JPH056946A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH056946A
JPH056946A JP3183482A JP18348291A JPH056946A JP H056946 A JPH056946 A JP H056946A JP 3183482 A JP3183482 A JP 3183482A JP 18348291 A JP18348291 A JP 18348291A JP H056946 A JPH056946 A JP H056946A
Authority
JP
Japan
Prior art keywords
epoxy resin
silica
optical semiconductor
refractive index
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3183482A
Other languages
Japanese (ja)
Inventor
Yutaka Aoki
豊 青木
Satoshi Tanigawa
聡 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP3183482A priority Critical patent/JPH056946A/en
Publication of JPH056946A publication Critical patent/JPH056946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve the excellent light transmitting property and the small inner stress for a sealing resin by sealing an optical semiconductor element with the resin by using the epoxy resin composition containing silica-based particulates whose particle diameter is 0.5mum or less and refractive index is equal to that of hardened epoxy resin body. CONSTITUTION:The components of a transparent epoxy resin a hardening agent and a silica-based particulates whose average particle diameter is 0.5mum or less are contained. The difference between the refractive index of the silica- based particulate and particulate and the refractive index of the hardened epoxy resin body wherein a transparent epoxy resin and a hardening agent are main materials, is sent within the range of + or -0.01 in the epoxy resin composition. An optical semiconductor element is sealed by using this epoxy resin composition. The coefficient of variation of the particle diameter of the silica-based particulate is made to be 10% or less. In this way, the optical semiconductor device whose inner stress is less and transparency is excellent is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光透過率および低応
力性の双方に優れた封止樹脂により樹脂封止された光半
導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device resin-encapsulated with an encapsulating resin which is excellent in both light transmittance and low stress.

【0002】[0002]

【従来の技術】LED(発光ダイオード)等の光半導体
素子を封止する際に用いられる樹脂組成物としては、そ
の硬化物が透明性を有することが要求され、一般に、ビ
スフエノール型エポキシ樹脂,脂環式エポキシ樹脂等の
エポキシ樹脂と硬化剤とからなるエポキシ樹脂組成物が
用いられている。
2. Description of the Related Art A resin composition used for encapsulating an optical semiconductor element such as an LED (light emitting diode) is required to have a cured product having transparency. Generally, a bisphenol type epoxy resin, An epoxy resin composition comprising an epoxy resin such as an alicyclic epoxy resin and a curing agent is used.

【0003】しかし、上記エポキシ樹脂組成物を封止樹
脂として用いると、このエポキシ樹脂組成物の硬化時の
硬化収縮、またはエポキシ樹脂と光半導体素子との線膨
張係数の差に起因する歪みにより内部応力が発生し、そ
れが原因で光半導体素子が劣化して、例えば光半導体素
子がLEDの場合、その輝度が低下するという問題が生
じる。このような問題を解決するためには、エポキシ樹
脂の内部応力を低減させる必要があり、その一つの方法
として、シリカ粒子等の線膨張係数の小さい無機粉末を
エポキシ樹脂に添加することによりエポキシ樹脂組成物
硬化体の線膨張係数を小さくし光半導体素子のそれに近
似させる方法が提案されている。
However, when the above-mentioned epoxy resin composition is used as a sealing resin, internal contraction occurs due to curing shrinkage of the epoxy resin composition at the time of curing, or distortion caused by a difference in linear expansion coefficient between the epoxy resin and the optical semiconductor element. A stress is generated, and the optical semiconductor element is deteriorated due to the stress. For example, when the optical semiconductor element is an LED, there is a problem that the brightness thereof is lowered. In order to solve such a problem, it is necessary to reduce the internal stress of the epoxy resin, and as one of the methods, the epoxy resin is added by adding an inorganic powder having a small linear expansion coefficient such as silica particles to the epoxy resin. A method has been proposed in which the linear expansion coefficient of the cured product of the composition is reduced to approximate that of an optical semiconductor device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法は、内部応力を低下させることはできても、得られる
エポキシ樹脂組成物硬化体の光透過率が著しく低下する
という光半導体封止用樹脂組成物としては致命的な欠点
を有している。
However, in the above method, the internal stress can be reduced, but the light transmittance of the resulting cured epoxy resin composition is remarkably reduced. As a product, it has a fatal drawback.

【0005】この発明は、このような事情に鑑みなされ
たもので、内部応力が小さく、しかも透明性に優れた光
半導体装置に関するものである。
The present invention has been made in view of such circumstances, and relates to an optical semiconductor device having a small internal stress and excellent transparency.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の光半導体装置は、下記の(A)〜(C)
成分を含み、(C)成分であるシリカ系微粒子の屈折率
と、(A)および(B)成分を主体とするエポキシ樹脂
硬化体の屈折率との差が±0.01の範囲に設定されて
いるエポキシ樹脂組成物を用いて光半導体素子を封止す
るという構成をとる。 (A)透明性エポキシ樹脂。 (B)硬化剤。 (C)平均粒子径が0.5μm以下であるシリカ系微粒
子。
In order to achieve the above object, an optical semiconductor device of the present invention has the following (A) to (C).
The difference between the refractive index of the silica-based fine particles that are the component (C) and the cured epoxy resin mainly composed of the components (A) and (B) is set within a range of ± 0.01. The epoxy semiconductor composition described above is used to seal the optical semiconductor element. (A) Transparent epoxy resin. (B) Hardener. (C) Silica-based fine particles having an average particle diameter of 0.5 μm or less.

【0007】なお、上記「主体とする」とは、全体が主
体とする成分からなる場合を含める趣旨である。
The term "mainly composed of" is intended to include the case where the whole is composed of the main constituents.

【0008】[0008]

【作用】すなわち、本発明者らは、内部応力が小さく、
しかも光透過性に優れた封止樹脂を得るために一連の研
究を重ねた。その研究の過程で、シリカ粒子をエポキシ
樹脂に添加すると、光透過率が低下するのは、シリカ粒
子の粒子径が大きいこと、またシリカ粒子の屈折率がエ
ポキシ樹脂硬化体の屈折率と異なるためではないかと想
起した。この考えに基づくと、シリカ粒子充填エポキシ
樹脂組成物硬化体の光透過率を向上させる方法としてつ
ぎの二つの方法が考えられる。シリカ粒子の粒子径を
非常に小さくする。シリカ粒子の屈折率とエポキシ樹
脂硬化体の屈折率とを等しくする。そして、上記につ
いて検討した結果、シリカ粒子の平均粒子径を0.1μ
m以下とすると透明で光透過率が高くなることを突き止
めた。さらに、上記について検討した結果、シリカ粒
子の平均粒子径が0.5μm以下(例えば0.1〜0.
5μm)の場合でも、シリカ粒子の屈折率とエポキシ樹
脂硬化体の屈折率とを略等しくする(両者の差が±0.
01以下)と透明で光透過性に優れた封止樹脂が得ら
れ、しかも内部応力の低減が図れることを見出しこの発
明に到達した。
In other words, the present inventors have a small internal stress,
Moreover, a series of studies were conducted in order to obtain a sealing resin having excellent light transmittance. In the course of the research, when silica particles are added to the epoxy resin, the light transmittance decreases because the particle size of the silica particles is large and the refractive index of the silica particles is different from that of the cured epoxy resin. I remembered that. Based on this idea, the following two methods are conceivable as a method for improving the light transmittance of the cured silica particle-filled epoxy resin composition. Make the particle size of silica particles very small. The refractive index of the silica particles and the refractive index of the cured epoxy resin are made equal. Then, as a result of examining the above, the average particle diameter of the silica particles is 0.1 μ
It has been found that when the thickness is m or less, it is transparent and the light transmittance is high. Furthermore, as a result of examining the above, the average particle diameter of the silica particles is 0.5 μm or less (for example, 0.1 to 0.
5 μm), the refractive index of the silica particles and the refractive index of the cured epoxy resin are substantially equal (the difference between them is ± 0.
The inventors have found that a transparent encapsulating resin having a light transmittance of 01 or less) and excellent in light transmittance can be obtained, and further, the internal stress can be reduced, and the present invention has been reached.

【0009】なお、一般に、「シリカ」とは純粋な石英
を意味する場合があるが、この発明において屈折率を調
整したシリカ粒子は酸化チタン等の金属酸化物を含むた
め、この発明に用いるシリカ粒子を「シリカ系微粒子」
とする。
In general, "silica" may mean pure quartz. However, since the silica particles having a controlled refractive index in the present invention include a metal oxide such as titanium oxide, the silica used in the present invention. Particles are "silica-based particles"
And

【0010】この発明に用いるエポキシ樹脂組成物は、
透明性エポキシ樹脂(A成分)と、硬化剤(B成分)
と、特定のシリカ系微粒子(C成分)とを用いて得られ
るものであつて、通常、液状,粉末状もしくはこの粉末
を打錠したタブレツト状になつている。
The epoxy resin composition used in the present invention is
Transparent epoxy resin (component A) and curing agent (component B)
And a specific silica-based fine particle (component C), which is usually in the form of a liquid, a powder, or a tablet obtained by tableting this powder.

【0011】上記透明性エポキシ樹脂(A成分)として
は、ビスフエノール型エポキシ樹脂,脂環式エポキシ樹
脂等が透明性を有するために好適に用いられる。しか
し、場合により他のエポキシ樹脂を併用しても差し支え
はない。このように他のエポキシ樹脂を用いる場合、そ
の使用割合は、通常、エポキシ樹脂全体の50重量%以
下に設定するのが好適である。このような透明性エポキ
シ樹脂およびこれと併用される他のエポキシ樹脂として
は、一般に、エポキシ当量100〜1000、軟化点1
20℃以下のものが用いられる。これらエポキシ樹脂
は、常温で液状のもの、ないし常温で固形のものが適宜
に選択使用される。なお、上記透明性エポキシ樹脂の透
明性とは、着色透明の場合をも含み、厚み1mm相当で、
600nmの波長の光透過率が80〜100%のものをい
う(分光光度計により測定)。
As the transparent epoxy resin (component A), bisphenol type epoxy resin, alicyclic epoxy resin and the like are preferably used because they have transparency. However, in some cases, other epoxy resins may be used in combination without any problem. When another epoxy resin is used as described above, it is usually preferable to set the usage ratio to 50% by weight or less based on the whole epoxy resin. Such transparent epoxy resin and other epoxy resins used together therewith generally have an epoxy equivalent of 100 to 1000 and a softening point of 1.
The thing below 20 degreeC is used. As these epoxy resins, those which are liquid at room temperature or those which are solid at room temperature are appropriately selected and used. The transparency of the transparent epoxy resin includes the case of being colored and transparent, and corresponds to a thickness of 1 mm.
It has a light transmittance of 80 to 100% at a wavelength of 600 nm (measured by a spectrophotometer).

【0012】上記透明性エポキシ樹脂(A成分)ととも
に用いられる硬化剤(B成分)としては、分子量140
〜200程度のものが好適に用いられ、例えば、ヘキサ
ヒドロ無水フタル酸,テトラヒドロ無水フタル酸,メチ
ルヘキサヒドロ無水フタル酸,メチルテトラヒドロ無水
フタル酸等の無色ないし淡黄色の酸無水物が単独でもし
くは併せて用いられる。上記硬化剤の配合量は、上記透
明性エポキシ樹脂(他のエポキシ樹脂を併用する場合は
これも含む)100重量部(以下「部」と略す)に対し
て50〜200部の範囲に設定することが好ましい。
The curing agent (component B) used together with the transparent epoxy resin (component A) has a molecular weight of 140
Approximately 200 to 200 are preferably used. For example, colorless or pale yellow acid anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and methyltetrahydrophthalic anhydride are used alone or in combination. Used. The amount of the curing agent is set in the range of 50 to 200 parts with respect to 100 parts by weight (hereinafter, abbreviated as "part") of 100 parts by weight of the transparent epoxy resin (including other epoxy resin when used in combination). It is preferable.

【0013】上記透明性エポキシ樹脂(A成分),硬化
剤(B成分)とともに用いられる特定のシリカ系微粒子
(C成分)は、平均粒子径が0.5μm以下のものであ
り、特に0.1μmを超え0.5μm以下のものを用い
るのが好ましい。そして、粒子径の変動係数(粒子径の
ばらつきを相対的に表す値)は10%以下となるのが好
適である。すなわち、シリカ系微粒子の粒度分布はより
シヤープな方が光学的に均質な硬化体ができるからであ
る。このような微細なシリカ系微粒子は、本発明者らが
開発した特殊な製法、すなわち、溶媒中、液状透明性エ
ポキシ樹脂中、固形の透明性エポキシ樹脂を有機溶媒等
で溶解したものおよび固形透明性エポキシ樹脂を熱溶融
したもの等の中において、アルコキシシラン,アルコキ
シチタンを原料としてゾルゲル法で重合することにより
合成される。このようにして合成されたシリカ系微粒子
は、透明性エポキシ樹脂をマトリツクスとし、そのマト
リツクス中に均一分散された状態で二次凝集を起こさな
い。より詳しく述べると、上記シリカ系微粒子は、例え
ば透明性エポキシ樹脂の有機溶媒溶液に、水とアルコキ
シシランおよびアルコキシチタンを加え所定時間反応さ
せることによつて合成することができる。上記合成にお
いて、アルコキシチタンの含有量を多くすることより、
合成されるシリカ系微粒子の屈折率を高くすることがで
きる。このため、シリカ系微粒子の屈折率と、透明性エ
ポキシ樹脂,硬化剤および硬化触媒からなるエポキシ樹
脂硬化体の屈折率との差を±0.01以下の範囲に設定
することができる。
The specific silica-based fine particles (component C) used together with the transparent epoxy resin (component A) and the curing agent (component B) have an average particle diameter of 0.5 μm or less, particularly 0.1 μm. It is preferable to use those having a diameter of more than 0.5 μm and not more than 0.5 μm. Further, it is preferable that the variation coefficient of the particle diameter (a value relatively representing the variation of the particle diameter) is 10% or less. That is, when the particle size distribution of the silica-based fine particles is more sharp, an optically homogeneous cured product can be obtained. Such fine silica-based fine particles are produced by a special method developed by the present inventors, namely, a solvent, a liquid transparent epoxy resin, a solid transparent epoxy resin dissolved in an organic solvent or the like, and a solid transparent epoxy resin. It is synthesized by polymerizing alkoxysilane and alkoxytitanium as raw materials by a sol-gel method in a heat-meltable epoxy resin. The silica-based fine particles thus synthesized have a transparent epoxy resin as a matrix and do not cause secondary aggregation in a state of being uniformly dispersed in the matrix. More specifically, the silica-based fine particles can be synthesized, for example, by adding water, an alkoxysilane, and an alkoxytitanium to a solution of a transparent epoxy resin in an organic solvent and reacting them for a predetermined time. In the above synthesis, by increasing the content of alkoxy titanium,
The silica-based fine particles to be synthesized can have a high refractive index. Therefore, the difference between the refractive index of the silica-based fine particles and the refractive index of the epoxy resin cured product composed of the transparent epoxy resin, the curing agent and the curing catalyst can be set within a range of ± 0.01 or less.

【0014】上記アルコキシシランとしては、テトラメ
トキシシラン,メチルトリメトキシシラン,テトラプロ
ポキシシラン,メチルトリプロポキシシラン,テトラエ
トキシシラン,メチルトリエトキシシラン,n−プロピ
ルトリエトキシシラン,トリメチルプトキシシラン,ジ
メチルジエトキシシラン等があげられ、単独でもしくは
併せて用いられる。
Examples of the alkoxysilane include tetramethoxysilane, methyltrimethoxysilane, tetrapropoxysilane, methyltripropoxysilane, tetraethoxysilane, methyltriethoxysilane, n-propyltriethoxysilane, trimethylbutoxysilane, and dimethyldi. Examples thereof include ethoxysilane, which may be used alone or in combination.

【0015】上記アルコキシチタンとしては、テトラメ
トキシチタン,テトラエトキシチタン,テトライソプロ
ポキシチタン,テトラブトキシチタン等があげられる。
これらは単独でもしくは併せて用いられる。
Examples of the alkoxytitanium include tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium and tetrabutoxytitanium.
These may be used alone or in combination.

【0016】上記アルコキシシラン(X)とアルコキシ
チタン(Y)との配合割合は、モル比でX:Y=5:9
5〜50:50の範囲にするのが好ましい。
The mixing ratio of the alkoxysilane (X) and the alkoxytitanium (Y) is X: Y = 5: 9 in molar ratio.
It is preferably in the range of 5 to 50:50.

【0017】この発明に用いるエポキシ樹脂組成物に
は、上記A〜C成分以外に、必要に応じて硬化触媒,染
料,変性剤,変色防止剤,老化防止剤,離型剤,反応性
ないし非反応性の希釈剤等の従来公知の添加剤を適宜配
合することができる。
In the epoxy resin composition used in the present invention, in addition to the above-mentioned components A to C, a curing catalyst, a dye, a modifier, a discoloration preventing agent, an antiaging agent, a releasing agent, a reactive agent or a non-reactive agent, if necessary Conventionally known additives such as a reactive diluent can be appropriately added.

【0018】上記硬化触媒としては、三級アミン,イミ
ダゾール化合物および有機金属錯塩等があげられる。
Examples of the curing catalyst include tertiary amines, imidazole compounds and organometallic complex salts.

【0019】そして、この発明に用いるエポキシ樹脂組
成物として、上記A成分およびB成分を主体とするエポ
キシ樹脂硬化体の屈折率と、上記C成分であるシリカ系
微粒子の屈折率との差が、±0.01以内のものが用い
られる。上記屈折率はアツベ屈折計を用いて測定され
る。
Then, in the epoxy resin composition used in the present invention, the difference between the refractive index of the cured epoxy resin mainly composed of the components A and B and the refractive index of the silica-based fine particles which is the component C is Those within ± 0.01 are used. The refractive index is measured using an Atsube refractometer.

【0020】このようなエポキシ樹脂組成物は、例えば
つぎのようにして製造することができる。すなわち、上
記A〜C成分ならびにそれ以外の添加剤を適宜配合し、
予備混合した後、混練機に掛けて混練して溶融混合す
る。そして、これを室温に冷却した後、公知の手段によ
つて、粉砕し、必要に応じて打錠するという一連の工程
により製造することができる。また、上記A成分に用い
る透明性エポキシ樹脂が、常温で液状のものである場合
には、A成分自体が液状となるため、これ以外の成分を
A成分とともに混合するのみで目的とするエポキシ樹脂
組成物を得ることができる。
Such an epoxy resin composition can be manufactured, for example, as follows. That is, the above A to C components and other additives are appropriately blended,
After premixing, the mixture is kneaded in a kneader to melt and mix. Then, it can be manufactured by a series of steps in which it is cooled to room temperature, pulverized by a known means, and tableted if necessary. When the transparent epoxy resin used as the component A is liquid at room temperature, the component A itself becomes liquid, and therefore the target epoxy resin can be prepared by mixing only the other components with the component A. A composition can be obtained.

【0021】このようなエポキシ樹脂組成物を用いての
光半導体素子の封止は、特に限定するものではなく、通
常のトランスフアー成形,注型等の公知のモールド方法
によつて行うことができ、その結果、光半導体素子を上
記エポキシ樹脂組成物硬化体からなる封止樹脂層によつ
て封止した光半導体装置が得られる。この場合、透明性
エポキシ樹脂組成物硬化体からなる封止樹脂層中に、平
均粒子径0.5μm以下のシリカ系微粒子が、硬化体全
体の10〜80重量%を占めるように分散含有されるの
が好ましい。すなわち、シリカ系微粒子が10重量%未
満では硬化体の線膨張係数が充分に低下せず、逆に80
重量%を超えると線膨張係数は低下するが樹脂の粘度が
高くなり、成形性が劣る傾向がみられるからである。な
お、上記シリカ系微粒子の含有量は、透明性エポキシ樹
脂組成物硬化体を燃焼させ、灰分として残存するシリカ
系微粒子の重量から算出することができる。
The encapsulation of an optical semiconductor element using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding or casting. As a result, an optical semiconductor device is obtained in which an optical semiconductor element is encapsulated with an encapsulating resin layer made of the cured epoxy resin composition. In this case, silica-based fine particles having an average particle diameter of 0.5 μm or less are dispersedly contained in the encapsulating resin layer made of the cured transparent epoxy resin composition so as to account for 10 to 80% by weight of the entire cured body. Is preferred. That is, when the amount of silica-based fine particles is less than 10% by weight, the linear expansion coefficient of the cured product does not sufficiently decrease, and conversely 80
This is because if the content exceeds 10% by weight, the linear expansion coefficient decreases, but the viscosity of the resin increases and the moldability tends to deteriorate. The content of the silica-based fine particles can be calculated from the weight of the silica-based fine particles remaining as ash by burning the cured product of the transparent epoxy resin composition.

【0022】[0022]

【発明の効果】以上のように、この発明の光半導体装置
は、粒子径が0.5μm以下で、その屈折率がエポキシ
樹脂硬化体と等しいシリカ系微粒子を含むエポキシ樹脂
組成物を用いて光半導体素子を樹脂封止して得られたも
のである。このため、この封止樹脂は、光透過性に優
れ、しかも内部応力が小さくなつており、例えばLED
ではその輝度劣化の抑制等が効果的になされ、信頼性が
極めて高くなる。
As described above, the optical semiconductor device of the present invention uses an epoxy resin composition containing silica-based fine particles having a particle diameter of 0.5 μm or less and a refractive index equal to that of the epoxy resin cured product. It is obtained by resin-sealing a semiconductor element. Therefore, this encapsulating resin is excellent in light transmittance and has a small internal stress.
In that case, the luminance deterioration is effectively suppressed and the reliability is extremely increased.

【0023】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be described together with comparative examples.

【0024】[0024]

【実施例1】エポキシ当量185のビスフエノールA型
エポキシ樹脂(液状樹脂)100部をエタノール300
部に溶解させ、その溶液に、テトラエトキシシラン89
部、テトラエトキシチタン11部、水90部、触媒とし
ての1,8−ジアザビシクロ(5,4,0)−7−ウン
デセン0.42部を添加して、60℃で1時間反応させ
た。その後、エタノールおよび水を減圧除去して、シリ
カ系微粒子を含む液状の透明性エポキシ樹脂を得た。こ
の場合のシリカ系微粒子の粒子径は約0.2μmであ
り、粒子径の変動係数は5%であつた。
Example 1 100 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185 was added to 300 parts of ethanol.
Part and dissolved in the solution, tetraethoxysilane 89
Parts, 11 parts of tetraethoxy titanium, 90 parts of water, and 0.42 parts of 1,8-diazabicyclo (5,4,0) -7-undecene as a catalyst were added and reacted at 60 ° C. for 1 hour. Then, ethanol and water were removed under reduced pressure to obtain a liquid transparent epoxy resin containing silica-based fine particles. In this case, the particle diameter of the silica-based fine particles was about 0.2 μm, and the coefficient of variation of the particle diameter was 5%.

【0025】つぎに、上記シリカ系微粒子含有透明性エ
ポキシ樹脂200部に、4−メチルヘキサヒドロ無水フ
タル酸100部、2−エチル−4−メチルイミダゾール
0.4部、酸化防止剤2.5部を混合し、液状のシリカ
系微粒子含有エポキシ樹脂組成物を得た。これを、12
0℃で熱硬化させることにより得られた硬化物の光透過
率は厚み4mmで83%という高い値であつた。また、こ
の硬化物においてシリカ系微粒子およびシリカ系微粒子
を除いたエポキシ樹脂組成物硬化体の屈折率はいずれも
1.541であつた。
Next, to 200 parts of the above silica-based fine particle-containing transparent epoxy resin, 100 parts of 4-methylhexahydrophthalic anhydride, 0.4 part of 2-ethyl-4-methylimidazole, and 2.5 parts of antioxidant. Were mixed to obtain a liquid silica-based fine particle-containing epoxy resin composition. This is 12
The light transmittance of the cured product obtained by heat curing at 0 ° C. was as high as 83% at a thickness of 4 mm. In addition, in this cured product, the silica-based fine particles and the cured product of the epoxy resin composition excluding the silica-based fine particles each had a refractive index of 1.541.

【0026】[0026]

【実施例2】テトラエトキシシランをメチルトリエトキ
シシランに代えた以外は実施例1と同様にして、シリカ
系微粒子含有エポキシ樹脂組成物硬化体を得た。この場
合のシリカ系微粒子の粒子径は約0.2μmで、変動係
数は5%であり、かつ硬化物の光透過率は厚み4mmで8
1%という高い値であつた。また、この硬化物において
シリカ系微粒子およびシリカ系微粒子を除いたエポキシ
樹脂組成物硬化体の屈折率はいずれも1.541であつ
た。
Example 2 A silica-based fine particle-containing cured epoxy resin composition was obtained in the same manner as in Example 1 except that tetraethoxysilane was replaced with methyltriethoxysilane. In this case, the particle diameter of the silica-based fine particles is about 0.2 μm, the coefficient of variation is 5%, and the light transmittance of the cured product is 8 mm at a thickness of 4 mm.
It was a high value of 1%. In addition, in this cured product, the silica-based fine particles and the cured product of the epoxy resin composition excluding the silica-based fine particles each had a refractive index of 1.541.

【0027】[0027]

【実施例3】エポキシ当量650のビスフエノールA型
エポキシ樹脂80部(固形樹脂)をアセトン/メチルエ
チルケトン〔50/50(重量比)〕混合溶媒300部
に溶解させ、その溶液にテトラエトキシシラン74部、
テトラエトキシチタン26部、水90部、触媒としての
1,8−ジアザビシクロ(5,4,0)−7−ウンデセ
ン0.42部を添加して、60℃で1時間反応させた。
その後、アセトン,メチルエチルケトンおよび水を減圧
除去して、シリカ系微粒子を含む液状の透明性エポキシ
樹脂を得た。この場合のシリカ系微粒子の粒子径は約
0.2μmであり、粒子径の変動係数は6%であつた。
Example 3 80 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 650 (solid resin) was dissolved in 300 parts of an acetone / methyl ethyl ketone [50/50 (weight ratio)] mixed solvent, and 74 parts of tetraethoxysilane was added to the solution. ,
26 parts of tetraethoxy titanium, 90 parts of water, and 0.42 part of 1,8-diazabicyclo (5,4,0) -7-undecene as a catalyst were added and reacted at 60 ° C. for 1 hour.
Then, acetone, methyl ethyl ketone, and water were removed under reduced pressure to obtain a liquid transparent epoxy resin containing silica fine particles. In this case, the particle size of the silica-based fine particles was about 0.2 μm, and the coefficient of variation of the particle size was 6%.

【0028】つぎに、上記シリカ系微粒子含有透明性エ
ポキシ樹脂180部に、トリグリシジルイソシアヌレー
ト(固形エポキシ樹脂)20部、テトラヒドロ無水フタ
ル酸44部、2−エチル−4−メチルイミダゾール0.
4部、酸化防止剤2.5部を混合し、シリカ系微粒子含
有エポキシ樹脂組成物を得た。これを、150℃で熱硬
化させることにより得られた硬化物の光透過率は厚み4
mmで83%という高い値であつた。また、この硬化物に
おいてシリカ系微粒子およびシリカ系微粒子を除いたエ
ポキシ樹脂組成物硬化体の屈折率はいずれも1.566
であつた。
Next, 180 parts of the transparent epoxy resin containing fine silica particles was added to 20 parts of triglycidyl isocyanurate (solid epoxy resin), 44 parts of tetrahydrophthalic anhydride, and 2-ethyl-4-methylimidazole.
4 parts and 2.5 parts of an antioxidant were mixed to obtain a silica-based fine particle-containing epoxy resin composition. The cured product obtained by thermosetting this at 150 ° C. has a light transmittance of 4
The value was as high as 83% in mm. Further, in this cured product, the silica-based fine particles and the cured product of the epoxy resin composition excluding the silica-based fine particles each have a refractive index of 1.566.
It was.

【0029】[0029]

【実施例4】テトラエトキシシランをメチルトリエトキ
シシランに代えた以外は実施例3と同様にして、シリカ
系微粒子含有エポキシ樹脂組成物硬化体を得た。この場
合のシリカ系微粒子の粒子径は約0.2μmで、変動係
数は6%であり、かつ硬化物の光透過率は厚み4mmで8
2%という高い値であつた。また、この硬化物において
シリカ系微粒子およびシリカ系微粒子を除いたエポキシ
樹脂組成物硬化体の屈折率はいずれも1.566であつ
た。
Example 4 A cured product of an epoxy resin composition containing fine silica particles was obtained in the same manner as in Example 3 except that tetraethoxysilane was replaced with methyltriethoxysilane. In this case, the silica-based fine particles have a particle diameter of about 0.2 μm, a coefficient of variation of 6%, and a cured product having a light transmittance of 8 mm at a thickness of 4 mm.
It was a high value of 2%. In addition, in this cured product, the refractive index of the silica-based fine particles and the cured product of the epoxy resin composition excluding the silica-based fine particles were both 1.566.

【0030】[0030]

【比較例1】エポキシ当量185のビスフエノールA型
エポキシ樹脂(液状樹脂)100部、4−メチルヘキサ
ヒドロ無水フタル酸100部、2−エチル−4−メチル
イミダゾール0.4部、酸化防止剤2.5部を混合し
て、エポキシ樹脂組成物を得た。
Comparative Example 1 100 parts of bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, 100 parts of 4-methylhexahydrophthalic anhydride, 0.4 parts of 2-ethyl-4-methylimidazole, antioxidant 2 0.5 part was mixed to obtain an epoxy resin composition.

【0031】[0031]

【比較例2】エポキシ当量650のビスフエノールA型
エポキシ樹脂(固形樹脂)80部、トリグリシジルイソ
シアヌレート(固形エポキシ樹脂)20部、テトラヒド
ロ無水フタル酸44部、2−エチル−4−メチルイミダ
ゾール0.4部、酸化防止剤2.5部を混合して、エポ
キシ樹脂組成物を得た。
Comparative Example 2 80 parts of bisphenol A type epoxy resin (solid resin) having an epoxy equivalent of 650, 20 parts of triglycidyl isocyanurate (solid epoxy resin), 44 parts of tetrahydrophthalic anhydride, 2-ethyl-4-methylimidazole 0 An epoxy resin composition was obtained by mixing 4 parts and 2.5 parts of an antioxidant.

【0032】つぎに、実施例1〜4および比較例1,2
で得られたエポキシ樹脂組成物を用いて発光ダイオード
(LED)を樹脂封止して光半導体装置を作製した。そ
して、この光半導体装置の通電輝度劣化を測定した。そ
の結果を下記の表1に示す。なお、上記通電輝度劣化の
測定方法は、つぎのようにして行つた。すなわち、上記
光半導体装置(LEDデバイス)に定電流を流し、輝度
として電流印加5秒後の受光素子の出力電流値を求め劣
化率を測定した。
Next, Examples 1 to 4 and Comparative Examples 1 and 2
A light emitting diode (LED) was resin-sealed with the epoxy resin composition obtained in (1) to produce an optical semiconductor device. Then, the deterioration of energization luminance of this optical semiconductor device was measured. The results are shown in Table 1 below. The method for measuring the deterioration of the energized luminance was performed as follows. That is, a constant current was applied to the above-mentioned optical semiconductor device (LED device), and the output current value of the light-receiving element 5 seconds after applying the current was calculated as the luminance to measure the deterioration rate.

【0033】 パツケージ:直径5mmのパイロツトランプ。 評価素子:GaAs,0.5mm×0.5mm。 評価条件:−30℃放置で20mA通電の1000時間
後の輝度劣化率を測定した。
Package: A pyro lamp with a diameter of 5 mm. Evaluation element: GaAs, 0.5 mm × 0.5 mm. Evaluation conditions: The luminance deterioration rate was measured after leaving for 20 hours at -30 ° C for 1000 hours after energization.

【0034】[0034]

【表1】 [Table 1]

【0035】上記表1の結果から、実施例品は比較例品
に比べて輝度劣化が抑制され、光透過性とともに低応力
性も向上していることがわかる。
From the results shown in Table 1 above, it can be seen that the product of the example is suppressed in the deterioration of luminance and the light stress and the low stress property are improved as compared with the product of the comparative example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記の(A)〜(C)成分を含み、
(C)成分であるシリカ系微粒子の屈折率と、(A)お
よび(B)成分を主体とするエポキシ樹脂硬化体の屈折
率との差が±0.01の範囲に設定されているエポキシ
樹脂組成物を用いて光半導体素子を封止してなる光半導
体装置。 (A)透明性エポキシ樹脂。 (B)硬化剤。 (C)平均粒子径が0.5μm以下であるシリカ系微粒
子。
1. The following components (A) to (C) are included:
An epoxy resin in which the difference between the refractive index of the silica-based fine particles as the component (C) and the refractive index of the cured epoxy resin mainly composed of the components (A) and (B) is set within ± 0.01. An optical semiconductor device obtained by encapsulating an optical semiconductor element with a composition. (A) Transparent epoxy resin. (B) Hardener. (C) Silica-based fine particles having an average particle diameter of 0.5 μm or less.
【請求項2】 (C)成分であるシリカ系微粒子の粒子
径の変動係数が10%以下である請求項1記載の光半導
体装置。
2. The optical semiconductor device according to claim 1, wherein the variation coefficient of the particle diameter of the silica-based fine particles as the component (C) is 10% or less.
【請求項3】 下記の(A)〜(C)成分を含み、
(C)成分であるシリカ系微粒子の屈折率と、(A)お
よび(B)成分を主体とするエポキシ樹脂硬化体の屈折
率との差が±0.01の範囲に設定されている光半導体
封止用エポキシ樹脂組成物。 (A)透明性エポキシ樹脂。 (B)硬化剤。 (C)平均粒子径が0.5μm以下であるシリカ系微粒
子。
3. The following components (A) to (C) are included:
An optical semiconductor in which the difference between the refractive index of the silica-based fine particles which is the component (C) and the refractive index of the cured epoxy resin mainly composed of the components (A) and (B) is set within ± 0.01. Epoxy resin composition for encapsulation. (A) Transparent epoxy resin. (B) Hardener. (C) Silica-based fine particles having an average particle diameter of 0.5 μm or less.
【請求項4】 (C)成分であるシリカ系微粒子の粒子
径の変動係数が10%以下である請求項3記載の光半導
体封止用エポキシ樹脂組成物。
4. The epoxy resin composition for optical-semiconductor encapsulation according to claim 3, wherein the variation coefficient of the particle diameter of the silica-based fine particles as the component (C) is 10% or less.
JP3183482A 1991-06-27 1991-06-27 Optical semiconductor device Pending JPH056946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183482A JPH056946A (en) 1991-06-27 1991-06-27 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183482A JPH056946A (en) 1991-06-27 1991-06-27 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH056946A true JPH056946A (en) 1993-01-14

Family

ID=16136587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183482A Pending JPH056946A (en) 1991-06-27 1991-06-27 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH056946A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114879A (en) * 2004-09-16 2006-04-27 Sharp Corp Optical semiconductor device and electronic apparatus
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
JP2011228525A (en) * 2010-04-21 2011-11-10 Nitto Denko Corp Optical semiconductor device
WO2011158719A1 (en) 2010-06-18 2011-12-22 東ソー株式会社 Typical metal containing polysiloxane composition, process for production of same, and uses thereof
CN103779455A (en) * 2014-01-24 2014-05-07 南通苏禾车灯配件有限公司 Sealing method for LED vehicle lamp

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114879A (en) * 2004-09-16 2006-04-27 Sharp Corp Optical semiconductor device and electronic apparatus
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
JP2011228525A (en) * 2010-04-21 2011-11-10 Nitto Denko Corp Optical semiconductor device
WO2011158719A1 (en) 2010-06-18 2011-12-22 東ソー株式会社 Typical metal containing polysiloxane composition, process for production of same, and uses thereof
US8907038B2 (en) 2010-06-18 2014-12-09 Tosoh Corporation Typical metal containing polysiloxane composition, process for its production, and its uses
CN103779455A (en) * 2014-01-24 2014-05-07 南通苏禾车灯配件有限公司 Sealing method for LED vehicle lamp

Similar Documents

Publication Publication Date Title
US7307286B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JPH0725987A (en) Epoxy resin composition for sealing optical semiconductor
JP5679701B2 (en) Optical epoxy resin composition, optical component using the same, and optical semiconductor device obtained using the same
JP4722686B2 (en) Manufacturing method of resin composition for encapsulating optical semiconductor element, resin composition for encapsulating optical semiconductor element and optical semiconductor device obtained thereby
JP3153171B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor
JPH10158473A (en) Epoxy resin composition for sealing optical semiconductor element, and optical semiconductor device sealed by using this epoxy resin composition
JPH056946A (en) Optical semiconductor device
JP5242530B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device
JP2796187B2 (en) Optical semiconductor device
JP5825650B2 (en) Epoxy resin composition for optical semiconductor reflector, thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, encapsulated optical semiconductor element, and optical semiconductor device
JP2837478B2 (en) Optical semiconductor device
JP3017888B2 (en) Semiconductor device
JPH06232296A (en) Semiconductor device
JP2760889B2 (en) Optical semiconductor device
JP2014095051A (en) Thermosetting epoxy resin composition, reflector for led using the composition, and led device
JP6094450B2 (en) White thermosetting epoxy resin composition for LED reflector, and optical semiconductor device including cured product of the composition
JPH0563240A (en) Optical semiconductor device
JP3098663B2 (en) Thermosetting resin composition and production method thereof
JP2006111823A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor by using the same
JP5072070B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JPH06302726A (en) Thermosetting resin composition
JPH04209624A (en) Epoxy resin composition for photosemiconductor sealing
JPH06283631A (en) Manufacture of thermosetting resin composition
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JPH04363054A (en) Epoxy resin composition for optical-semiconductor sealing use