JP3174098B2 - Low-yield-ratio web thin-walled H-section steel and method for producing the same - Google Patents

Low-yield-ratio web thin-walled H-section steel and method for producing the same

Info

Publication number
JP3174098B2
JP3174098B2 JP21694491A JP21694491A JP3174098B2 JP 3174098 B2 JP3174098 B2 JP 3174098B2 JP 21694491 A JP21694491 A JP 21694491A JP 21694491 A JP21694491 A JP 21694491A JP 3174098 B2 JP3174098 B2 JP 3174098B2
Authority
JP
Japan
Prior art keywords
yield
walled
low
section steel
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21694491A
Other languages
Japanese (ja)
Other versions
JPH0525588A (en
Inventor
信行 近藤
正彦 森田
虔一 天野
昭三郎 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP21694491A priority Critical patent/JP3174098B2/en
Publication of JPH0525588A publication Critical patent/JPH0525588A/en
Application granted granted Critical
Publication of JP3174098B2 publication Critical patent/JP3174098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は、引張強さが490〜610MP
a(50〜62kgf/mm2 を有し、降伏比が75
%以下の建築用の低降伏比ウエブ薄肉H形鋼及びその製
造方法に関する。
The present invention has a tensile strength of 490 to 610MP.
a ( 50-62 kgf / mm 2 ) and a yield ratio of 75
% Low-yield ratio web thin-walled H-section steel for architectural use, and a method for producing the same.

【0002】[0002]

【従来の技術】一般にH形鋼の断面寸法はフランジ板厚
がウエブ板厚よりも厚くなっているため、圧延過程では
ウエブの冷却速度がフランジに比較して速くなり、圧延
時及び冷却時にフランジとウエブとの温度差が生じる。
この温度差によって、ウエブに座屈限界を超える圧縮応
力が生じるとウエブ波が発生する。
2. Description of the Related Art In general, the cross-sectional dimension of an H-section steel is such that the flange plate thickness is larger than the web plate thickness, so that the cooling rate of the web is higher than that of the flange in the rolling process. Temperature difference between the web and the web.
If a compressive stress exceeding the buckling limit is generated on the web due to this temperature difference, a web wave is generated.

【0003】ところで、ウエブ板厚の薄いサイズのH形
鋼は、従来圧延板を用いた溶接法による製造が主体であ
ったが、コストダウンの観点から圧延によるH形鋼が要
望されるようになった。圧延法によるウエブ薄肉H形鋼
の製造は従来のH形鋼にくらべて、ウエブとフランジの
温度差が大きくなるため、冷却時にウエブ波が発生しや
すくなる。このようなフランジとウエブの温度差を縮少
しウエブ波を防止するために、温度の高いフランジを強
制冷却することは有効な手段の一つである。しかし強制
冷却によって低温変態生成物が形成され、機械的性質が
変動し、降伏比が高くなってしまう問題があった。
[0003] By the way, H-shaped steels having a small web thickness have been mainly produced by a welding method using a rolled plate. However, from the viewpoint of cost reduction, H-shaped steels by rolling have been demanded. became. In the manufacture of a web thin-walled H-section steel by the rolling method, the temperature difference between the web and the flange is larger than that of the conventional H-section steel, so that a web wave is easily generated during cooling. In order to reduce such a temperature difference between the flange and the web and to prevent a web wave, forcible cooling of a flange having a high temperature is one of effective means. However, there was a problem that a low-temperature transformation product was formed by forced cooling, mechanical properties fluctuated, and a yield ratio was increased.

【0004】また、近年、大地震による建物の倒壊防止
を考慮した終局限界状態設計が採用されはじめており、
このような用途の鉄骨鋼材には塑性変形能力の確保の面
から降伏比の低いことが必要とされている。経済性に優
れた圧延ウエブ薄肉H形鋼を耐震設計法による建物に活
用するには低い降伏比を具備させることが必要である。
In recent years, ultimate limit state design in consideration of prevention of collapse of a building due to a large earthquake has begun to be adopted.
Steel frame materials for such applications are required to have a low yield ratio from the viewpoint of securing plastic deformation capacity. It is necessary to provide a low yield ratio in order to utilize the economical rolled web thin-walled H-section steel for buildings based on the seismic design method.

【0005】[0005]

【発明が解決しようとする課題】本発明は、耐震設計に
よる建物用鋼材に適用可能な、低降伏比のウエブ薄肉H
形鋼を、特定の化学成分の添加により得ること、及びこ
のようなH形鋼、圧延と冷却を適正化した熱間圧延方法
によって製造することを目的とするものである。
SUMMARY OF THE INVENTION The present invention relates to a thin web H having a low yield ratio, which is applicable to a building steel material having a seismic design.
It is an object of the present invention to obtain a shaped steel by adding a specific chemical component, and to manufacture such an H-shaped steel by a hot rolling method in which rolling and cooling are optimized.

【0006】[0006]

【課題を解決するための手段】本発明は、 C :0.01〜0.10wt% Si:0.01〜1.50wt% Mn:0.05〜0.80wt% Ti:0.04〜0.40wt%(但しTi/C:6.
超8以下) Al:0.005〜0.050wt% を含み、残部Fe及び不可避的不純物からなり、引張強
さが490〜610MPa(50〜62kgf/m
2)、降伏比が75%以下であることを特徴とする低
降伏比ウエブ薄肉H形鋼である。さらに、上記成分に加
えて Cu:0.05〜0.50wt% Ni:0.05〜0.50wt% Cr:0.05〜0.50wt%、および Nb:0.005〜0.050wt% の1種又は2種以上を含むと、好ましい特性を得ること
ができる。
According to the present invention, C: 0.01 to 0.10 wt% Si: 0.01 to 1.50 wt% Mn: 0.05 to 0.80 wt% Ti: 0.04 to 0 wt% .40 wt% (however, Ti / C: 6.
5 Super 8 below) Al: comprises 0.005~0.050Wt%, and the balance Fe and unavoidable impurities, the tensile strength of 490~610MPa (50~62kgf / m
m 2 ), a low-yield-ratio web thin-walled H-section steel having a yield ratio of 75% or less. Further, in addition to the above components, Cu: 0.05 to 0.50 wt% Ni: 0.05 to 0.50 wt% Cr: 0.05 to 0.50 wt%, and Nb: 0.005 to 0.050 wt% When one or more kinds are included, preferable characteristics can be obtained.

【0007】上記低降伏比の薄肉H形鋼を得るための本
発明方法は、 C :0.01〜0.10wt% Si:0.01〜1.50wt% Mn:0.05〜0.80wt% Ti:0.04〜0.40wt%(但しTi/C:6.
超8以下) Al:0.005〜0.050wt% を含み、残部Fe及び不可避的不純物からなる鋼を、1
200℃以上の温度に加熱し、Ar3 点以上の温度で熱
間加工した後、80℃/sec以下の冷却速度で冷却す
る工程で製造することを特徴とする引張強さが490〜
610MPa(50〜62kgf/mm2)、降伏比が
75%以下の低降伏比ウエブ薄肉H形鋼の製造方法であ
る。この発明方法において、さらに上記成分に加えて、 Cu:0.05〜0.50wt% Ni:0.05〜0.50wt% Cr:0.05〜0.50wt% Nb:0.005〜0.050wt% のうちの1種又は2種以上を含み、残部Fe及び不可避
的不純物からなる鋼を用いるとさらに好適である。
According to the method of the present invention for obtaining a thin H-section steel having a low yield ratio, C: 0.01 to 0.10 wt% Si: 0.01 to 1.50 wt% Mn: 0.05 to 0.80 wt% % Ti: 0.04 to 0.40 wt% (however, Ti / C: 6.
5 Super 8 below) Al: comprises 0.005~0.050Wt%, the steel and the balance Fe and unavoidable impurities, 1
It is heated to a temperature of 200 ° C. or more, hot-worked at a temperature of 3 points or more of Ar, and then cooled at a cooling rate of 80 ° C./sec or less.
This is a method for producing a low-yield-ratio web thin-walled H-section steel having a yield ratio of 610 MPa (50 to 62 kgf / mm 2 ) and a yield ratio of 75% or less. In the method of the present invention, in addition to the above components, Cu: 0.05 to 0.50 wt% Ni: 0.05 to 0.50 wt% Cr: 0.05 to 0.50 wt% Nb: 0.005 to 0.5 wt% It is more preferable to use steel containing one or more of 050 wt% and the balance being Fe and unavoidable impurities.

【0008】[0008]

【作用】本発明者らは、上記目的を達成するため種々の
研究を重ねた結果、特定の化学成分を限定することによ
って、圧延法によって低降伏比ウエブ薄肉H形鋼が得ら
れることを見出した。以下に本発明の添加元素の数値限
定の理由を説明する。Cは強度の向上に有効な元素であ
るが、0.01wt%未満ではその効果が少なく0.0
1wt%を下限とした。一方、0.10wt%を超える
と降伏強度、引張強度とも高くなりすぎるため0.10
wt%を上限とした。
The present inventors have conducted various studies to achieve the above object, and as a result, have found that a low yield ratio web thin-walled H-section steel can be obtained by a rolling method by limiting specific chemical components. Was. The reason for limiting the numerical values of the additional elements of the present invention will be described below. C is an element effective for improving the strength, but its effect is small when it is less than 0.01% by weight.
1 wt% was made the lower limit. On the other hand, if it exceeds 0.10 wt%, both the yield strength and the tensile strength become too high, so that
The upper limit was wt%.

【0009】Siは熱間圧延後の冷却過程でのTiCの
析出反応を促進するのに有効な元素で本発明では積極的
に添加するのが0.01wt%未満ではこの効果が少な
いので0.01wt%を下限とした。また1.5wt%
を超えると析出したTiCが粗大化して強度上昇効果が
得られなくなり、靭性の劣化も大きくなるので上限を
1.50wt%とした。
Si is an element effective for accelerating the precipitation reaction of TiC in the cooling process after hot rolling. In the present invention, if the content is less than 0.01 wt%, the effect is small. 01 wt% was made the lower limit. 1.5wt%
If it exceeds 300, the deposited TiC becomes coarse and the effect of increasing the strength cannot be obtained, and the deterioration of toughness also increases. Therefore, the upper limit is set to 1.50 wt%.

【0010】MnはAr3 変態を遅滞させ、またTiC
の析出反応を抑制し、TiC粒子の微細化に有効な元素
である。0.05wt%未満ではその効果がなく0.0
5wt%を下限とした。また0.80wt%を超える
と、引張強度が高くなりすぎるので上限を0.80wt
%とした。TiはCと結合してTiCとなり、強度の向
上及び低降伏比化に必要な固溶Cの低減に有効な元素で
本発明では積極的に添加するが、0.04wt%未満で
はこの効果が少ないので0.04wt%を下限とした。
0.40wt%を超えると、強度が高くなりすぎるため
0.40wt%を上限とした。さらに、低降伏比に有害
である固溶Cを減少させるため、TiでCで固着させる
ためTi/Cを6.5超8以下とする必要がある。Ti
/Cが高くなりすぎると靭性が劣化する傾向を有するた
め8以下が好適である。したがって、Ti/C:6.5
超8以下に限定する。
Mn slows down the Ar 3 transformation and also reduces TiC
Is an element that suppresses the precipitation reaction of Ti and is effective for refining TiC particles. Less than 0.05 wt% has no effect
5 wt% was made the lower limit. If the content exceeds 0.80 wt%, the tensile strength becomes too high, so the upper limit is set to 0.80 wt%.
%. Ti is combined with C to form TiC, and is an element that is effective in improving the strength and reducing solid solution C required for lowering the yield ratio, and is positively added in the present invention. Since it is small, the lower limit was set to 0.04 wt%.
If it exceeds 0.40 wt%, the strength becomes too high, so 0.40 wt% was made the upper limit. Further, in order to reduce solid solution C which is harmful to the low yield ratio, Ti / C needs to be more than 6.5 and 8 or less in order to fix with C by Ti. Ti
When / C is too high, the toughness tends to deteriorate, so that 8 or less is preferable. Therefore, Ti / C: 6.5
Limited to super 8 or less.

【0011】Alは強力な脱酸効果を有する元素である
が、0.005wt%未満では効果が少ないので、0.
005wt%を下限とした。また、0.050wt%を
超えて添加しても効果が飽和するので0.050wt%
を上限とした。以上の元素以外に必要に応じて添加しう
るものとして下記の元素がある。Cu、Ni、CrはA
3 変態を遅滞させる効果を通じて、TiCの微細化を
図る上で適量の範囲で用いれば、析出効果量を高めるの
に有用である。しかし、これらの元素が0.05wt%
未満では効果が少ないので0.05wt%を下限とし
た。また、0.50wt%を超えると経済面の有利性を
失うので0.50wt%を上限とした。
Al is an element having a strong deoxidizing effect, but less than 0.005 wt% has little effect.
005 wt% was made the lower limit. Further, even if added in an amount exceeding 0.050 wt%, the effect is saturated, so that 0.050 wt%
Was set as the upper limit. In addition to the above elements, the following elements can be added as necessary. A for Cu, Ni and Cr
It is useful to increase the amount of precipitation effect when used in an appropriate amount range for achieving finer TiC through the effect of delaying the r 3 transformation. However, these elements are 0.05wt%
If it is less than 0.05%, the effect is small, so the lower limit is 0.05 wt%. Further, if it exceeds 0.50 wt%, the economical advantage is lost, so 0.50 wt% was made the upper limit.

【0012】Nbは炭化物、窒化物となり、強靭化に有
効な元素であるが、0.005wt%未満ではこの効果
が少ないので、0.005wt%を下限とした。また
0.050wt%を超えて添加しても効果が飽和するの
で0.050wt%を上限とした。次に製造条件につい
て述べる。上記のような化学組成を有する鋼を転炉又は
電気炉で溶製し鋳型で造塊にした後、分塊でブルーム又
はビームブランクにする。分塊での均熱及び圧延は通常
の方法でよい。また、ブルーム又はビームブランクは連
続鋳造法により、溶鋼から直接製造してもよい。H形鋼
圧延の加熱温度はTiCを固溶させるために1200℃
以上が好ましい。1200℃より低いと溶体化が不十分
となり、冷却後に十分な析出効果が得られないためであ
る。しかし1350℃を超えるとオーステナイト粒が粗
大化しすぎ圧延後の材質に悪影響をおよぼすのと、経済
的にも不利になるので1350℃以下が好ましい。
Nb is a carbide and a nitride and is an element effective for toughening. However, if the content is less than 0.005% by weight, the effect is small. Therefore, the lower limit is set to 0.005% by weight. Further, even if added in excess of 0.050 wt%, the effect is saturated, so 0.050 wt% was made the upper limit. Next, the manufacturing conditions will be described. The steel having the chemical composition as described above is melted in a converter or an electric furnace and formed into an ingot with a mold. The soaking and rolling in the lumps may be performed by ordinary methods. Also, the bloom or beam blank may be manufactured directly from molten steel by a continuous casting method. The heating temperature of the H-section rolling is 1200 ° C. to dissolve TiC.
The above is preferred. If the temperature is lower than 1200 ° C., the solution becomes insufficient, and a sufficient precipitation effect cannot be obtained after cooling. However, if the temperature exceeds 1350 ° C., the austenite grains become too coarse, which has an adverse effect on the material after rolling, and is economically disadvantageous.

【0013】仕上圧延温度は安定した降伏強度を得るた
めにAr3 点温度以上が好ましい。仕上圧延温度をAr
3 点以上とするのは、この温度未満では加工組織が混入
し、材質のバラツキが大きくなる場合があるためであ
る。仕上圧延後の冷却は自然放冷でもよいが、安定した
析出効果を得るため、2℃/sec以上80℃/sec
以下の冷却速度で強冷冷却する。冷却速度が80℃/s
ecを超えると、TiCの析出量が少なく、十分な析出
効果が得られないためである。
The finish rolling temperature is preferably not lower than the Ar 3 point temperature in order to obtain a stable yield strength. Finish rolling temperature is Ar
The reason why the number of points is set to three or more is that if the temperature is lower than this, a processed structure may be mixed and the variation in the material may be increased. The cooling after the finish rolling may be allowed to cool naturally, but in order to obtain a stable precipitation effect, the cooling is performed at 2 ° C / sec or more and 80 ° C / sec.
Intense cooling is performed at the following cooling rate. Cooling rate 80 ° C / s
If it exceeds ec, the amount of TiC deposited is small, and a sufficient precipitation effect cannot be obtained.

【0014】[0014]

【実施例】表1に示す化学組成を有する溶鋼から連続鋳
造法によりビームブランクとした。これを1250℃に
加熱し、熱間圧延によって500×200×6×16m
mサイズのウエブ薄肉H形鋼に圧延した。仕上圧延後、
40℃/secで冷却したH形鋼のフランジ部よりJI
S1号引張試験片を切出して機械的性質を測定した結果
表2に示す。表2に示すように本発明法によると、引
張強さ490〜610MPa(50〜62kgf/mm
2 の範囲で降伏比は75%以下が得られる。しかし比
較例No.1、No.7〜9は化学組成或は製造条件が
請求範囲外の場合で、機械的性質の引張強さ、降伏比の
片方或は両方が請求範囲を外れている。
EXAMPLE A beam blank was prepared from a molten steel having the chemical composition shown in Table 1 by a continuous casting method. This is heated to 1250 ° C., and 500 × 200 × 6 × 16 m by hot rolling.
It was rolled into an m-size web thin H-section steel. After finish rolling,
JI from the flange of H-section steel cooled at 40 ° C / sec
Table 2 shows the results obtained by cutting out the S1 tensile test piece and measuring the mechanical properties. As shown in Table 2, according to the method of the present invention, the tensile strength is 490 to 610 MPa ( 50 to 62 kgf / mm).
In the range of 2 ) , a yield ratio of 75% or less can be obtained. However, in Comparative Example No. 1, No. 7 to 9 are cases where the chemical composition or the manufacturing conditions are out of the claims, and one or both of the tensile strength and the yield ratio of the mechanical properties are outside the claims.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【0018】[0018]

【発明の効果】以上のように本発明によれば引張強さが
490〜610MPa(50〜62kgf/mm2
降伏比が75%以下のウエブ薄肉H形鋼を経済的な熱間
圧延法によって製造することができるから、耐震設計の
建築物に広く適用が可能で大きな経済効果をもたらす。
As described above, according to the present invention, the tensile strength is
Since thin web H-section steel with a yield ratio of 490 to 610 MPa ( 50 to 62 kgf / mm 2 ) and a yield ratio of 75% or less can be manufactured by an economical hot rolling method, it can be widely applied to buildings with seismic design. Has a great economic effect.

フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/48 C22C 38/48 (72)発明者 中野 昭三郎 千葉市川崎町1番地 川崎製鉄株式会社 技術研究本部内 (56)参考文献 特開 平3−130345(JP,A) 特開 平2−282419(JP,A) 特開 昭56−44723(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C22C 38/48 C22C 38/48 (72) Inventor Shosaburo Naka 1 Kawasaki-cho, Chiba-shi Kawasaki Steel Corp. Technical Research Division (56) References Special JP-A-3-130345 (JP, A) JP-A-2-282419 (JP, A) JP-A-56-44723 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38 / 00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C :0.01〜0.10wt% Si:0.01〜1.50wt% Mn:0.05〜0.80wt% Ti:0.04〜0.40wt%(但しTi/C:6.
超8以下) Al:0.005〜0.050wt% を含有し、残部Fe及び不可避的不純物からなり、引張
強さが490〜610MPa(50〜62kgf/mm
2)、降伏比が75%以下である低降伏比ウエブ薄肉H
形鋼。
C: 0.01 to 0.10 wt% Si: 0.01 to 1.50 wt% Mn: 0.05 to 0.80 wt% Ti: 0.04 to 0.40 wt% (however, Ti / C : 6.
5 Super 8 below) Al: containing 0.005~0.050Wt%, and the balance Fe and unavoidable impurities, the tensile strength of 490~610MPa (50~62kgf / mm
2 ), low yield ratio web thin-walled H having a yield ratio of 75% or less
Shaped steel.
【請求項2】 さらに、 Cu:0.05〜0.50wt% Ni:0.05〜0.50wt% Cr:0.05〜0.50wt%、および Nb:0.005〜0.050wt% のうちの1種又は2種以上を含む請求項1記載の低降伏
比ウエブ薄肉H形鋼。
Further, Cu: 0.05 to 0.50 wt% Ni: 0.05 to 0.50 wt% Cr: 0.05 to 0.50 wt%, and Nb: 0.005 to 0.050 wt% The low-yield-ratio web thin-walled H-section steel according to claim 1, comprising one or more of the above.
【請求項3】 請求項1記載の成分から成る鋼を120
0℃以上の温度に加熱し、Ar3点以上の温度で熱間加
工した後、80℃/sec以下の冷却速度で冷却するこ
とを特徴とする引張強さが490〜610MPa(50
〜62kgf/mm2)、降伏比が75%以下である低
降伏比ウエブ薄肉H形鋼の製造方法。
3. The method according to claim 1, wherein the steel comprises 120
After heating to a temperature of 0 ° C. or more, hot working at a temperature of Ar 3 points or more, and cooling at a cooling rate of 80 ° C./sec or less, the tensile strength is 490 to 610 MPa (50
6262 kgf / mm 2 ), a method for producing a low-yield-ratio web thin-walled H-section steel having a yield ratio of 75% or less.
【請求項4】 鋼成分が請求項2記載の成分である請求
項3記載の低降伏比ウエブ薄肉H形鋼の製造方法。
4. The method for producing a low-yield-ratio web thin-walled H-section steel according to claim 3, wherein the steel component is the component according to claim 2.
JP21694491A 1990-12-21 1991-08-28 Low-yield-ratio web thin-walled H-section steel and method for producing the same Expired - Fee Related JP3174098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21694491A JP3174098B2 (en) 1990-12-21 1991-08-28 Low-yield-ratio web thin-walled H-section steel and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP40503990 1990-12-21
JP2-405039 1990-12-21
JP21694491A JP3174098B2 (en) 1990-12-21 1991-08-28 Low-yield-ratio web thin-walled H-section steel and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0525588A JPH0525588A (en) 1993-02-02
JP3174098B2 true JP3174098B2 (en) 2001-06-11

Family

ID=26521725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21694491A Expired - Fee Related JP3174098B2 (en) 1990-12-21 1991-08-28 Low-yield-ratio web thin-walled H-section steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3174098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579557B2 (en) * 1996-12-13 2004-10-20 新日本製鐵株式会社 H-section steel for tunnel support and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0525588A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP6788589B2 (en) High-strength steel with excellent brittle crack propagation resistance and its manufacturing method
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
US3673007A (en) Method for manufacturing a high toughness steel without subjecting it to heat treatment
JPH0823048B2 (en) Method for producing hot rolled steel sheet with excellent bake hardenability and workability
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP3022280B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
CA2266564C (en) High-strength high-toughness steel products and production method thereof
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JP2837056B2 (en) Method for producing low carbon equivalent rolled section steel by controlled rolling
JP3174098B2 (en) Low-yield-ratio web thin-walled H-section steel and method for producing the same
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
KR102252106B1 (en) Manufacturing method of seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more and seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more using the same
JP3218442B2 (en) Manufacturing method of mechanical structural steel with excellent delayed fracture resistance
JPH07224351A (en) Hot rolled high strength steel plate excellent in uniform elongation after cold working and its production
JP3022279B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JPH0649591A (en) High strength hot rolled steel plate excellent in workability and its production
JPS586937A (en) Production of hot-rolled high-tensile steel plate for working
JPH0541687B2 (en)
JP3485737B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness
KR100240999B1 (en) The manufacturing method for high strength steel sheet with low temperature shocking toughness property
JP3462968B2 (en) Low yield ratio type hot rolled steel sheet for refractory, steel pipe, and method for producing them
JP2001089816A (en) Method of manufacturing high strength hot rolled steel plate
EP3889295A2 (en) Ultra-thick steel excellent in brittle crack arrestability and manufacturing method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

LAPS Cancellation because of no payment of annual fees