.005 〜0.040 wt%、 N:0.0020〜0.0070wt%、 Ni:0.05〜1.50wt%、 Cr:0.05〜0.50wt%、 Mo:0.05〜1.00wt% およびO:0.0040wt%以下を、N/Al:0.11〜0.40の範
囲で含み、かつ Ca:0.0005〜0.0050wt%および REM:0.0005〜0.0050wt
%、のうちから選んだ一種又は二種を含有し、残部はFe
および不可避的不純物の組成になる溶鋼を、連続鋳造
し、熱間圧延または鍛造により厚鋼板とした後、焼入れ
−焼戻しを施すことによって、溶接構造用厚鋼板を製造
するに際し、 連続鋳造工程において、連鋳片の内部溶鋼が凝固を完了
するクレータエンド近傍に対し、取鍋中溶鋼のP含有量
(P0 )に対する板厚中心部におけるP含有量(P)の
比P/P0 が 1.3以下となる鍛圧加工を施すことを特徴
とする電子ビーム溶接部の靱性に優れた溶接構造用厚鋼
板の製造方法。
4. C: 0.07 to 0.20 wt%, Si: 0.05 to 0.20 wt%, Mn: 0.20 to 1.80 wt%, P: 0.008 wt% or less, S: 0.005 wt% or less, solAl: 0.005 to 0.040 wt% N: 0.0020 to 0.0070 wt%, Ni: 0.05 to 1.50 wt%, Cr: 0.05 to 0.50 wt%, Mo: 0.05 to 1.00 wt% and O: 0.0040 wt% or less, N / Al: 0.11 to 0.40 And Ca: 0.0005-0.0050wt% and REM: 0.0005-0.0050wt%
%, One or two selected from the following, with the balance being Fe
In the continuous casting process, when manufacturing molten steel having a composition of unavoidable impurities, continuously casting, forming a thick steel plate by hot rolling or forging, and then performing quenching and tempering to manufacture a thick steel plate for a welded structure, The ratio P / P 0 of the P content (P) at the center of the plate thickness to the P content (P 0 ) of the molten steel in the ladle is 1.3 or less, in the vicinity of the crater end where the internal molten steel of the continuous cast iron completes solidification A method for producing a thick steel plate for a welded structure having excellent toughness in an electron beam welded part, wherein forging is performed.
JP4324213A 1991-12-13 1992-12-03 Thick steel plate for welded structure excellent in toughness of electron beam weld and manufacturing method thereof Expired - Lifetime JP2703162B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-330632 1991-12-13
JP33063291 1991-12-13

Publications (2)

Publication Number Publication Date
JPH05295480A JPH05295480A (en) 1993-11-09
JP2703162B2 true JP2703162B2 (en) 1998-01-26

Family

ID=18234841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4324213A Expired - Lifetime JP2703162B2 (en) 1991-12-13 1992-12-03 Thick steel plate for welded structure excellent in toughness of electron beam weld and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2703162B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660229B1 (en) * 2005-12-26 2006-12-21 주식회사 포스코 Thick steel plate for welded structure having high strength and excellent toughness at the center of thickness and small variation of properties along with through-thickness and method of producing the same
KR20150127304A (en) * 2010-11-22 2015-11-16 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
CN102605239A (en) * 2011-12-09 2012-07-25 首钢总公司 Low sulfur steel and production method thereof
JP5472342B2 (en) * 2012-02-24 2014-04-16 新日鐵住金株式会社 Electron beam welded joint with excellent brittle fracture resistance
CN109182910A (en) * 2018-10-20 2019-01-11 江苏铸鸿锻造有限公司 A kind of carbon manganese steel forging circle of low-temperature impact-resistant and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277561A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Nuclear reactor steel plate excellent in electron beam welding characteristic
JPH0277562A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Nuclear reactor steel excellent in electron beam welding characteristic
JP2986829B2 (en) * 1990-03-03 1999-12-06 川崎製鉄株式会社 Manufacturing method of bearing material with excellent rolling fatigue life

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日本学術振興会製鋼第19委員会編「鉄鋼と合金元素(上)」(昭41−2−28)誠文堂新光社p.230−231
日本学術振興会製鋼第19委員会編「鉄鋼と合金元素(下)」(昭41−3−25)誠文堂新光社p.135

Also Published As

Publication number Publication date
JPH05295480A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
JP5604842B2 (en) Steel material for large heat input welding
EP2305850B1 (en) High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
JPH06100924A (en) Production of shape steel subjected to controlled rolling excellent in fire resistance and toughness
JP2011080156A (en) Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP3502822B2 (en) Steel material excellent in toughness of welded heat-affected zone and method for producing the same
EP0165774B2 (en) Method for producing high-strength steel having improved weldability
JP2703162B2 (en) Thick steel plate for welded structure excellent in toughness of electron beam weld and manufacturing method thereof
JPS626730B2 (en)
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
KR102508128B1 (en) Steel plate having excellent low temperature impact toughness of heat affeected zone and manufacturing mehtod for the same
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JPH10147835A (en) 590mpa class rolled shape steel and its production
CN113242910A (en) Super-thick structural steel material having excellent embrittlement initiation resistance and method for manufacturing the same
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JPH091303A (en) Manufacture of low temperature use steel excellent in ctod property of heat affected zone
JP3943754B2 (en) High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet that have excellent fatigue properties of the base metal and formability after welding, and are difficult to soften the heat affected zone.
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
KR102422579B1 (en) Method of manufacturing tailor weleded blanks for hot stamping

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 15