JPH02261856A - Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith - Google Patents

Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith

Info

Publication number
JPH02261856A
JPH02261856A JP8350489A JP8350489A JPH02261856A JP H02261856 A JPH02261856 A JP H02261856A JP 8350489 A JP8350489 A JP 8350489A JP 8350489 A JP8350489 A JP 8350489A JP H02261856 A JPH02261856 A JP H02261856A
Authority
JP
Japan
Prior art keywords
silica powder
epoxy resin
resin composition
particle diameter
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8350489A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimozawa
下澤 宏
Takeshi Uchida
健 内田
Akira Yoshizumi
善積 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8350489A priority Critical patent/JPH02261856A/en
Publication of JPH02261856A publication Critical patent/JPH02261856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To prepare an epoxy resin compsn. for semiconductor sealing having an excellent moldability and giving a cured product with an excellent resistance to thermal shock by compounding an epoxy resin, a phenolic resin curing agent, a curing accelerator, and a specific silica powder as essential components. CONSTITUTION:An epoxy resin [e.g. an epoxidized tri(hydroxyphenyl)methane], a phenolic resin curing agent (e.g. a phenol novolak resin), a curing accelerator (e.g. triphenylphosphine), and a silica powder contg. 40 to 65wt.% (based on the total compsn., the same applies hereunder) spherical silica powder with a mean particle diameter of 10 to 50mu, 5 to 35wt.% silica powder with a mean particle diameter of 2 to 10mu, and 25 to 35wt.% silica powder with a mean particle diameter of 0.1 to 2mu are compounded as essential components.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は優れた耐熱衝撃性を有する硬化物を与える半導
体封止用のエポキシ樹脂組成物及びこの樹脂組成物で封
止された樹脂封止形半導体装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention provides an epoxy resin composition for semiconductor encapsulation that provides a cured product having excellent thermal shock resistance, and encapsulation using this resin composition. The present invention relates to a resin-sealed semiconductor device.

(従来の技術) 従来、半導体装置の封止用樹脂組成物としては、高温電
気特性、成形性などに優れた、フェノールノボラック樹
脂を硬化剤とするエポキシ樹脂組成物が主流となってい
る。ところが、近年、半導体素子の高集積化に伴って、
素子上の各機能単位の細密化、素子ペレット自体の大型
化が急速に進んでいる。これらの素子ペレットの変化に
より、従来の封止用樹脂組成物では耐熱衝撃性などに対
する要求を満足できなくなってきた。
(Prior Art) Conventionally, as a resin composition for sealing a semiconductor device, an epoxy resin composition using a phenol novolak resin as a curing agent, which has excellent high-temperature electrical properties, moldability, etc., has been mainstream. However, in recent years, with the increasing integration of semiconductor devices,
The miniaturization of each functional unit on an element and the increase in the size of the element pellet itself are progressing rapidly. Due to these changes in element pellets, conventional sealing resin compositions are no longer able to satisfy the requirements for thermal shock resistance and the like.

すなわち、従来の封止用樹脂組成物を用い、大型でかつ
微細な表面構造を有する素子ペレットを封止すると、素
子ペレット表面のアルミニウム(Al2 )パターンを
保護するための被覆材であるリンケイ酸ガラス(P S
 G)膜や窒化ケイ素(SiN)膜に割れを生じたり、
素子ベレットに割れを生じたり、封止樹脂にクラックを
生じたりする。特に、冷熱サイクル試験を実施した場合
にその傾向が大きい。この結果、半導体装置の外観不良
や、信頼性の低下を招く。
That is, when a conventional sealing resin composition is used to seal a device pellet having a large size and a fine surface structure, phosphosilicate glass, which is a coating material for protecting the aluminum (Al2) pattern on the surface of the device pellet, is removed. (P.S.
G) Cracks may occur in the film or silicon nitride (SiN) film,
This may cause cracks in the element pellet or in the sealing resin. This tendency is particularly strong when a thermal cycle test is performed. As a result, the appearance of the semiconductor device is poor and the reliability is lowered.

これらの対策として、例えば、封止樹脂の内部封入物に
対する応力を小さくするために、充填剤量を増加させる
ことにより樹脂組成物の熱膨張率を低下させる方法がと
られている。しかし、この方法では、多量の充填剤を使
用することにより、樹脂組成物の溶融粘度が著しく上昇
するため、成形性が損なわれるという問題があった。
As a countermeasure against these problems, for example, in order to reduce the stress on the internal inclusions of the sealing resin, a method has been taken in which the coefficient of thermal expansion of the resin composition is lowered by increasing the amount of filler. However, this method has a problem in that moldability is impaired because the use of a large amount of filler significantly increases the melt viscosity of the resin composition.

更に、前述した素子ベレットの変化に伴って、素子ベレ
ットに樹脂及び充填剤からの局部応力が作用することが
原因と思われる信頼性の低下が問題となってきている。
Furthermore, with the above-mentioned changes in the element pellet, a decrease in reliability, which is thought to be caused by local stress acting on the element pellet from the resin and filler, has become a problem.

これを回避するためには、破砕状の形態を有する粗粒を
カットして充填剤を用いることが有効であると考えられ
る。また、パッケージが小型、薄形である場合、成形金
型のゲートは通常のものより狭いため、溶融した樹脂組
成物の金型への注入を容易にするためにも、粗粒の破砕
状充填剤粒子の存在は好ましくない。しかし、これらの
観点に基づき、充填剤の平均粒径を小さくした場合、樹
脂組成物の溶励粘度が増加し、未充填となったり、ボン
ディングワイヤの変形を招く可能性がある。
In order to avoid this, it is considered effective to cut coarse particles having a crushed form and use a filler. In addition, if the package is small and thin, the gate of the molding die is narrower than normal ones, so in order to make it easier to inject the molten resin composition into the mold, it is necessary to fill it with crushed coarse particles. The presence of agent particles is undesirable. However, if the average particle size of the filler is made small based on these points of view, the excitation viscosity of the resin composition increases, which may lead to unfilling or deformation of the bonding wire.

そこで、素子へのダメージが小さく、良好な流動性を有
する球状の充填剤が注目されているが、比較的粗粒の多
い球状充填剤だけを用いた場合、成形時に生じるパリが
著しく長くなるという欠点がある。
Therefore, spherical fillers that cause less damage to the device and have good fluidity are attracting attention, but if only spherical fillers with relatively coarse particles are used, the breakage that occurs during molding becomes significantly longer. There are drawbacks.

(発明が解決しようとする課題) 前述したように従来の半導体対土用樹脂組成物は、耐熱
衝撃性に充分ではなく、充填剤を調整することにより耐
熱衝撃性を改善したとしても成形性に問題があった。
(Problems to be Solved by the Invention) As mentioned above, conventional resin compositions for semiconductors do not have sufficient thermal shock resistance, and even if the thermal shock resistance is improved by adjusting the filler, the moldability will deteriorate. There was a problem.

本発明の目的は、これらの問題点を解決し、耐熱衝撃性
に優れ、かつ良好な成形性を有する半導体封止用エポキ
シ樹脂組成物、及びこのエポキシ樹脂組成物を用いた樹
脂封止形半導体装置を提供することにある。
The purpose of the present invention is to solve these problems and provide an epoxy resin composition for semiconductor encapsulation that has excellent thermal shock resistance and good moldability, and a resin-encapsulated semiconductor using this epoxy resin composition. The goal is to provide equipment.

[発明の構成] (課題を解決するための手段と作用) 本発明の半導体封止用エポキシ樹脂組成物は、(a)エ
ポキシ樹脂、(b)フェノール樹脂硬化剤、(c)硬化
促進剤、(d)シリカ粉を必須成分とする半導体封止用
エポキシ樹脂組成物において、前記シリカ粉として、■
平均粒子径Ion以上、501以下の球状シリカ粉を組
成物全体の40〜B5重量%、■平均粒子径21以上、
lロー未満のシリカ粉を組成物全体の5〜35重量%、
■平均粒子径0.1 n以上、2μs未満のシリカ粉を
組成物全体の25〜35重量%の割合で含有することを
特徴とするものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) The epoxy resin composition for semiconductor encapsulation of the present invention comprises (a) an epoxy resin, (b) a phenolic resin curing agent, (c) a curing accelerator, (d) In an epoxy resin composition for semiconductor encapsulation containing silica powder as an essential component, as the silica powder,
40 to B5% by weight of the entire composition of spherical silica powder with an average particle diameter of Ion or more and 501 or less, ■ an average particle diameter of 21 or more,
5 to 35% by weight of the entire composition,
(2) It is characterized by containing silica powder with an average particle diameter of 0.1 n or more and less than 2 μs in a proportion of 25 to 35% by weight of the entire composition.

本発明の樹脂封止形半導体装置は、半導体チップを前記
エポキシ樹脂組成物で封止したことを特徴とするもので
ある。
The resin-sealed semiconductor device of the present invention is characterized in that a semiconductor chip is sealed with the epoxy resin composition.

本発明において、(a)成分であるエポキシ樹脂は、1
分子中にエポキシ基を少なくとも2個含有するものであ
ればいかなるものであってもよい。
In the present invention, the epoxy resin as component (a) is 1
Any compound containing at least two epoxy groups in the molecule may be used.

エポキシ樹脂としては、例えば、ビスフェノールA型エ
ポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキ
シ樹脂、グリシジルエステル型エポキシ樹脂、トリ又は
テトラ(ヒドロキシフェニル)アルカンのエポキシ化物
などが挙げられる。これらのうち1種又は2種以上が使
用される。
Examples of the epoxy resin include bisphenol A epoxy resins, novolak epoxy resins, alicyclic epoxy resins, glycidyl ester epoxy resins, and epoxidized products of tri- or tetra(hydroxyphenyl) alkanes. One or more of these may be used.

本発明において、(b)成分であるフェノール樹脂硬化
剤は、一般にエポキシ樹脂の硬化剤として知られている
ものであればいかなるものであってもよい。フェノール
樹脂硬化剤としては、例えば、フェノールノボラック樹
脂、クレゾールノボラック樹脂、トリ又はテトラ(ヒド
ロキシフェニル)アルカンなど、フェノール性水酸基を
少なくとも2個含有するフェノール樹脂が挙げられる。
In the present invention, the phenolic resin curing agent which is the component (b) may be any one that is generally known as a curing agent for epoxy resins. Examples of the phenolic resin curing agent include phenolic resins containing at least two phenolic hydroxyl groups, such as phenol novolac resins, cresol novolac resins, and tri- or tetra(hydroxyphenyl) alkanes.

これらのうち1種又は2種以上が使用される。One or more of these may be used.

(b)フェノール樹脂硬化剤の配合量は、通常、(a)
エポキシ樹脂100重量部に対して30〜150重量部
である。30重量部未満では樹脂組成物の硬化が不充分
となり、150重量部を超えると硬化物の耐湿性が劣化
する。好ましくは、50〜100重量部である。
(b) The blending amount of the phenolic resin curing agent is usually (a)
The amount is 30 to 150 parts by weight per 100 parts by weight of the epoxy resin. If it is less than 30 parts by weight, the curing of the resin composition will be insufficient, and if it exceeds 150 parts by weight, the moisture resistance of the cured product will deteriorate. Preferably it is 50 to 100 parts by weight.

本発明において、(c)成分である硬化促進剤は、フェ
ノール樹脂を用いてエポキシ樹脂を硬化する際に、硬化
促進剤として使用されることが知られているものであれ
ばいかなるものであってもよい。
In the present invention, the curing accelerator which is component (c) may be any substance that is known to be used as a curing accelerator when curing an epoxy resin using a phenol resin. Good too.

硬化促進剤の具体例としては、2−メチルイミダゾール
、2−エチル−4−メチルイミダゾール、■−シアノエ
チルー2−エチルーメチルイミダゾール、2−ヘプタデ
シルイミダゾールなどのイミダゾール化合物;ベンジル
ジメチルアミン、トリス(ジメチルアミノメチル)フェ
ノールなどの第3アミン化合物;トリフェニルホスフィ
ン、トリシクロヘキシルホスフィン、トリブチルホスフ
ィン、メチルジフェニルホスフィンなどの有機ホスフィ
ン化合物;ジアザビシクロウンデセン又はその塩類など
が挙げられる。これらのうち1種又は2種以上が使用さ
れる。
Specific examples of curing accelerators include imidazole compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, ■-cyanoethyl-2-ethylmethylimidazole, and 2-heptadecylimidazole; benzyldimethylamine, tris(dimethyl Tertiary amine compounds such as (aminomethyl) phenol; organic phosphine compounds such as triphenylphosphine, tricyclohexylphosphine, tributylphosphine, and methyldiphenylphosphine; diazabicycloundecene or its salts, and the like. One or more of these may be used.

(C)硬化促進剤の配合量は、通常、(a)エポキシ樹
脂100重量部に対して0,01〜10重量部である。
The amount of the curing accelerator (C) is usually 0.01 to 10 parts by weight per 100 parts by weight of the epoxy resin (a).

0、O11重部未満では樹脂組成物の硬化が不充分とな
り、10重量部を超えると硬化物の耐湿性が劣化する。
If the amount is less than 11 parts by weight, the resin composition will not be sufficiently cured, and if it exceeds 10 parts by weight, the moisture resistance of the cured product will deteriorate.

本発明において、(d)成分であるシリカ粉としては、
■平均粒子径101以上、5〇−以下の球状シリカ粉が
組成物全体の40〜65重量%、■平均粒子径2μm以
上、10μm未満のシリカ粉が組成物全体の5〜35重
量%、■平均粒子径0.11以上、2n未満のシリカ粉
が組成物全体の25〜35重量%の割合で含有される。
In the present invention, the silica powder as component (d) is as follows:
■ Spherical silica powder with an average particle diameter of 101 or more and 50 or less is 40 to 65% by weight of the entire composition, ■ Silica powder with an average particle diameter of 2 μm or more and less than 10 μm is 5 to 35% by weight of the entire composition, ■ Silica powder having an average particle diameter of 0.11 or more and less than 2n is contained in an amount of 25 to 35% by weight of the entire composition.

(d)成分中、■のシリカ粉は平均粒子径が10〜50
8mで、粒子が球状であればいかなるものでもよい。■
のシリカ粉は平均粒子径が21以上、10μm未満のシ
リカ粉であればいかなるものでもよい。
In the (d) component, the silica powder (■) has an average particle size of 10 to 50.
Any particle size may be used as long as the particle size is 8 m and the particles are spherical. ■
The silica powder may be any silica powder having an average particle diameter of 21 or more and less than 10 μm.

■のシリカ粉は平均粒子径が0.11以上、21未満の
シリカ粉であればいかなるものでもよい。これらのシリ
カ粉としては、例えば結晶性シリカ粉、溶融シリカ粉、
又はこれらの混合物が挙げられる。
The silica powder (2) may be any silica powder having an average particle diameter of 0.11 or more and less than 21. These silica powders include, for example, crystalline silica powder, fused silica powder,
or a mixture thereof.

これらのシリカ粉は、組成物全体に対して■40〜65
重瓜%、05〜35重量%、025〜35重量%の配合
割合で配合される。
These silica powders have a ratio of ■40 to 65 to the entire composition.
It is blended at a blending ratio of heavy melon%, 05-35% by weight, and 025-35% by weight.

(d)成分中では、前記のように■の球状シリカ粉が主
成分となる。この球状シリカ粉の平均粒子径を10〜5
0%としたのは、主成分のシリカ粉の平均粒子径が50
1を超えると成形時にゲートづまりが生じやすくなり、
逆に主成分のシリカ粉の平均粒子径が101未満では樹
脂組成物の溶融粘度が高くなるためである。なお、成形
時にゲートづまりなどの種々の作業上の難点を防ぐため
、最大粒子径は100μm以下であることが好ましい。
In component (d), as mentioned above, the spherical silica powder (①) is the main component. The average particle diameter of this spherical silica powder is 10 to 5.
The reason why it was set as 0% was because the average particle diameter of the main component, silica powder, was 50%.
If it exceeds 1, gate clogging is likely to occur during molding.
On the other hand, if the average particle diameter of the silica powder as the main component is less than 101, the melt viscosity of the resin composition becomes high. In order to prevent various operational difficulties such as gate clogging during molding, the maximum particle size is preferably 100 μm or less.

また、粒径の大きな粒子と粒径の小さな↑η子とを組合
わせると、溶融した樹脂組成物の流動性が増すことはす
でに知られている(例えば、J、Appl、Po1y+
merSej、、 15.2007(1971))。す
なわち、前記■のシリカ成分と■のシリカ成分とを適量
配合することにより、溶融した樹脂組成物の流動性は大
きく向上する。例えば、平均粒子径がlO〜501の■
の球状シリカ粉1型皿部に対して、平均粒子径が0,1
1以上、2μm未満の■のシリカ粉を約0.5重量部配
合すると、■だけの場合よりも、樹脂組成物の溶融粘度
が低下する。しかし、■の球状シリカ粉と■のシリカ粉
だけでは、硬化物に生じるパリを抑えることが困難であ
る。これに対して、本発明者らは■の球状シリカ粉及び
■のシリカ粉だけでなく、■のシリカ粉を前記の割合で
配合することにより、樹脂組成物の溶融粘度を上昇させ
ることなく、成形時に生じるパリ長さを短くすることが
できることを見出した。
Furthermore, it is already known that the fluidity of a molten resin composition is increased by combining particles with a large particle size and ↑η particles with a small particle size (for example, J, Appl, Po1y +
merSej, 15.2007 (1971)). That is, by blending appropriate amounts of the silica component (1) and the silica component (2), the fluidity of the molten resin composition is greatly improved. For example, ■ with an average particle size of lO~501
For the spherical silica powder type 1 dish part, the average particle diameter is 0.1
When about 0.5 parts by weight of silica powder (1) with a diameter of 1 or more and less than 2 μm is added, the melt viscosity of the resin composition is lower than in the case of only (2). However, it is difficult to suppress the flakes that occur in the cured product using only the spherical silica powder (1) and the silica powder (2). In contrast, the present inventors have blended not only the spherical silica powder (1) and the silica powder (2) but also the silica powder (3) in the above proportions, without increasing the melt viscosity of the resin composition. It has been found that it is possible to shorten the par length that occurs during molding.

本発明において、(d)成分のシリカ粉は■〜■の合計
で、樹脂組成物中に70〜90重量%の割合で配合され
る。70.i1!fa%未満では硬化物が充分な耐熱衝
撃性を示さない。一方、90重口%を超えると樹脂組成
物の溶融粘度が上昇し、成形性が低下する。このように
本発明のエポキシ樹脂組成物では、樹脂組成物中にシリ
カ粉を80〜90重二%の型皿で高充填しても、溶は粘
度が高くなることはな(、極めて良好な成形性を示す。
In the present invention, the silica powder as component (d) is blended in the resin composition at a ratio of 70 to 90% by weight in total. 70. i1! If it is less than fa%, the cured product will not exhibit sufficient thermal shock resistance. On the other hand, if it exceeds 90% by weight, the melt viscosity of the resin composition will increase and the moldability will decrease. As described above, in the epoxy resin composition of the present invention, even if the resin composition is highly filled with 80 to 90% silica powder using mold plates, the viscosity of the solution does not become high (very good). Shows moldability.

なお、本発明のエポキシ樹脂組成物には、前記の各成分
のほかにも、必要に応じて、エボキシシランなどのカッ
プリング剤;高級脂肪酸、ワックス類などの離型剤;ア
ンチモン、リン化合物、臭素や塩素を含む難燃助剤;ポ
リスチレン、ポリメタクリル酸メチル、ポリ酢酸ビニル
などの各種熱可塑性樹脂や、シリコーンオイル、シリコ
ーンゴムなどの低応力化剤;カーボンブラックなどの顔
料;イオン捕捉剤などを配合してもよい。
In addition to the above-mentioned components, the epoxy resin composition of the present invention may optionally contain coupling agents such as epoxysilane; mold release agents such as higher fatty acids and waxes; antimony, phosphorus compounds, and bromine. various thermoplastic resins such as polystyrene, polymethyl methacrylate, and polyvinyl acetate; stress-lowering agents such as silicone oil and silicone rubber; pigments such as carbon black; ion scavengers, etc. May be blended.

本発明のエポキシ樹脂組成物は、前述した各成分を、加
熱ロール、ニーダ−又は押出機によって溶融混練したり
、微粉砕可能な特殊混合機によって混合したり、これら
の各方法の適宜な組合せで容品に製造することができる
The epoxy resin composition of the present invention can be prepared by melt-kneading the above-mentioned components using a heated roll, kneader, or extruder, or by mixing them using a special mixer capable of pulverizing them, or by an appropriate combination of these methods. It can be manufactured into a variety of containers.

本発明の樹脂封止形半導体装置は、前記エポキシ樹脂組
成物を用い、半導体チップを樹脂封止することにより製
造される。この場合、最も一般的には低圧トランスファ
成形が用いられるが、インジェクション成形、圧縮成形
、注型などによっても封止することができる。封止後の
アフタキュアは150℃以上の温度で行うことが望まし
い。なお、本発明のエポキシ樹脂組成物によって封止さ
れる半導体チップは特に限定されない。
The resin-sealed semiconductor device of the present invention is manufactured by resin-sealing a semiconductor chip using the epoxy resin composition. In this case, low-pressure transfer molding is most commonly used, but sealing can also be achieved by injection molding, compression molding, casting, or the like. After-curing after sealing is preferably performed at a temperature of 150° C. or higher. Note that the semiconductor chip sealed with the epoxy resin composition of the present invention is not particularly limited.

(実施例) 以下、本発明を実施例に基づいて更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail based on examples.

実施例1〜4及び比較例1〜4 第1表に示すように、3官能エポキシ樹脂(トリ(ヒド
ロキシフェニル)メタンのエポキシ化物、エポキシ当量
167、軟化点71.4℃)、難燃性エポキシ樹脂、フ
ェノールノボラック樹脂(フェノール当ff1lOB 
、軟化点78)、硬化促進剤としてトリフェニルホスフ
ィン、離型剤としてエステル系ワックス、着色剤として
カーボンブラック、難燃助剤として二酸化アンチモン、
カップリング剤としてγ−グリンドキシブロピルトリメ
トキシシラン、シリカ粉として平均粒径30μmの合成
球状シリカ(■)、平均粒径5.4 usの合成球状シ
リカ(■)平均粒径6.11の破砕状シリカ(■)、及
び平均粒径1.3−の合成微小球状シリカ(■)の各成
分を、同表に示す割合で配合した。この際、まずヘンシ
ェルミキサー中でシリカ粉をカップリング剤により処理
した後、残りの成分をミキサー中に投入して混合した。
Examples 1 to 4 and Comparative Examples 1 to 4 As shown in Table 1, trifunctional epoxy resin (epoxidized product of tri(hydroxyphenyl)methane, epoxy equivalent 167, softening point 71.4°C), flame retardant epoxy Resin, phenol novolac resin (phenol per ff11OB
, softening point 78), triphenylphosphine as a curing accelerator, ester wax as a mold release agent, carbon black as a coloring agent, antimony dioxide as a flame retardant aid,
γ-glyndoxypropyltrimethoxysilane as a coupling agent, synthetic spherical silica (■) with an average particle size of 30 μm as a silica powder, synthetic spherical silica (■) with an average particle size of 5.4 us, and an average particle size of 6.11 The components of crushed silica (■) and synthetic microspherical silica (■) with an average particle size of 1.3 were mixed in the proportions shown in the table. At this time, the silica powder was first treated with a coupling agent in a Henschel mixer, and then the remaining components were added to the mixer and mixed.

次に、60〜110℃の加熱ロールで混練し、冷却した
後、粉砕して実施例1〜4及び比較例1〜4のエポキシ
樹脂組成物を調製した。
Next, the mixture was kneaded with heated rolls at 60 to 110°C, cooled, and then pulverized to prepare epoxy resin compositions of Examples 1 to 4 and Comparative Examples 1 to 4.

なお、■のシリカ粉の粒径分布を第1図に、■のシリカ
粉の粒径分布を第2図に、■のシリカ粉の粒径分布を第
3図に示す。また、実施例1〜4について、■〜■のシ
リカ粉の混合物の粒径分布を第4図に示す。また、第4
図の粒径分布を対数表示で第5図に示す。第5図に示さ
れるように、第4図の粒径分布を対数表示した場合、実
施例1〜4ともほぼ同一曲線上におさまる。
The particle size distribution of the silica powder (■) is shown in FIG. 1, the particle size distribution of the silica powder (■) is shown in FIG. 2, and the particle size distribution of the silica powder (■) is shown in FIG. Further, for Examples 1 to 4, the particle size distribution of the silica powder mixtures ① to ② is shown in FIG. Also, the fourth
The particle size distribution shown in the figure is shown in FIG. 5 in logarithmic representation. As shown in FIG. 5, when the particle size distribution in FIG. 4 is expressed logarithmically, Examples 1 to 4 fall on almost the same curve.

これら実施例1〜4及び比較例1〜4のエポキシ樹脂組
成物について、第2表に示すように各種物性の測定、成
形性の評価、及び耐湿信頼性の評価を行った。
Regarding the epoxy resin compositions of Examples 1 to 4 and Comparative Examples 1 to 4, various physical properties were measured, moldability was evaluated, and moisture resistance reliability was evaluated as shown in Table 2.

すなわち、各エポキシ樹脂組成物を溶融し、175℃で
高化式フローテスターにより溶融粘度を測定した。また
、成形時のパリ長さを評価するために、パリ測定用金型
を用いて20ρの溝に生じるバリ長さを測定しだ。また
、これと同時に成形した試験片を用いて、曲げ試験によ
り曲げ弾性率を測定し、熱膨張係数を測定した。
That is, each epoxy resin composition was melted and its melt viscosity was measured at 175°C using a Koka type flow tester. In addition, in order to evaluate the burr length during molding, the burr length produced in the 20ρ groove was measured using a burr measuring mold. Further, using a test piece molded at the same time, the bending elastic modulus was measured by a bending test, and the thermal expansion coefficient was measured.

更に、各エポキシ樹脂組成物を用い、低圧トランスファ
成形により、表面にPSG層を有する大型の半導体チッ
プを封止した。得られた各樹脂封止形半導体装置につい
て、耐熱衝撃性を評価するために、熱衝撃試験(−65
℃〜150℃を1サイクルとする冷熱サイクルテスト)
を行い、不良数を調べた。
Furthermore, each epoxy resin composition was used to seal a large semiconductor chip having a PSG layer on the surface by low pressure transfer molding. A thermal shock test (-65
Cold/hot cycle test with one cycle ranging from ℃ to 150℃)
The number of defects was investigated.

これらの結果を第2表に示す。These results are shown in Table 2.

第2表から明らかなように、実施例1〜4のエポキシ樹
脂組成物は、溶融粘度が低く良好な流動性を示し、硬化
物に生じるパリ長さが短く、かつその硬化物が優れた耐
熱衝撃性を示すことがわかる。
As is clear from Table 2, the epoxy resin compositions of Examples 1 to 4 have low melt viscosity and good fluidity, have short burst lengths in the cured products, and have excellent heat resistance. It can be seen that it exhibits impact resistance.

[発明の効果] 以上詳述したように本発明のエポキシ樹脂組成物は、成
形性が良好であるとともに、その硬化物は優れた耐熱衝
撃性を示す。したがって、本発明の樹脂封止形半導体装
置は優れた信頼性を有する。
[Effects of the Invention] As detailed above, the epoxy resin composition of the present invention has good moldability, and the cured product thereof exhibits excellent thermal shock resistance. Therefore, the resin-sealed semiconductor device of the present invention has excellent reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の実施例において用いられた平
均粒子径の異なる各シリカ粉の粒径分布を示す図、第4
図は本発明の実施例1〜4において用いられたシリカ粉
の混合物の粒径分布を示す図、第5図は第4図の粒径分
布を対数表示で示した図である。 d = 30μ 木立 子【  (μm) 第1図
Figures 1 to 3 are diagrams showing particle size distributions of silica powders with different average particle diameters used in Examples of the present invention.
The figure shows the particle size distribution of the silica powder mixture used in Examples 1 to 4 of the present invention, and FIG. 5 is a diagram showing the particle size distribution of FIG. 4 in logarithmic representation. d = 30μ Tree child [ (μm) Figure 1

Claims (1)

【特許請求の範囲】 (1)(a)エポキシ樹脂、(b)フェノール樹脂硬化
剤、(c)硬化促進剤、(d)シリカ粉を必須成分とす
る半導体封止用エポキシ樹脂組成物において、前記シリ
カ粉として、 (1)平均粒子径10μm以上、50μm以下の球状シ
リカ粉を組成物全体の40〜65重量%、 (2)平均粒子径2μm以上、10μm未満のシリカ粉
を組成物全体の5〜35重量%、 (3)平均粒子径0.1μm以上、2μm未満のシリカ
粉を組成物全体の25〜35重量% の割合で含有することを特徴とする半導体封止用エポキ
シ樹脂組成物。 (2)半導体チップを請求項(1)記載の半導体封止用
エポキシ樹脂組成物で封止したことを特徴とする樹脂封
止形半導体装置。
[Scope of Claims] (1) An epoxy resin composition for semiconductor encapsulation containing (a) an epoxy resin, (b) a phenol resin curing agent, (c) a curing accelerator, and (d) silica powder as essential components, As the silica powder, (1) 40 to 65% by weight of spherical silica powder with an average particle diameter of 10 μm or more and 50 μm or less of the entire composition, (2) silica powder with an average particle diameter of 2 μm or more and less than 10 μm of the entire composition. (3) An epoxy resin composition for semiconductor encapsulation, characterized in that it contains silica powder with an average particle diameter of 0.1 μm or more and less than 2 μm in a proportion of 25 to 35% by weight of the entire composition. . (2) A resin-sealed semiconductor device, characterized in that a semiconductor chip is encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim (1).
JP8350489A 1989-03-31 1989-03-31 Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith Pending JPH02261856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8350489A JPH02261856A (en) 1989-03-31 1989-03-31 Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8350489A JPH02261856A (en) 1989-03-31 1989-03-31 Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith

Publications (1)

Publication Number Publication Date
JPH02261856A true JPH02261856A (en) 1990-10-24

Family

ID=13804313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8350489A Pending JPH02261856A (en) 1989-03-31 1989-03-31 Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith

Country Status (1)

Country Link
JP (1) JPH02261856A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325543A (en) * 1991-04-24 1992-11-13 Shin Etsu Chem Co Ltd Epoxy resin composition and cured article thereof
GB2290297A (en) * 1994-06-13 1995-12-20 Sumitomo Chemical Co Filler/resin composition
JPH1067883A (en) * 1996-08-29 1998-03-10 Mitsubishi Electric Corp Inorganic filler, epoxy resin composition, and semiconductor device
JP2003048957A (en) * 2001-08-07 2003-02-21 Sumitomo Bakelite Co Ltd Epoxy resin composition
KR100679490B1 (en) * 2000-12-29 2007-02-07 주식회사 케이씨씨 Epoxy molding compound for semiconductor packaging
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition
WO2016136075A1 (en) * 2015-02-27 2016-09-01 株式会社日立製作所 Electrical insulation resin composition, electrical insulation resin cured product using same, and receiving and transforming equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325543A (en) * 1991-04-24 1992-11-13 Shin Etsu Chem Co Ltd Epoxy resin composition and cured article thereof
GB2290297A (en) * 1994-06-13 1995-12-20 Sumitomo Chemical Co Filler/resin composition
US5719225A (en) * 1994-06-13 1998-02-17 Sumitomo Chemical Company, Ltd. Filler-containing resin composition suitable for injection molding and transfer molding
GB2290297B (en) * 1994-06-13 1998-05-06 Sumitomo Chemical Co Filler-containing resin composition suitable for injection molding and transfer molding
US5780145A (en) * 1994-06-13 1998-07-14 Sumitomo Chemical Company, Limited Filler-containing resin composition suitable for injection molding and transfer molding
JPH1067883A (en) * 1996-08-29 1998-03-10 Mitsubishi Electric Corp Inorganic filler, epoxy resin composition, and semiconductor device
KR100679490B1 (en) * 2000-12-29 2007-02-07 주식회사 케이씨씨 Epoxy molding compound for semiconductor packaging
JP2003048957A (en) * 2001-08-07 2003-02-21 Sumitomo Bakelite Co Ltd Epoxy resin composition
JP4710195B2 (en) * 2001-08-07 2011-06-29 住友ベークライト株式会社 Epoxy resin composition
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition
WO2016136075A1 (en) * 2015-02-27 2016-09-01 株式会社日立製作所 Electrical insulation resin composition, electrical insulation resin cured product using same, and receiving and transforming equipment

Similar Documents

Publication Publication Date Title
JPS6274924A (en) Epoxy resin composition for sealing semiconductor device
JPH10292094A (en) Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
KR100697938B1 (en) Resin composition for sealing semiconductor and semiconductor device using the same
JPH02261856A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH0288621A (en) Epoxy resin composition for sealing semiconductor
JPS62209128A (en) Epoxy resin composition for sealing semiconductor device
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP3102276B2 (en) Method for producing epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JPH11116775A (en) Epoxy resin composition for semiconductor sealing and production thereof
JPH0564166B2 (en)
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JP2002080694A (en) Epoxy resin composition and semiconductor device
JPH04296046A (en) Resin-sealed semiconductor device
JP3976390B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device obtained thereby
JPH03115455A (en) Sealing resin composition and resin-sealed semiconductor device
JPH11199650A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP3883730B2 (en) Discrete semiconductor sealing resin composition and discrete semiconductor sealing device
JPH06204361A (en) Semiconductor device sealing epoxy resin composition
JP2000186214A (en) Resin composition for encapsulation and semiconductor system
JPH09176286A (en) Epoxy resin composition and resin-sealed semiconductor device
JPS63297436A (en) Sealant polymer composition for ic
JP2000226497A (en) Epoxy resin composition and semiconductor device
KR100479853B1 (en) Method for preparing epoxy resin composition for semiconductor encapsulant and the composition
JPH1135793A (en) Epoxy resin composition and resin-sealed semiconductor device made by using the same