JP2796187B2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JP2796187B2
JP2796187B2 JP26485690A JP26485690A JP2796187B2 JP 2796187 B2 JP2796187 B2 JP 2796187B2 JP 26485690 A JP26485690 A JP 26485690A JP 26485690 A JP26485690 A JP 26485690A JP 2796187 B2 JP2796187 B2 JP 2796187B2
Authority
JP
Japan
Prior art keywords
epoxy resin
silica powder
refractive index
optical semiconductor
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26485690A
Other languages
Japanese (ja)
Other versions
JPH04142070A (en
Inventor
豊 青木
修次 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP26485690A priority Critical patent/JP2796187B2/en
Publication of JPH04142070A publication Critical patent/JPH04142070A/en
Application granted granted Critical
Publication of JP2796187B2 publication Critical patent/JP2796187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光透過率および低応力性の双方に優れた
掛止樹脂により樹脂封止された光半導体装置に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device resin-sealed with a locking resin having excellent light transmittance and low stress.

〔従来の技術〕[Conventional technology]

LED(発光ダイオード)等の光半導体素子を封止する
際に用いられる封止用樹脂組成物としては、その硬化物
が透明性を有することが要求され、一般に、ビスフエノ
ールA型エポキシ樹脂,脂環式エポキシ樹脂等のエポキ
シ樹脂と、硬化剤に酸無水物とを用いて得られるエポキ
シ樹脂組成物が汎用されている。
As a sealing resin composition used for sealing an optical semiconductor element such as an LED (light emitting diode), it is required that the cured product has transparency, and in general, bisphenol A type epoxy resin, An epoxy resin composition obtained by using an epoxy resin such as a cyclic epoxy resin and an acid anhydride as a curing agent is widely used.

しかし、上記エポキシ樹脂組成物を封止樹脂として用
いると、エポキシ樹脂組成物の硬化時の硬化収縮、また
は硬化温度から室温に冷却するときの冷却収縮により、
エポキ樹脂組成物と光半導体素子の接着界面において、
エポキシ樹脂組成物と光半導体素子との線膨張係数の差
に起因する歪みが生じ内部応力が発生する。その結果、
光半導体素子が劣化し、例えば、光半導体素子が発光素
子の場合、その輝度が低下するという問題が生じる。こ
のため、従来から、上記内部応力を低減させる方法とし
て、シリカ粉末等の線膨張係数の小さい無機粉末を添加
してエポキシ樹脂組成物の線膨張係数を小さくして光半
導体素子のそれに近似させる方法が提案され一部で実行
されている。
However, when the epoxy resin composition is used as a sealing resin, curing shrinkage during curing of the epoxy resin composition, or cooling shrinkage when cooling from the curing temperature to room temperature,
At the adhesive interface between the epoxy resin composition and the optical semiconductor element,
Strain occurs due to the difference in linear expansion coefficient between the epoxy resin composition and the optical semiconductor element, and internal stress is generated. as a result,
When the optical semiconductor element is deteriorated, for example, when the optical semiconductor element is a light emitting element, there arises a problem that its luminance is reduced. For this reason, conventionally, as a method of reducing the internal stress, a method of adding an inorganic powder having a small linear expansion coefficient such as silica powder to reduce the linear expansion coefficient of the epoxy resin composition to approximate that of an optical semiconductor element Has been proposed and implemented in part.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記方法は、エポキシ樹脂組成物の光
透過率が著しく低下するという光半導体封止用樹脂組成
物としては致命的な欠点を有している。これに対し、上
記欠点を解決するために、樹脂成分とシリカ粉末の屈折
率の差を小さくする方法が提案され実行されている(特
開昭49−23847号)が、単に樹脂成分とシリカ粉末の屈
折率の差を小さくするだけでは、例えば、厚み2mmのエ
ポキシ樹脂組成物硬化体の光透過率は70%程度であり、
高輝度ダイオード(LED)等の高性能光半導体素子の封
止用樹脂組成物としては不充分であり、より光透過率の
高い、しかも低応力性に優れた光半導体封止用樹脂組成
物が切望されている。
However, the above method has a fatal defect as a resin composition for encapsulating an optical semiconductor in that the light transmittance of the epoxy resin composition is significantly reduced. On the other hand, in order to solve the above-mentioned drawbacks, a method for reducing the difference in the refractive index between the resin component and the silica powder has been proposed and implemented (Japanese Patent Application Laid-Open No. 49-23847). By simply reducing the difference in the refractive index of, for example, the light transmittance of a cured epoxy resin composition having a thickness of 2 mm is about 70%,
As a resin composition for encapsulating high-performance optical semiconductor devices such as high-brightness diodes (LEDs), the resin composition for optical semiconductor encapsulation having a higher light transmittance and an excellent low stress property has been developed. Coveted.

この発明は、このような事情に鑑みなされたもので、
内部応力が小さく、しかも光透過性に優れた光半導体装
置に関するものである。
The present invention has been made in view of such circumstances,
The present invention relates to an optical semiconductor device having small internal stress and excellent light transmittance.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明の光半導体装置
は、下記の(A)〜(D)成分を含み、(D)成分のシ
リカ粉末の屈折率と、(A)〜(C)成分からなるエポ
キシ樹脂硬化体の屈折率との差が±0.01の範囲に設定さ
れているエポキシ樹脂組成物を用いて光半導体素子を封
止するという構成をとる。
In order to achieve the above object, an optical semiconductor device of the present invention includes the following components (A) to (D), wherein the refractive index of the silica powder (D) and the components (A) to (C) are The optical semiconductor element is sealed using an epoxy resin composition in which the difference from the refractive index of the epoxy resin cured product is set within a range of ± 0.01.

(A)透明性エポキシ樹脂。(A) Transparent epoxy resin.

(B)酸無水物系硬化剤。(B) an acid anhydride-based curing agent.

(C)硬化触媒。(C) a curing catalyst.

(D)クラツクの無い球状シリカ粉末。(D) Crack-free spherical silica powder.

〔作用〕[Action]

すなわち、本発明者らは、内部応力が小さく、しかも
光透過性に優れた封止樹脂を得るために一連の研究を重
ねた。その研究の過程で、まずシリカ粉末として破砕状
のものを用いてみたが、得られた硬化体は光透過性が低
かつた。そこで、上記光透過性が低いのは、破砕状シリ
カ粉末に形成されるクラツクに原因があり、このクラツ
クが光を乱反射させるためではないかと想起し、乱反射
を防止し光透過性を高めるために、さらに研究を重ね
た。その結果、クラツクの無い球状シリカ粉末を用い、
さらに上記特殊な球状シリカ粉末の屈折率をエポキシ樹
脂硬化体のそれに近似させると、透明で内部応力の低減
された封止樹脂が得られることを見出しこの発明に到達
した。
That is, the present inventors have repeated a series of studies in order to obtain a sealing resin having small internal stress and excellent light transmittance. In the course of the study, the crushed silica powder was first used, but the cured product obtained had low light transmittance. Therefore, the low light transmittance is caused by cracks formed in the crushed silica powder, and it is supposed that this crack is for irregularly reflecting light, and in order to prevent irregular reflection and increase light transmittance. , Further research. As a result, using spherical silica powder without cracks,
Further, the inventors have found that when the refractive index of the special spherical silica powder is made to be close to that of the cured epoxy resin, a sealing resin having a transparent and reduced internal stress can be obtained.

この発明に用いるエポキシ樹脂組成物は、透明性エポ
キシ樹脂(A成分)と、酸無水物系硬化剤(B成分)
と、硬化触媒(C成分)と、特殊な球状シリカ粉末(D
成分)とを用いて得られるものであつて、通常、液状,
粉末状もしくはこの粉末を打錠したタブレツト状になつ
ている。
The epoxy resin composition used in the present invention comprises a transparent epoxy resin (component A) and an acid anhydride-based curing agent (component B).
, A curing catalyst (C component), and a special spherical silica powder (D
Component), and is usually a liquid,
It is in the form of a powder or a tablet obtained by compressing this powder.

上記透明性エポキシ樹脂(A成分)としては、ビスフ
エノール型エポキシ樹脂,脂環式エポキシ樹脂が透明性
を有するために好ましいが、場合により他のエポキシ樹
脂を併用してもよい。そして、上記他のエポキシ樹脂を
用いる場合、その使用割合は、通常、エポキシ樹脂全体
の50重量%(以下「%」と略す)以下に設定するのが好
適である。このようなエポキシ樹脂としては、一般に、
エポキシ当量100〜1000,軟化点120℃以下のものが用い
られる。なお、上記透明性エポキシ樹脂の透明性とは、
着色透明の場合をも含み、厚み1mm相当で、600nmの波長
の光透過率が80〜100%をいう(分光光度計により測
定)。
As the transparent epoxy resin (component A), a bisphenol-type epoxy resin and an alicyclic epoxy resin are preferable because of their transparency, but other epoxy resins may be used in some cases. When the other epoxy resin is used, it is generally preferable to set the usage ratio to 50% by weight or less (hereinafter abbreviated as “%”) of the entire epoxy resin. As such an epoxy resin, generally,
Those having an epoxy equivalent of 100 to 1000 and a softening point of 120 ° C. or less are used. Incidentally, the transparency of the transparent epoxy resin,
Including the case of colored and transparent, it is equivalent to a thickness of 1 mm and has a light transmittance of 80 to 100% at a wavelength of 600 nm (measured by a spectrophotometer).

上記透明性エポキシ樹脂(A成分)とともに用いられ
る酸無水物系硬化剤(B成分)としては、分子量140〜2
00程度のものが好ましく用いられ、例えば、ヘキサヒド
ロ無水フタル酸,テトラヒドロ無水フタル酸,メチルヘ
キサヒドロ無水フタル酸メチルテトラヒドロ無水フタル
酸等の無色ないし淡黄色の酸無水物があげられる。上記
酸無水物系硬化剤の配合量は、上記透明性エポキシ樹脂
100重量部(以下「部」と略す)に対して50〜200部の範
囲に設定することが好ましい。
The acid anhydride-based curing agent (component B) used together with the transparent epoxy resin (component A) includes a molecular weight of 140 to 2
Those having about 00 are preferably used, and examples thereof include colorless to pale yellow acid anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and methyltetrahydrophthalic anhydride. The compounding amount of the acid anhydride-based curing agent is the above-mentioned transparent epoxy resin.
It is preferable to set the amount in the range of 50 to 200 parts with respect to 100 parts by weight (hereinafter abbreviated as "part").

上記透明性エポキシ樹脂(A成分),酸無水物硬化剤
(B成分)とともに用いられる硬化触媒(C成分)とし
ては、三級アミン,イミダゾール化合物および有機金属
錯塩等があげられる。
Examples of the curing catalyst (component C) used together with the transparent epoxy resin (component A) and the acid anhydride curing agent (component B) include tertiary amines, imidazole compounds, and organometallic complex salts.

なお、上記特殊な球状シリカ粉末(D成分)と、上記
A〜C成分からなるエポキシ樹脂組成物硬化体の屈折率
との差を±0.01の範囲に設定する方法としては、下記の
〜の方法があげられる。
As a method for setting the difference between the refractive index of the special spherical silica powder (D component) and the refractive index of the cured epoxy resin composition composed of the above A to C components in a range of ± 0.01, the following methods (1) to (4) are used. Is raised.

上記A〜C成分からなるエポキシ樹脂組成物硬化体
のみの屈折率を調節する方法(例えば、A成分の種類の
選択,A成分の2種類以上の併用あるいはB成分の種類の
選択,B成分の2種類以上の併用等)。
A method of adjusting the refractive index of only the cured epoxy resin composition comprising the components A to C (for example, selection of the type of the component A, use of two or more types of the component A or selection of the type of the component B, 2 or more types).

D成分(特殊な球状シリカ粉末)の屈折率を調節す
る方法。
A method of adjusting the refractive index of the D component (special spherical silica powder).

上記およびを併用する方法。 A method using the above and in combination.

そして、上記A成分(透明性エポキシ樹脂),B成分
(酸無水物硬化剤),C成分(硬化触媒)とともに用いら
れる特殊な球状シリカ粉末(D成分)としては、溶融性
のものが用いられ、好ましくは球状シリカ粉末自体の屈
折率を上記の方法にしたがい調節されたものがあげら
れる。具体的には、球状シリカ粉末に微量の酸化鉛,酸
化チタン等の金属酸化物を混入することによりシリカ粉
末自体の屈折率(通常約1.46)を調節してエポキシ樹脂
の屈折率(通常約1.54)に近似させるのが一般的であ
る。
As the special spherical silica powder (D component) used together with the A component (transparent epoxy resin), the B component (acid anhydride curing agent), and the C component (curing catalyst), a fusible one is used. Preferably, the refractive index of the spherical silica powder itself is adjusted according to the above method. Specifically, the refractive index (usually about 1.46) of the silica powder itself is adjusted by mixing a small amount of a metal oxide such as lead oxide and titanium oxide into the spherical silica powder to adjust the refractive index of the epoxy resin (usually about 1.54). ) Is generally approximated.

そして、このような球状シリカ粉末としては、クラツ
クの無いものを用いる必要がある。すなわち、破砕状シ
リカ粉末では、そのなかに製造時の破砕工程で生じたク
ラツクが多く存在し、そのクラツクが原因で光の散乱が
生じてしまい、たとえ上記のようにエポキシ樹脂組成物
とシリカ粉末の屈折率を近似させても満足のいく光透過
率が得られないからである。また、シリカ粉末の粒子形
状が球状であることは、光半導体素子に損傷を与えない
ためにも好ましい。このようなクラツクの無い球状シリ
カ粉末は、例えばつぎのようにして作製される。すなわ
ち、破砕状シリカをその融点付近まで加熱し、粒子を破
砕状から球状に変化させると同時に、クラツクを融着に
より消失させることによつて作製される。あるいは、ア
ルコキシシランを、水を含む溶媒中で重合させる(ゾル
・ゲル法)ことによつて作製される。
And it is necessary to use such a spherical silica powder having no crack. That is, in the crushed silica powder, there are many cracks generated in the crushing step at the time of manufacturing, and the crack causes light scattering, and even if the epoxy resin composition and the silica powder are used as described above. This is because a satisfactory light transmittance cannot be obtained even if the refractive index is approximated. In addition, it is preferable that the particle shape of the silica powder is spherical in order not to damage the optical semiconductor element. Such spherical silica powder without cracks is produced, for example, as follows. That is, it is produced by heating the crushed silica to near its melting point to change the particles from crushed to spherical, and at the same time, to eliminate the cracks by fusion. Alternatively, it is produced by polymerizing an alkoxysilane in a solvent containing water (sol-gel method).

このような球状シリカ粉末としては、特に限定するも
のではないが、通常、平均粒径1〜60μmのものを用い
るのが好ましい。ただし、前記透明性エポキシ樹脂(A
成分)が液状の場合は、配合時にシリカ粉末の沈殿が生
じるため、平均粒径が3μm以下のものを用いるのが好
ましい。平均粒径が3μm以下であると、エポキシ樹脂
組成物の粘度が高くなり、成形性の低下が懸念される
が、この点に関しては、エポキシ樹脂とシリカ粉末の混
合時に加熱する等の工夫をすることで回避することがで
きる。さらに、特殊な球状シリカ粉末の含有量(D成
分)は、エポキシ樹脂組成物全体の10〜70%の範囲に設
定するのが好適である。
Although such a spherical silica powder is not particularly limited, it is usually preferable to use a powder having an average particle diameter of 1 to 60 μm. However, the transparent epoxy resin (A
When the component (a) is liquid, precipitation of silica powder occurs at the time of compounding. Therefore, it is preferable to use one having an average particle size of 3 μm or less. When the average particle size is 3 μm or less, the viscosity of the epoxy resin composition becomes high, and there is a concern that the moldability may be reduced. In this regard, heating the epoxy resin and silica powder at the time of mixing is devised. That can be avoided. Further, the content (D component) of the special spherical silica powder is preferably set in the range of 10 to 70% of the entire epoxy resin composition.

また、上記A成分(透明性エポキシ樹脂),B成分(酸
無水物硬化剤),C成分(硬化触媒)およびD成分(シリ
カ粉末)とともにシランカツプリング剤を用いてもよ
い。上記シランカツプリング剤を用いることにより、エ
ポキシ樹脂と上記球状シリカ粉末(D成分)の密着性が
高くなり、硬化物の透明性を向上させることができる。
このようなシランカツプリング剤としては、エポキシ基
またはアミノ基を有するものが好ましく、具体的には、
エポキシ基を有するものとして、β−(3,4−エポキシ
シクロヘキシル)エチルトリメトキシシラン、γ−グリ
シドキシプロピルトリメトキシシラン、γ−グリシドキ
シプロピルメチルジエトキシシラン等があげられ、アミ
ノ基を有するものとしては、N−β−アミノエチル−γ
−アミノプロピルトリメトキシシラン、N−β−アミノ
エチル−γ−アミノプロピルメチルジメトキシシラン、
γ−アミノプロピルトリエトキシシラン、N−フエニル
−γ−アミノプロピルトリメトキシシラン等があげられ
る。上記シランカツプリング剤の使用量は、球状シリカ
粉末(D成分)に対して0.5〜3%の範囲内に設定する
のが好適である。
Further, a silane coupling agent may be used together with the component A (transparent epoxy resin), component B (acid anhydride curing agent), component C (curing catalyst) and component D (silica powder). By using the silane coupling agent, the adhesion between the epoxy resin and the spherical silica powder (D component) is increased, and the transparency of the cured product can be improved.
As such a silane coupling agent, those having an epoxy group or an amino group are preferable, and specifically,
Examples of those having an epoxy group include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like. As those having, N-β-aminoethyl-γ
-Aminopropyltrimethoxysilane, N-β-aminoethyl-γ-aminopropylmethyldimethoxysilane,
γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane and the like. The amount of the silane coupling agent used is preferably set in the range of 0.5 to 3% based on the spherical silica powder (D component).

なお、この発明に用いるエポキシ樹脂組成物には、上
記A〜D成分以外に、必要に応じて染料,変性剤,変色
防止剤,老化防止剤,離型剤,反応性ないし非反応性の
希釈剤等の従来公知の添加剤を適宜配合することができ
る。
The epoxy resin composition used in the present invention may contain, in addition to the components A to D, a dye, a modifier, a discoloration inhibitor, an antioxidant, a release agent, a reactive or non-reactive diluent, if necessary. Conventionally known additives such as an agent can be appropriately compounded.

そして、この発明に用いるエポキシ樹脂組成物とし
て、上記A成分,B成分およびC成分からなるエポキシ樹
脂硬化体の屈折率と、上記D成分(球状シリカ粉末)の
屈折率との差が、±0.01以内のものを用いる必要があ
る。なお、上記屈折率をアツベ屈折計を用いて測定され
る。
In the epoxy resin composition used in the present invention, the difference between the refractive index of the cured epoxy resin composed of the components A, B and C and the refractive index of the component D (spherical silica powder) is ± 0.01. Must be used. The refractive index is measured using an Atsube refractometer.

この発明に用いる上記エポキシ樹脂組成物は、例えば
つぎのようにして製造することができる。すなわち、上
記A〜D成分および従来公知の添加剤を配合して溶融混
合したのち、これを室温に冷却して公知の手段により粉
砕し必要に応じて打錠することにより製造することがで
きる。また、上記エポキシ樹脂組成物が液状物の場合
は、上記各成分を混合するのみでよい。
The epoxy resin composition used in the present invention can be produced, for example, as follows. That is, it can be manufactured by blending the above-mentioned components A to D and a conventionally known additive, melt-mixing, cooling the mixture to room temperature, pulverizing by a known means, and tableting as necessary. When the epoxy resin composition is a liquid, it is only necessary to mix the above components.

このようなエポキシ樹脂組成物を用いての光半導体素
子の封止は、特に限定するものではなく、通常のトラン
スフアー成形,注型等の公知のモールド方法により行う
ことができる。
The sealing of the optical semiconductor element using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding and casting.

このようにして得られる光半導体装置は、透明性に優
れ、内部応力が極めて小さく高い信頼性を備えている。
これは、クラツクの無い球状シリカ粉末を配合すること
により光の散乱が抑制され、しかも樹脂成分の硬化体と
球状シリカ粉末の屈折率の差が非常に小さいからである
と考えられる。
The optical semiconductor device obtained in this manner has excellent transparency, extremely low internal stress, and high reliability.
This is presumably because light scattering is suppressed by adding spherical silica powder having no crack, and the difference in refractive index between the cured product of the resin component and the spherical silica powder is very small.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明の光半導体装置は、クラツク
のない球状シリカ粉末を含み、しかも球状シリカ粉末と
樹脂成分の硬化体との屈折率の差が特定の範囲内である
エポキシ樹脂組成物を用いて光半導体素子を樹脂封止し
て構成されているため、その封止樹脂が光透過性に優
れ、しかも内部応力が小さく、例えば発光素子の輝度劣
化の抑制等のなされた信頼性の極めて高いものである。
As described above, the optical semiconductor device of the present invention includes an epoxy resin composition containing a spherical silica powder having no crack, and a difference in refractive index between the spherical silica powder and the cured product of the resin component within a specific range. Since the optical semiconductor element is formed by resin sealing, the sealing resin is excellent in light transmittance and has a small internal stress. It is expensive.

つぎに、実施例について比較例と併せて説明する。 Next, examples will be described together with comparative examples.

〔実施例1〕 エポキシ当量185のビスフエノールA型エポキシ樹脂
(液状樹脂)を65部、下記の構造式で表されるエポキシ
当量252の脂環式エポキシ樹脂(液状樹脂)35部、 4−メチルヘキサヒドロ無水フタル酸100部、2−エチ
ル−4−メチルイミダゾール0.4部(上記配合樹脂組成
物の硬化体の屈折率は1.528である)に、屈折率が1.528
で、平均粒径2.5μmのクラツクの無い球状シリカ粉末
(金属酸化物が混入されている)90部添加混合したもの
を120℃で熱硬化させて球状シリカ粉末含有エポキシ樹
脂組成物硬化体を得た。この硬化体の光透過率は厚み4m
mで81%という高い値であつた。
Example 1 65 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, 35 parts of an alicyclic epoxy resin (liquid resin) having an epoxy equivalent of 252 represented by the following structural formula, 4-methylhexahydrophthalic anhydride (100 parts), 2-ethyl-4-methylimidazole (0.4 parts) (the cured resin of the above-mentioned resin composition has a refractive index of 1.528) and a refractive index of 1.528.
Then, 90 parts of a crack-free spherical silica powder (mixed with a metal oxide) having an average particle size of 2.5 μm, and a mixture obtained by adding and mixing are thermally cured at 120 ° C. to obtain a cured epoxy resin composition containing the spherical silica powder. Was. The light transmittance of this cured product is 4m thick
It was as high as 81% at m.

〔実施例2〕 エポキシ当量185のビスフエノールA型エポキシ樹脂
(液状樹脂)を77部、下記の構造式で表されるエポキシ
当量240のビスフエノールAF型エポキシ樹脂(液状樹
脂)23部、 4−メチルヘキサヒドロ無水フタル酸100部、2−エチ
ル−4−メチルイミダゾール0.4部(上記配合樹脂組成
物の硬化体の屈折率は1.534である)に、屈折率が1.534
で、平均粒径が2.5μmのクラツクの無い球状シリカ粉
末(金属酸化物が混入されている)を90部添加混合した
ものを120℃で熱硬化させて球状シリカ粉末含有エポキ
シ樹脂組成物硬化体を得た。この硬化体の光透過率は厚
み4mmで80%という高い値であつた。
[Example 2] 77 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, 23 parts of a bisphenol AF type epoxy resin (liquid resin) having an epoxy equivalent of 240 represented by the following structural formula, 4-methylhexahydrophthalic anhydride (100 parts), 2-ethyl-4-methylimidazole (0.4 parts) (the cured product of the above-mentioned resin composition has a refractive index of 1.534) and a refractive index of 1.534.
A mixture of 90 parts of a crack-free spherical silica powder (containing a metal oxide) having an average particle size of 2.5 μm, and heat-cured at 120 ° C. to form a cured epoxy resin composition containing the spherical silica powder. I got The light transmittance of this cured product was as high as 80% at a thickness of 4 mm.

〔実施例3〕 エポキシ当量650のビスフエノールA型エポキシ樹脂
(固形樹脂)を80部、トリグリシジルイソシアネート20
部、テトラヒドロ無水フタル酸50部、2−エチル−4−
メチルイミダゾール0.4部(上記配合樹脂組成物の硬化
体の屈折率は1.561である)に、屈折率が1.561で、平均
粒径が25μmのクラツクの無い球状シリカ粉末(金属酸
化物が混入されている)を110部添加し溶融混合を行
い、冷却固化後、粉砕して粉末状エポキシ樹脂組成物を
得た。この組成物をトランスフアー成形で150℃で熱硬
化させ、球状シリカ粉末含有エポキシ樹脂組成物硬化体
を得た。この硬化体の光透過率は厚み4mmで80%という
高い値であつた。
Example 3 80 parts of bisphenol A type epoxy resin (solid resin) having an epoxy equivalent of 650, triglycidyl isocyanate 20
Parts, tetrahydrophthalic anhydride 50 parts, 2-ethyl-4-
Crack-free spherical silica powder (metal oxide mixed with 0.461 parts of methylimidazole (refractive index of the cured product of the above-mentioned resin composition is 1.561) and refractive index of 1.561 and average particle size of 25 μm) ) Was added, melt-mixed, cooled and solidified, and then pulverized to obtain a powdery epoxy resin composition. This composition was thermally cured at 150 ° C. by transfer molding to obtain a cured epoxy resin composition containing spherical silica powder. The light transmittance of this cured product was as high as 80% at a thickness of 4 mm.

〔実施例4〕 屈折率が1.528で、平均粒径2.5μmのクラツクの無い
球状シリカ粉末(金属酸化物が混入されている)を466
部用いた。それ以外は実施例1と同様にして球状シリカ
含有エポキシ樹脂組成物硬化体を得た。この硬化物の光
透過率は厚み4mmで80%という高い値であつた。
[Example 4] A spherical silica powder (containing a metal oxide) having a refractive index of 1.528 and an average particle size of 2.5 µm and having no cracks was used as a catalyst.
Parts used. Otherwise in the same manner as in Example 1, a spherical silica-containing epoxy resin composition cured product was obtained. The light transmittance of this cured product was as high as 80% at a thickness of 4 mm.

〔実施例5〕 屈折率が1.534で、平均粒径2.5μmのクラツクの無い
球状シリカ粉末(金属酸化物が混入されている)を23部
用いた。それ以外は実施例2と同様にして球状シリカ含
有エポキシ樹脂組成物硬化体を得た。この硬化物の光透
過率は厚み4mmで82%という高い値であつた。
Example 5 23 parts of a crack-free spherical silica powder (containing a metal oxide) having a refractive index of 1.534 and an average particle size of 2.5 μm were used. Otherwise in the same manner as in Example 2, a spherical silica-containing epoxy resin composition cured product was obtained. The light transmittance of this cured product was as high as 82% at a thickness of 4 mm.

〔実施例6〕 エポキシ当量650のビスフエノールA型エポキシ樹脂
(固形樹脂)を80部、トリグリシジルイソシアネート20
部、テトラヒドロ無水フタル酸50部、2−エチル−4−
メチルイミダゾール0.4部(上記配合樹脂組成物の硬化
体の屈折率は1.561である)に、屈折率が1.561で、平均
粒径が70μmのクラツクの無い球状シリカ粉末(金属酸
化物が混入されている)を110部添加し溶融混合を行
い、冷却固化後、粉砕して粉末状エポキシ樹脂組成物を
得た。この組成物をトランスフアー成形で150℃で熱硬
化させ、球状シリカ粉末含有エポキシ樹脂組成物硬化体
を得た。この硬化体の光透過率は厚み4mmで83%という
高い値であつた。
Example 6 80 parts of a bisphenol A type epoxy resin (solid resin) having an epoxy equivalent of 650 and triglycidyl isocyanate 20
Parts, tetrahydrophthalic anhydride 50 parts, 2-ethyl-4-
Crack-free spherical silica powder (metal oxide mixed with 0.461 parts of methyl imidazole (refractive index of cured product of the above-mentioned resin composition is 1.561) and refractive index of 1.561 and average particle size of 70 μm ) Was added, melt-mixed, cooled and solidified, and then pulverized to obtain a powdery epoxy resin composition. This composition was thermally cured at 150 ° C. by transfer molding to obtain a cured epoxy resin composition containing spherical silica powder. The light transmittance of this cured product was as high as 83% at a thickness of 4 mm.

〔比較例1〕 エポキシ当量650のビスフエノールA型エポキシ樹脂
(固形樹脂)を80部、トリグリシジルイソシアネート20
部、テトラヒドロ無水フタル酸50部、2−エチル−4−
メチルイミダゾール0.4部(上記配合樹脂組成物の硬化
体の屈折率は1.561である)に、屈折率1.561で、平均粒
径が25μmのクラツクの形成された破砕状シリカ粉末を
110部添加し溶融混合を行い、冷却固化後、粉砕して粉
末状エポキシ樹脂組成物を得た。この組成物をトランス
フアー成形で150℃で熱硬化させ、エポキシ樹脂組成物
硬化体を得た。上記エポキシ樹脂組成物硬化体と破砕状
シリカ粉末の屈折率を一致させたのにもかかわらず、得
られた硬化体の光透過率は厚み4mmで50%であつた。
Comparative Example 1 80 parts of a bisphenol A type epoxy resin (solid resin) having an epoxy equivalent of 650 and triglycidyl isocyanate 20
Parts, tetrahydrophthalic anhydride 50 parts, 2-ethyl-4-
To 0.4 part of methylimidazole (refractive index of the cured product of the above-mentioned resin composition is 1.561), crushed silica powder having a refractive index of 1.561 and a crack having an average particle size of 25 μm is formed.
110 parts were added, melt-mixed, cooled and solidified, and pulverized to obtain a powdery epoxy resin composition. This composition was thermally cured at 150 ° C. by transfer molding to obtain a cured epoxy resin composition. Although the refractive index of the cured epoxy resin composition was equal to that of the crushed silica powder, the obtained cured product had a light transmittance of 50% at a thickness of 4 mm.

〔比較例2〕 シリカ粉末を用いず、エポキシ当量185のビスフエノ
ールA型エポキシ樹脂(液状樹脂)を100部、4−メチ
ルヘキサヒドロ無水フタル酸100部、2−エチル−4−
メチルイミダゾール0.4部を混合してエポキ樹脂組成物
を得た。
Comparative Example 2 Without using silica powder, 100 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, 100 parts of 4-methylhexahydrophthalic anhydride, 2-ethyl-4-
0.4 parts of methylimidazole was mixed to obtain an epoxy resin composition.

つぎに、上記実施例1〜6および比較例2で得られた
エポキシ樹脂組成物を用いて発光ダイオードを樹脂封止
して光半導体装置を作製した。そして、この光半導体装
置の通電輝度劣化を測定した。その結果を下記の表に示
す。なお、上記通電輝度劣化の測定方法は、つぎのよう
にして行つた。すなわち、上記光半導体装置(LEDデバ
イス)に定電流を流し、輝度として電流印加5秒後の受
光素子の出力電流値を求め劣化率を測定した。
Next, using the epoxy resin compositions obtained in Examples 1 to 6 and Comparative Example 2, a light emitting diode was resin-sealed to produce an optical semiconductor device. Then, the current-carrying luminance degradation of this optical semiconductor device was measured. The results are shown in the table below. The method for measuring the current-carrying luminance degradation was performed as follows. That is, a constant current was applied to the optical semiconductor device (LED device), and as a luminance, an output current value of the light receiving element after 5 seconds from the current application was obtained, and the deterioration rate was measured.

パツケージ:直径5mmのパイロツトランプ。Package: Pilot lamp with a diameter of 5mm.

評価素子:GaAs,0.5mm×0.5mm。Evaluation element: GaAs, 0.5 mm x 0.5 mm.

評価条件:−30℃放置で20mA通電の1000時間後の輝度劣
化率を測定した。
Evaluation conditions: The luminance degradation rate was measured after 1000 hours of 20 mA conduction at −30 ° C.

上記表の結果から、実施例品は比較例品に比べて輝度
劣化が抑制され、光透過性とともに低応力性も向上して
いることがわかる。
From the results in the above table, it can be seen that the luminance of the example product is suppressed as compared with the comparative example product, and the low stress property as well as the light transmittance is improved.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 23/28 - 23/30 H01L 33/00 C08G 59/18 C08L 63/00 C08K 3/36──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01L 23/28-23/30 H01L 33/00 C08G 59/18 C08L 63/00 C08K 3/36

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の(A)〜(D)成分を含み、(D)
成分のシリカ粉末の屈折率と、(A)〜(C)成分から
なるエポキシ樹脂硬化体の屈折率との差が±0.01の範囲
に設定されているエポキシ樹脂組成物を用いて光半導体
素子を封止してなる光半導体装置。 (A)透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。 (D)クラツクの無い球状シリカ粉末。
Claims: 1. A composition comprising the following components (A) to (D):
An optical semiconductor device is prepared by using an epoxy resin composition in which the difference between the refractive index of the silica powder as the component and the refractive index of the epoxy resin cured product of the components (A) to (C) is set within a range of ± 0.01. An optical semiconductor device formed by sealing. (A) Transparent epoxy resin. (B) an acid anhydride-based curing agent; (C) a curing catalyst. (D) Crack-free spherical silica powder.
【請求項2】(A)成分の透明性エポキシ樹脂が、ビス
フエノール型エポキシ樹脂および脂環式エポキシ樹脂の
少なくとも一方である請求項(1)記載の光半導体装
置。
2. The optical semiconductor device according to claim 1, wherein the transparent epoxy resin as the component (A) is at least one of a bisphenol type epoxy resin and an alicyclic epoxy resin.
【請求項3】(D)成分のシリカ粉末の含有量が、エポ
キシ樹脂組成物全体の10〜70重量%である請求項(1)
または(2)記載の光半導体装置。
3. The content of the silica powder (D) is 10 to 70% by weight of the whole epoxy resin composition.
Or the optical semiconductor device according to (2).
【請求項4】下記の(A)〜(D)成分を含み、(D)
成分のシリカ粉末の屈折率と、(A)〜(C)成分から
なるエポキシ樹脂硬化体の屈折率との差が±0.01の範囲
に設定されている光半導体封止用エポキシ樹脂組成物。 (A)透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。 (D)クラツクの無い球状シリカ粉末。
4. A composition comprising the following components (A) to (D):
An epoxy resin composition for encapsulating an optical semiconductor, wherein the difference between the refractive index of the silica powder as the component and the refractive index of the epoxy resin cured product composed of the components (A) to (C) is set within a range of ± 0.01. (A) Transparent epoxy resin. (B) an acid anhydride-based curing agent; (C) a curing catalyst. (D) Crack-free spherical silica powder.
JP26485690A 1990-10-01 1990-10-01 Optical semiconductor device Expired - Lifetime JP2796187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26485690A JP2796187B2 (en) 1990-10-01 1990-10-01 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26485690A JP2796187B2 (en) 1990-10-01 1990-10-01 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH04142070A JPH04142070A (en) 1992-05-15
JP2796187B2 true JP2796187B2 (en) 1998-09-10

Family

ID=17409171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26485690A Expired - Lifetime JP2796187B2 (en) 1990-10-01 1990-10-01 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2796187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508545A1 (en) 2005-10-18 2012-10-10 Asahi Kasei Chemicals Corporation Thermosetting resin composition and photosemiconductor encapsulation material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208805A (en) * 1994-11-09 1997-08-12 Nitto Denko Corp Epoxy resin composition for sealing optical semiconductor device
DE19638667C2 (en) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mixed-color light-emitting semiconductor component with luminescence conversion element
JP4802666B2 (en) * 2005-11-08 2011-10-26 住友金属鉱山株式会社 Epoxy resin adhesive composition and optical semiconductor adhesive using the same
JP4802667B2 (en) * 2005-11-08 2011-10-26 住友金属鉱山株式会社 Epoxy resin adhesive composition and optical semiconductor adhesive using the same
CN103636286B (en) * 2011-06-23 2017-02-15 三井化学株式会社 Surface sealant for optical semiconductor, method for manufacturing organic EL device using same, organic EL device, and organic EL display panel
CN105505271A (en) * 2015-11-26 2016-04-20 东莞市国正精密电子科技有限公司 High gray scale display LED pouring sealant special for display screens and application process thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923847A (en) * 1972-06-28 1974-03-02
JPS6281072A (en) * 1985-10-04 1987-04-14 Sumitomo Bakelite Co Ltd Epoxy resin composition for photocoupler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508545A1 (en) 2005-10-18 2012-10-10 Asahi Kasei Chemicals Corporation Thermosetting resin composition and photosemiconductor encapsulation material

Also Published As

Publication number Publication date
JPH04142070A (en) 1992-05-15

Similar Documents

Publication Publication Date Title
JP3153171B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor
JP4722686B2 (en) Manufacturing method of resin composition for encapsulating optical semiconductor element, resin composition for encapsulating optical semiconductor element and optical semiconductor device obtained thereby
JPH10158473A (en) Epoxy resin composition for sealing optical semiconductor element, and optical semiconductor device sealed by using this epoxy resin composition
JP2001261933A (en) Epoxy resin for sealing optical semiconductor element and optical semiconductor device
JP2796187B2 (en) Optical semiconductor device
JP5557770B2 (en) Thermosetting epoxy resin composition, reflecting member for optical semiconductor device, and optical semiconductor device
JP2001323135A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP5105974B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP2837478B2 (en) Optical semiconductor device
JP6307352B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP3481452B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP3017888B2 (en) Semiconductor device
JP2760889B2 (en) Optical semiconductor device
JPH056946A (en) Optical semiconductor device
JP2014095051A (en) Thermosetting epoxy resin composition, reflector for led using the composition, and led device
JP3098663B2 (en) Thermosetting resin composition and production method thereof
JP5072070B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP3897282B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JPH02261856A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH06279568A (en) Epoxy resin composition and photosemiconductor device used the same
JPH06232296A (en) Semiconductor device
JP2006111823A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor by using the same
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JP3392052B2 (en) Epoxy resin composition and optical semiconductor device
JPH0827253A (en) Photosemiconductor apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250