JP3017888B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3017888B2
JP3017888B2 JP4240438A JP24043892A JP3017888B2 JP 3017888 B2 JP3017888 B2 JP 3017888B2 JP 4240438 A JP4240438 A JP 4240438A JP 24043892 A JP24043892 A JP 24043892A JP 3017888 B2 JP3017888 B2 JP 3017888B2
Authority
JP
Japan
Prior art keywords
silica particles
resin
silica
thermosetting resin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4240438A
Other languages
Japanese (ja)
Other versions
JPH0689948A (en
Inventor
豊 青木
聡 谷川
睦子 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP4240438A priority Critical patent/JP3017888B2/en
Publication of JPH0689948A publication Critical patent/JPH0689948A/en
Application granted granted Critical
Publication of JP3017888B2 publication Critical patent/JP3017888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性および低応力性
に優れた封止樹脂により樹脂封止された半導体装置に関
するものであり、特に透明封止樹脂により樹脂封止され
た光半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device sealed with a sealing resin having excellent heat resistance and low stress, and more particularly to an optical semiconductor device sealed with a transparent sealing resin. It is about.

【0002】[0002]

【従来の技術】現在、多くの光半導体装置は透明エポキ
シ樹脂で封止されているが、樹脂硬化体の内部応力によ
り、素子が劣化する問題がある。例えば,LED(発光
ダイオ−ド)の場合、輝度が低下する。そこで、本発明
者達は、透明かつ低応力の樹脂硬化体を得るために、光
の波長よりも充分に小さい、具体的には粒子径が0.1
μm以下のシリカ超微粒子を樹脂に充填することを提案
した。(特願平3−133418)
2. Description of the Related Art At present, many optical semiconductor devices are sealed with a transparent epoxy resin, but there is a problem that elements are deteriorated due to internal stress of a cured resin. For example, in the case of an LED (light-emitting diode), the brightness decreases. Therefore, the present inventors have found that in order to obtain a transparent and low-stress cured resin, the wavelength is sufficiently smaller than the wavelength of light, specifically, the particle diameter is 0.1.
It has been proposed that ultrafine silica particles of less than μm be filled in the resin. (Japanese Patent Application No. 3-133418)

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ようにシリカ超微粒子を樹脂に添加する方法は、樹脂硬
化体の内部応力を低減し、かつ透明性を維持することは
出来ても、未だ耐熱性において満足できるものではな
い。
However, the method of adding ultrafine silica particles to the resin as described above can reduce the internal stress of the cured resin and maintain the transparency, but it is still heat resistant. It is not satisfactory in sex.

【0004】本発明は、このような事情に鑑みなされた
もので、シリカ超微粒子を充填した低応力性、耐熱性に
優れた封止樹脂により樹脂封止された半導体装置を提供
するものであり、特に低応力性、耐熱性に優れた透明封
止樹脂により樹脂封止された光半導体装置を提供するも
のである。
The present invention has been made in view of such circumstances, and provides a semiconductor device resin-sealed with a sealing resin filled with ultra-fine silica particles and having excellent low-stress and heat resistance. In particular, an object of the present invention is to provide an optical semiconductor device resin-sealed with a transparent sealing resin excellent in low stress property and heat resistance.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の半導体装置は、下記の(A)〜(C)成
分を含む熱硬化性樹脂組成物を用いて半導体素子を封止
するという構成をとる。 (A)熱硬化性樹脂。 (B)硬化剤成分。 (C)水酸基量が5×10-5mol/g以下であり、か
つ粒子径が0.1μm以下であるシリカ粒子。
In order to achieve the above object, a semiconductor device of the present invention comprises a semiconductor element sealed with a thermosetting resin composition containing the following components (A) to (C). Take the configuration to do. (A) Thermosetting resin. (B) a curing agent component. (C) Silica particles having a hydroxyl group content of 5 × 10 −5 mol / g or less and a particle size of 0.1 μm or less.

【0006】本発明者らは、一連の研究の過程で、シリ
カ粒子上への硬化剤成分の吸着には、シリカ粒子表面の
水酸基が大きく関与していることを突き止めた。すなわ
ち、水酸基量が少ないシリカを用いた場合、Tgは低下
しないことを見出し、この発明に到達した。
[0006] In the course of a series of studies, the present inventors have found that the hydroxyl groups on the surface of silica particles are greatly involved in the adsorption of a curing agent component onto silica particles. That is, it was found that when silica having a small amount of hydroxyl groups was used, Tg did not decrease, and the present invention was reached.

【0007】本発明に用いる熱硬化性樹脂組成物は、熱
硬化性樹脂(A成分)、硬化剤成分(B成分)及び、水
酸基量が5×10-5mol/g以下であり、かつ粒子径
が0.1μm以下であるシリカ粒子(C成分)とを用い
て得られるものであって、通常、液状、粉末状もしく
は、この粉末を打錠したタブレット状になっている。
The thermosetting resin composition used in the present invention has a thermosetting resin (A component), a curing agent component (B component), a hydroxyl group content of 5 × 10 −5 mol / g or less, and particles. It is obtained using silica particles (component C) having a diameter of 0.1 μm or less, and is usually in the form of a liquid, a powder, or a tablet obtained by compressing this powder.

【0008】上記熱硬化性樹脂(A成分)としては、特
にエポキシ樹脂が好適であり、ビスフェノ−ル型エポキ
シ樹脂、脂環式エポキシ樹脂、ノボラック型エポキシ樹
脂、など特に限定しないが、光半導体用の透明樹脂とし
ては、ビスフェノ−ル型エポキシ樹脂、脂環式エポキシ
樹脂が好ましい。このようなエポキシ樹脂としては、一
般に、エポキシ当量100〜1000、軟化点120℃
以下のものが用いられる。光半導体用の透明樹脂として
は、前二者のエポキシ樹脂に、他のエポキシ樹脂を併用
しても良いが、その使用割合は、エポキシ樹脂全体の5
0重量%以下に設定するのが好適である。
As the thermosetting resin (component A), an epoxy resin is particularly preferable, and there is no particular limitation on bisphenol type epoxy resin, alicyclic epoxy resin, novolak type epoxy resin, etc. As the transparent resin, bisphenol-type epoxy resin and alicyclic epoxy resin are preferable. Such an epoxy resin generally has an epoxy equivalent of 100 to 1000 and a softening point of 120 ° C.
The following are used: As the transparent resin for an optical semiconductor, another epoxy resin may be used in combination with the former two epoxy resins.
It is preferable to set the content to 0% by weight or less.

【0009】硬化剤成分としては、硬化剤および硬化促
進剤が含まれる。硬化剤としては、アミン系、酸無水物
系、フェノ−ル系硬化剤など特に限定しないが、光半導
体用の透明樹脂としては、好ましくは、酸無水物系硬化
剤が用いられ、その分子量は140〜200程度のもの
が好適である。例えば、ヘキサヒドロ無水フタル酸、テ
トラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタ
ル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラ
ヒドロ無水フタル酸等の無色ないし淡黄色の酸無水物が
挙げられる。上記酸無水物系硬化剤の配合量は、透明性
エポキシ樹脂とともに用いられ、透明性エポキシ樹脂1
00重量部(以下、「部」と略す)に対して、50〜2
00部の範囲に設定することが好ましい。また、硬化触
媒としては、三級アミン、イミダゾ−ル化合物及び有機
金属錯塩等が挙げられる
[0009] The curing agent component includes a curing agent and a curing accelerator. The curing agent is not particularly limited, such as an amine-based, acid anhydride-based, and phenol-based curing agent.As the transparent resin for an optical semiconductor, preferably, an acid anhydride-based curing agent is used, and the molecular weight thereof is Those having about 140 to 200 are preferable. Examples thereof include colorless to pale yellow acid anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. The amount of the acid anhydride-based curing agent is used together with the transparent epoxy resin.
50 to 2 parts by weight (hereinafter abbreviated as “parts”).
It is preferable to set in the range of 00 parts. Examples of the curing catalyst include tertiary amines, imidazole compounds and organometallic complex salts.

【0010】(C)成分としてのシリカ粒子を得るには
通常、シリカ粒子を高温で処理することにより、表面の
水酸基を少なくすることができる。また、他の方法とし
てはヘキサメチルジシラザン(以下、HMDSという)
あるいはシランカップリング剤で、通常のシリカ粒子表
面の水酸基を処理することで、水酸基量を少なくするこ
とが可能である。さらに、高温処理済みのシリカ粒子を
HMDSあるいはシランカップリング剤で処理すること
で、より効果的に水酸基量を少なくすることも可能であ
る。シランカップリング剤としては、γ−グリシドキシ
プロピルトリメトキシシラン、β−(3.4エポキシシ
クロヘキシル)エチルトリメトキシシラン、γ−アミノ
プロピルトリエトキシシランなどのアルコキシシランな
どが挙げられる。なお処理剤としてのHMDSとシラン
カップリング剤を比較した場合、HMDSの方が好適で
ある。その理由は、HMDSの方が得られる半導体装置
の耐熱性および低応力性に優れるようになるからであ
る。
In order to obtain silica particles as the component (C), the hydroxyl groups on the surface can usually be reduced by treating the silica particles at a high temperature. Another method is hexamethyldisilazane (hereinafter referred to as HMDS).
Alternatively, it is possible to reduce the amount of hydroxyl groups by treating the hydroxyl groups on the surface of ordinary silica particles with a silane coupling agent. Furthermore, by treating the silica particles that have been subjected to high temperature treatment with HMDS or a silane coupling agent, it is possible to more effectively reduce the amount of hydroxyl groups. Examples of the silane coupling agent include alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane, β- (3.4 epoxycyclohexyl) ethyltrimethoxysilane, and γ-aminopropyltriethoxysilane. When HMDS as a treatment agent is compared with a silane coupling agent, HMDS is more preferable. The reason is that HMDS becomes more excellent in heat resistance and low stress of a semiconductor device obtained.

【0011】本発明において用いるシリカ粒子は、上述
の如き数値範囲の水酸基量と粒子径を有しているが、こ
の数値範囲を外れると、透明性、耐熱性、低応力性が劣
るという不都合が生ずるからである。
The silica particles used in the present invention have a hydroxyl group content and a particle diameter within the above-mentioned numerical ranges. However, if they are outside these numerical ranges, the disadvantages of inferior transparency, heat resistance and low stress property will result. For it will occur.

【0012】なお上記シリカ粒子(C成分)としては、
単独で使っても良いし、通常のシリカと併用しても良
い。その場合も、混在シリカの水酸基量は5×10-5
ol/g以下が好ましく、1×10-5mol/g以下で
あれば、なお好適である。その時の通常シリカの使用割
合は、総シリカ量にたいして50重量%以下が望まし
い。また、その場合のシリカ粒子の総量は、熱硬化性樹
脂組成物全体の10〜90重量%の範囲に設定すること
が望ましい。ただし、シリカの粒子径は、熱硬化性樹脂
組成物が透明封止樹脂の場合は、透明性を保持するため
に、光の波長よりも充分に小さい粒子が必要のため、
0.1μm以下であることが望ましい。なお、光半導体
用透明樹脂の透明性とは、着色透明の場合も含み、硬化
体の厚さ1mm相当で、600nmの波長の光透過率が
80〜100%であるものをいう。(測定は分光光度計
による)。
The silica particles (component (C)) include:
They may be used alone or in combination with ordinary silica. Also in this case, the amount of hydroxyl groups in the mixed silica is 5 × 10 −5 m
ol / g or less is preferable, and 1 × 10 −5 mol / g or less is still more preferable. At that time, the usage ratio of ordinary silica is desirably 50% by weight or less based on the total amount of silica. In this case, the total amount of the silica particles is desirably set in the range of 10 to 90% by weight of the entire thermosetting resin composition. However, the particle size of silica, when the thermosetting resin composition is a transparent sealing resin, in order to maintain transparency, because particles that are sufficiently smaller than the wavelength of light are required,
It is desirable that the thickness be 0.1 μm or less. In addition, the transparency of the transparent resin for an optical semiconductor includes a case where the cured body is equivalent to a thickness of 1 mm and has a light transmittance of a wavelength of 600 nm of 80 to 100%, including a colored transparent case. (Measurement is by spectrophotometer).

【0013】シリカの水酸基量は次のような滴定で求め
ることができる。 1.既知量(2g)のシリカ、エタノ−ル10ml、界
面活性剤10重量%水溶液2.5g、および塩化ナトリ
ウム20重量%水溶液140mlを混合し、シリカ分散
液を作製する。界面活性剤はエマルゲン910(花王
(株)製)を使用する。 2.上記シリカ分散液を攪拌しながら0.05N塩酸で
pHを4.00に調製する。 3.次に、0.05N水酸化ナトリウム水溶液をビュレ
ットで徐々に滴下し、pHが9.00を30秒間保つ点
を終点とし、その時の0.05N水酸化ナトリウム水溶
液の消費量から水酸基量を数1により算出する。
The hydroxyl group content of silica can be determined by the following titration. 1. A silica dispersion is prepared by mixing a known amount (2 g) of silica, 10 ml of ethanol, 2.5 g of a 10% by weight aqueous solution of a surfactant, and 140 ml of a 20% by weight aqueous solution of sodium chloride. Emulgen 910 (manufactured by Kao Corporation) is used as the surfactant. 2. The pH of the silica dispersion is adjusted to 4.00 with 0.05N hydrochloric acid while stirring. 3. Next, a 0.05 N aqueous sodium hydroxide solution was gradually dropped with a burette, and the end point was a point at which the pH was maintained at 9.00 for 30 seconds. It is calculated by:

【数1】 X:水酸化ナトリウム水溶液の規定度、上記の場合X=
0.05 Y:水酸化ナトリウム水溶液の滴下量(ml) Z:シリカの質量(g)
(Equation 1) X: normality of sodium hydroxide aqueous solution, in the above case X =
0.05 Y: Drop amount of sodium hydroxide aqueous solution (ml) Z: Mass of silica (g)

【0014】なお、本発明に用いる熱硬化性樹脂組成物
には、上記(A)〜(C)成分以外に、必要に応じて染
料、変性剤、変色防止剤、老化防止剤、離型剤、反応性
ないし非反応性の希釈剤などの従来公知の添加剤を適宜
配合することができる。
The thermosetting resin composition used in the present invention contains, if necessary, a dye, a denaturant, a discoloration inhibitor, an antioxidant, and a release agent, in addition to the components (A) to (C). Conventionally known additives such as a reactive or non-reactive diluent can be appropriately compounded.

【0015】上記熱硬化性樹脂組成物は、例えば次のよ
うに製造することができる。すなわち、上記各成分の原
料を適宜配合し、予備混合した後、混練機に掛けて混練
して溶融混合する。そして、これを室温に冷却した後、
公知の手段によって、粉砕し、必要に応じて打錠すると
いう一連の工程により製造することができる。熱硬化性
樹脂組成物が液状の場合は、上記各成分を混合するだけ
でよい。ただし、シリカ粒子が超微粒子の場合、特願平
4−116822のようにあらかじめ有機溶媒にシリカ
超微粒子を分散させ、ついでこのシリカ超微粒子の分散
液と樹脂成分を混合させ、その後、脱溶媒するとよい。
The above thermosetting resin composition can be produced, for example, as follows. That is, the raw materials of the respective components are appropriately blended, preliminarily mixed, kneaded in a kneader, and then melt-mixed. And after cooling this to room temperature,
By a known means, it can be manufactured by a series of steps of crushing and, if necessary, tableting. When the thermosetting resin composition is liquid, it is only necessary to mix the above components. However, when the silica particles are ultrafine particles, ultrafine silica particles are dispersed in an organic solvent in advance as in Japanese Patent Application No. 4-116822, and then a dispersion of the silica ultrafine particles and a resin component are mixed. Good.

【0016】このような熱硬化性樹脂組成物を用いて
の、半導体素子の封止は、特に限定するものではなく、
通常のトランスファ−成形、注型などの公知のモ−ルド
方法により行うことができる。
The encapsulation of a semiconductor element using such a thermosetting resin composition is not particularly limited.
It can be carried out by a known molding method such as ordinary transfer molding and casting.

【0017】[0017]

【実施例】以下、実施例を用いて本発明を説明する。 実施例1 粒子径が0.07μmで水酸基量が20×10-5mol
/gであるシリカ超微粒子をHMDSで表面処理するこ
とにより、水酸基量を0.8×10-5mol/gまで減
少させた。このシリカ超微粒子200部、エポキシ当量
185のビスフェノ−ルA型エポキシ樹脂(液状樹脂)
100部、4−メチルヘキサヒドロ無水フタル酸100
部、2−エチル−4−メチルイミダゾ−ル0.4部、お
よび酸化防止剤2.5部を混合し、シリカ超微粒子を含
有するエポキシ樹脂組成物を得た。 実施例2 実施例1のHMDSで表面処理したシリカ超微粒子15
0部、エポキシ当量650のビスフェノ−ルA型エポキ
シ樹脂(固形樹脂)80部、トリグリシジルイソシアヌ
レ−ト(固形樹脂)20部、テトラヒドロ無水フタル酸
44部、2−エチル−4−メチルイミダゾ−ル0.4
部、および酸化防止剤2.5部を混合し、シリカ超微粒
子を含有するエポキシ樹脂組成物を得た。 実施例3 メチルイソブチルケトンに分散した粒子径が0.01μ
mで水酸基量が40×10-5mol/gであるシリカ超
微粒子(溶媒中のシリカ超微粒子は30重量%であっ
た)をHMDSで表面処理することにより、水酸基量を
0.5×10-5mol/gまで減少させた。このシリカ
超微粒子のメチルイソブチルケトン分散液200部にエ
ポキシ当量650のビスフェノ−ルA型エポキシ樹脂4
0部、トリグリシジルイソシアヌレ−ト10部、テトラ
ヒドロ無水フタル酸22部を溶解させた。そして、これ
を減圧して脱溶媒した後、硬化触媒として2−エチル−
4−メチルイミダゾ−ル0.2部、および酸化防止剤
1.2部を混合し、シリカ超微粒子を含有するエポキシ
樹脂組成物を得た。 実施例4 実施例3において表面処理をHMDSからγ−グリシド
キシプロピルトリメトキシシランに変えた以外は同様に
して水酸基量4.6×10-5mol/gのシリカ超微粒
子を得て、実施例3と同様の作業により、シリカ超微粒
子を含有するエポキシ樹脂組成物を得た。 比較例1 実施例1において、シリカをHMDSで表面処理しなか
った。 比較例2 実施例2において、シリカをHMDSで表面処理しなか
った。 比較例3 実施例3において、シリカをHMDSで表面処理しなか
った。
The present invention will be described below with reference to examples. Example 1 The particle diameter is 0.07 μm and the amount of hydroxyl groups is 20 × 10 −5 mol.
/ G of silica ultra-fine particles was subjected to a surface treatment with HMDS to reduce the amount of hydroxyl groups to 0.8 × 10 −5 mol / g. Bisphenol A type epoxy resin (liquid resin) having 200 parts of these ultrafine silica particles and an epoxy equivalent of 185
100 parts, 4-methylhexahydrophthalic anhydride 100
Part, 2-ethyl-4-methylimidazole and 0.4 part of an antioxidant were mixed to obtain an epoxy resin composition containing ultrafine silica particles. Example 2 Ultrafine silica particles 15 surface-treated with HMDS of Example 1
0 parts, 80 parts of bisphenol A type epoxy resin (solid resin) having an epoxy equivalent of 650, 20 parts of triglycidyl isocyanurate (solid resin), 44 parts of tetrahydrophthalic anhydride, 2-ethyl-4-methylimidazo- 0.4
Parts and 2.5 parts of an antioxidant were mixed to obtain an epoxy resin composition containing ultrafine silica particles. Example 3 Particle size dispersed in methyl isobutyl ketone is 0.01 μm
The ultrafine silica particles having a hydroxyl group content of 40 × 10 −5 mol / g in m (the silica ultrafine particles in the solvent was 30% by weight) were subjected to a surface treatment with HMDS to reduce the hydroxyl group amount to 0.5 × 10 5 mol / g. -5 mol / g. Bisphenol A type epoxy resin 4 having an epoxy equivalent of 650 was added to 200 parts of the silica ultrafine particle dispersion of methyl isobutyl ketone.
0 parts, 10 parts of triglycidyl isocyanurate and 22 parts of tetrahydrophthalic anhydride were dissolved. After removing the solvent under reduced pressure, 2-ethyl- as a curing catalyst was used.
0.2 parts of 4-methylimidazole and 1.2 parts of an antioxidant were mixed to obtain an epoxy resin composition containing ultrafine silica particles. Example 4 Ultrafine silica particles having a hydroxyl group content of 4.6 × 10 −5 mol / g were obtained in the same manner as in Example 3 except that the surface treatment was changed from HMDS to γ-glycidoxypropyltrimethoxysilane. By the same operation as in Example 3, an epoxy resin composition containing ultrafine silica particles was obtained. Comparative Example 1 In Example 1, the silica was not surface-treated with HMDS. Comparative Example 2 In Example 2, the silica was not surface-treated with HMDS. Comparative Example 3 In Example 3, the silica was not surface-treated with HMDS.

【0018】次に、実施例1〜4及び比較例1〜3で得
られたエポキシ樹脂組成物を用いて、硬化温度150℃
で、LEDを樹脂封止して光半導体装置を作製し、この
光半導体装置の高温での通電輝度劣化を測定した。その
結果を下記の表1に示す。なお、通電輝度劣化の測定
は、次のようにして行った。すなわち、光半導体装置
(LEDデバイス)に定電流を流し、輝度として電流印
加後5秒後の受光素子の出力電流値を求め劣化率を測定
した。測定条件は、評価素子0.5×0.5mmのGa
As、パッケ−ジとしては、直径5mmのパイロットラ
ンプを用い、80℃雰囲気下において、20mA通電の
1000時間後の輝度劣化率である。
Next, using the epoxy resin compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 3, a curing temperature of 150 ° C.
Then, an LED was resin-sealed to produce an optical semiconductor device, and deterioration of the current-carrying luminance of the optical semiconductor device at a high temperature was measured. The results are shown in Table 1 below. In addition, the measurement of energization luminance deterioration was performed as follows. That is, a constant current was applied to the optical semiconductor device (LED device), and the output current value of the light receiving element 5 seconds after current application was determined as luminance, and the deterioration rate was measured. The measurement conditions were as follows.
As, As, a package, using a pilot lamp having a diameter of 5 mm, in a 80 ° C. atmosphere, the luminance deterioration rate after 1000 hours of 20 mA current supply.

【0019】[0019]

【表1】 [Table 1]

【0020】上記表1の結果から、比較例1〜3の樹脂
はTgが低いため、、樹脂の耐熱性が低く、樹脂が熱劣
化で黄変し、樹脂の光透過率が大きく低下したため輝度
が劣化した。それに対し、各実施例は樹脂の耐熱性が高
いので熱劣化もなく、輝度劣化が抑制された。
From the results in Table 1 above, the resins of Comparative Examples 1 to 3 have low Tg, so that the heat resistance of the resin is low, the resin yellows due to thermal deterioration, and the light transmittance of the resin is greatly reduced, and the luminance is low. Has deteriorated. On the other hand, in each of the examples, since the heat resistance of the resin was high, there was no thermal deterioration and the luminance deterioration was suppressed.

【0021】[0021]

【発明の効果】以上の如く、本発明においては、水酸基
量5×10-5mol/g以下かつ粒子径0.1μm以下
のシリカ粒子を用いてなる透明封止樹脂組成物により光
半導体素子を封止しているので、得られる光半導体装置
は耐熱性、低応力性および透明性に優れる。なお今迄の
説明では、熱硬化性樹脂として透明封止樹脂を取り上げ
て説明してきたが、本発明の技術思想は樹脂封止半導体
全般の耐熱性、低応力性を良好にするためにも適用可能
であり、従って透明な熱硬化性樹脂以外の熱硬化性樹脂
を用いる場合にも有用である。
As described above, in the present invention, an optical semiconductor device is produced by a transparent encapsulating resin composition using silica particles having a hydroxyl group content of 5 × 10 −5 mol / g or less and a particle size of 0.1 μm or less. Because of the sealing, the obtained optical semiconductor device is excellent in heat resistance, low stress, and transparency. In the above description, the transparent encapsulating resin has been described as the thermosetting resin. However, the technical idea of the present invention is also applied to improve the heat resistance and the low stress of the entire resin-encapsulated semiconductor. It is possible, and thus is useful when using a thermosetting resin other than a transparent thermosetting resin.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 23/29 C08K 7/10 C08L 101/16 H01L 23/31 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 23/29 C08K 7/10 C08L 101/16 H01L 23/31

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の(A)〜(C)成分を含む樹脂組
成物を用いて半導体素子を封止してなる半導体装置。 (A)熱硬化性樹脂。 (B)硬化剤成分。 (C)水酸基量が5×10-5mol/g以下であり、か
つ粒子径が0.1μm以下であるシリカ粒子。
1. A semiconductor device having a semiconductor element encapsulated with a resin composition containing the following components (A) to (C). (A) Thermosetting resin. (B) a curing agent component. (C) Silica particles having a hydroxyl group content of 5 × 10 −5 mol / g or less and a particle size of 0.1 μm or less.
【請求項2】 (C)成分のシリカ粒子がヘキサメチル
ジシラザンあるいはシランカップリング剤でシリカ粒子
を処理してなるものである請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the silica particles as the component (C) are obtained by treating the silica particles with hexamethyldisilazane or a silane coupling agent.
【請求項3】 下記の(A)〜(C)成分を含む半導体
素子封止用熱硬化性樹脂組成物。 (A)熱硬化性樹脂。 (B)硬化剤成分。 (C)水酸基量が5×10-5mol/g以下であリ、か
つ粒子径が0.1μm以下であるシリカ粒子。
3. A thermosetting resin composition for sealing a semiconductor element, comprising the following components (A) to (C). (A) Thermosetting resin. (B) a curing agent component. (C) Silica particles having a hydroxyl group content of 5 × 10 −5 mol / g or less and a particle size of 0.1 μm or less.
【請求項4】 (C)成分のシリカ粒子がヘキサメチル
ジシラザンあるいはシランカップリング剤でシリカ粒子
を処理してなるものである請求項3記載の半導体素子封
止用熱硬化性樹脂組成物。
4. The thermosetting resin composition for sealing a semiconductor element according to claim 3, wherein the silica particles as the component (C) are obtained by treating the silica particles with hexamethyldisilazane or a silane coupling agent.
JP4240438A 1992-09-09 1992-09-09 Semiconductor device Expired - Lifetime JP3017888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4240438A JP3017888B2 (en) 1992-09-09 1992-09-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240438A JP3017888B2 (en) 1992-09-09 1992-09-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0689948A JPH0689948A (en) 1994-03-29
JP3017888B2 true JP3017888B2 (en) 2000-03-13

Family

ID=17059498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240438A Expired - Lifetime JP3017888B2 (en) 1992-09-09 1992-09-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3017888B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211292B1 (en) * 1999-06-21 2006-05-24 Daikin Industries, Ltd. Use of a crosslinked elastomer composition for sealing a semiconductor production apparatus
US7446136B2 (en) * 2005-04-05 2008-11-04 Momentive Performance Materials Inc. Method for producing cure system, adhesive system, and electronic device
TW200913181A (en) 2007-07-10 2009-03-16 Arakawa Chem Ind Optical semiconductor-sealing composition
JP5556133B2 (en) * 2009-03-31 2014-07-23 日立化成株式会社 Liquid resin composition for electronic components and electronic component device

Also Published As

Publication number Publication date
JPH0689948A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
US7307286B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JPH0725987A (en) Epoxy resin composition for sealing optical semiconductor
JP3153171B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor
JP4722686B2 (en) Manufacturing method of resin composition for encapsulating optical semiconductor element, resin composition for encapsulating optical semiconductor element and optical semiconductor device obtained thereby
JP2001261933A (en) Epoxy resin for sealing optical semiconductor element and optical semiconductor device
JP3017888B2 (en) Semiconductor device
JP2001323135A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP5544819B2 (en) Epoxy group-containing adhesive resin composition and optical semiconductor adhesive using the same
JP2796187B2 (en) Optical semiconductor device
JP2009013264A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
JP2837478B2 (en) Optical semiconductor device
JPH06232296A (en) Semiconductor device
JPH11269351A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
JP2760889B2 (en) Optical semiconductor device
JP2703609B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
JPH056946A (en) Optical semiconductor device
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JP3098663B2 (en) Thermosetting resin composition and production method thereof
JPH06302726A (en) Thermosetting resin composition
JPS6070781A (en) Resin seal type light-emitting device
JP3394736B2 (en) Epoxy resin composition and semiconductor device
JP5009835B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JP2703617B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
JPH0563240A (en) Optical semiconductor device
JPH06283631A (en) Manufacture of thermosetting resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13