JP2760889B2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JP2760889B2
JP2760889B2 JP2234105A JP23410590A JP2760889B2 JP 2760889 B2 JP2760889 B2 JP 2760889B2 JP 2234105 A JP2234105 A JP 2234105A JP 23410590 A JP23410590 A JP 23410590A JP 2760889 B2 JP2760889 B2 JP 2760889B2
Authority
JP
Japan
Prior art keywords
epoxy resin
optical semiconductor
parts
organopolysiloxane
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2234105A
Other languages
Japanese (ja)
Other versions
JPH03237749A (en
Inventor
豊 青木
修次 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of JPH03237749A publication Critical patent/JPH03237749A/en
Application granted granted Critical
Publication of JP2760889B2 publication Critical patent/JP2760889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光透過率および低応力性の双方に優れた
封止樹脂により樹脂封止された光半導体装置に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device resin-sealed with a sealing resin excellent in both light transmittance and low stress.

〔従来の技術〕 LED(発光ダイオード)等の光半導体素子を封止する
際に用られる樹脂組成物としては、透明であることが要
求され、一般に、ビスフエノールA型エポキシ樹脂,脂
環式エポキシ樹脂等のエポキシ樹脂と、酸無水物系硬化
剤とからなるエポキシ樹脂組成物が用いられる。
[Prior Art] A resin composition used for sealing an optical semiconductor element such as an LED (light emitting diode) is required to be transparent, and is generally a bisphenol A type epoxy resin, an alicyclic epoxy resin. An epoxy resin composition comprising an epoxy resin such as a resin and an acid anhydride-based curing agent is used.

しかし、上記エポキシ樹脂組成物を封止樹脂として用
いると、このエポキシ樹脂組成物の硬化時の硬化収縮、
またはエポキシ樹脂と光半導体素子との線膨張係数の差
に起因する歪みにより内部応力が発生し、それが原因で
光半導体素子が劣化し、例えば、光半導体素子が発光素
子の場合、その輝度が低下するという問題が生じる。こ
のような問題を解決するため、従来から、上記内部応力
を低減させる方法として、オルガノポリシロキサンを用
いてエポキシ樹脂を変性しエポキシ樹脂組成物硬化体の
弾性率を小さくするという方法が提案され一部で実行さ
れている。
However, when the epoxy resin composition is used as a sealing resin, curing shrinkage during curing of the epoxy resin composition,
Or, an internal stress is generated due to a strain caused by a difference in linear expansion coefficient between the epoxy resin and the optical semiconductor element, and the optical semiconductor element is deteriorated due to the internal stress. The problem of lowering occurs. In order to solve such a problem, conventionally, as a method of reducing the internal stress, a method has been proposed in which an epoxy resin is modified with an organopolysiloxane to reduce the elastic modulus of a cured epoxy resin composition. Running in the department.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記方法は、内部応力を低下させるこ
とはできても得られるエポキシ樹脂組成物硬化体が不均
一構造となり、封止樹脂の光透過率が著しく低下すると
いう光半導体封止用樹脂組成物としては致命的な欠点を
有している。
However, even if the above method can reduce the internal stress, the obtained epoxy resin composition cured product has a non-uniform structure, and the light transmittance of the sealing resin is significantly reduced. Has a fatal drawback.

この発明は、このような事情に鑑みなされたもので、
内部応力が小さく、しかも光透過性に優れた光半導体装
置に関するものである。
The present invention has been made in view of such circumstances,
The present invention relates to an optical semiconductor device having small internal stress and excellent light transmittance.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明の光半導体装置
は、下記の(A)〜(D)成分を含有するエポキシ樹脂
組成物を用いて光半導体素子を封止するという構成をと
る。
In order to achieve the above object, the optical semiconductor device of the present invention has a configuration in which an optical semiconductor element is sealed using an epoxy resin composition containing the following components (A) to (D).

(A)透明性エポキシ樹脂。(A) Transparent epoxy resin.

(B)酸無水物系硬化剤。(B) an acid anhydride-based curing agent;

(C)硬化触媒。(C) a curing catalyst.

(D)上記(A),(B)および(C)成分からなる硬
化体との常温での屈折率の差が±0.01の範囲にあるオル
ガノポリシロキサン。
(D) An organopolysiloxane having a difference in refractive index at room temperature from a cured product comprising the components (A), (B) and (C) within a range of ± 0.01.

〔作用〕[Action]

すなわち、本発明者らは、内部応力が小さく、しかも
光透明性に優れた封止樹脂を得るために一連の研究を重
ねた。その研究の過程で、従来のオルガノポリシロキサ
ンで、内部応力の低減はなされるものの、光透過率も低
下するのは、エポキシ樹脂組成物硬化体の屈折率とオル
ガノポリシロキサンの屈折率との差が大きいためではな
いかと想起した。そして、両者の屈折率の差を小さくす
るために、さらに研究を重ねた。その結果、エポキシ樹
脂組成物硬化体の屈折率との差が小さいオルガノポリシ
ロキサンを用いると、透明で内部応力の低い封止樹脂が
得られることを見出しこの発明に到達した。
That is, the present inventors have repeated a series of studies to obtain a sealing resin having small internal stress and excellent optical transparency. In the course of that research, the conventional organopolysiloxane reduced the internal stress but reduced the light transmittance because the difference between the refractive index of the cured epoxy resin composition and the refractive index of the organopolysiloxane. I recalled that it might be because it was big. Further studies were conducted to reduce the difference between the two refractive indices. As a result, they have found that a transparent and low internal stress sealing resin can be obtained by using an organopolysiloxane having a small difference from the refractive index of the cured epoxy resin composition, and reached the present invention.

この発明に用いるエポキシ樹脂組成物は、透明性エポ
キシ樹脂(A成分)と、酸無水物系硬化剤(B成分)
と、硬化触媒(C成分)と、特定のオルガノポリシロキ
サン(D成分)とを用いて得られるものであつて、通
常、液状,粉末状もしくはこの粉末を打錠したタブレツ
ト錠になつている。
The epoxy resin composition used in the present invention comprises a transparent epoxy resin (component A) and an acid anhydride-based curing agent (component B).
And a curing catalyst (component (C)) and a specific organopolysiloxane (component (D)), and are usually in the form of a liquid, a powder, or a tablet obtained by compressing the powder.

上記透明性エポキシ樹脂(A成分)としては、ビスフ
エノール型エポキシ樹脂,脂環式エポキシ樹脂が透明性
を有するために好ましいが、場合により通常用いられる
他のエポキシ樹脂を併用することもできる。そして、上
記他のエポキシ樹脂を用いる場合、その使用割合は、通
常、上記透明性エポキシ樹脂100重量部(以下「部」と
略す)に対して他のエポキシ樹脂を5〜100部の割合に
設定するのが好適である。このようなエポキシ樹脂とし
ては、一般に、エポキシ当量100〜1000,軟化点120℃以
下のものが用いられる。なお、上記透明性エポキシ樹脂
の透明性とは、着色透明の場合をも含み、波長600mmの
光透過率が厚み1mmで80〜100%をいう。
As the transparent epoxy resin (component A), a bisphenol-type epoxy resin and an alicyclic epoxy resin are preferable because they have transparency, but other epoxy resins that are usually used may be used in some cases. When the other epoxy resin is used, the use ratio is usually set to 5 to 100 parts by weight of the other epoxy resin with respect to 100 parts by weight of the transparent epoxy resin (hereinafter abbreviated as “part”). It is preferred to do so. As such an epoxy resin, an epoxy resin having an epoxy equivalent of 100 to 1000 and a softening point of 120 ° C. or lower is generally used. In addition, the transparency of the transparent epoxy resin includes the case where the transparent epoxy resin is colored and transparent, and means that the light transmittance at a wavelength of 600 mm is 80 to 100% at a thickness of 1 mm.

上記酸無水物系硬化剤(B成分)としては、分子量14
0〜200程度のものが好ましく用いられ、例えば、ヘキサ
ヒドロ無水フタル酸,テトラヒドロ無水フタル酸,メチ
ルヘキサヒドロ無水フタル酸,メチルテトラヒドロ無水
フタル酸等の無色ないし淡黄色の酸無水物があげられ
る。上記酸無水物系硬化剤の配合量は、エポキシ樹脂10
0部に対して50〜200部の範囲に設定することが好まし
い。
The acid anhydride-based curing agent (component B) has a molecular weight of 14
Those having about 0 to 200 are preferably used, and examples thereof include colorless to pale yellow acid anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. The compounding amount of the acid anhydride-based curing agent is epoxy resin 10
It is preferable to set the range of 50 to 200 parts with respect to 0 part.

上記硬化触媒(C成分)としては、第三級アミン,イ
ミダゾール化合物および有機金属錯塩等があげられる。
Examples of the curing catalyst (component C) include tertiary amines, imidazole compounds, and organometallic complex salts.

上記特定のオルガノポリシロキサン(D成分)として
は、上記透明性エポキシ樹脂(A成分),酸無水物系硬
化剤(B成分)および硬化触媒(C成分)からなるエポ
キシ樹脂組成物硬化体との屈折率の差が、常温で±0.01
の範囲のものを用いる必要がある。なお、上記屈折率は
アツベ屈折計を用いて測定される値である。
As the specific organopolysiloxane (component D), there is a cured epoxy resin composition comprising the transparent epoxy resin (component A), an acid anhydride-based curing agent (component B), and a curing catalyst (component C). Difference of refractive index is ± 0.01 at room temperature
Must be used. The refractive index is a value measured using an Atsube refractometer.

また、上記特定のオルガノポリシロキサンのなかで
も、特に上記の一般式(I)で表されるものを用いるの
が好ましい。
Further, among the above specific organopolysiloxanes, it is particularly preferable to use those represented by the above general formula (I).

そして、上記一般式(I)中、m+n=30〜90のものを
用いるのが好ましい。さらに、フエニル基の数は、1分
子中に30〜140個が好適である。さらに、上記一般式
(I)で表されるオルガノポリシロキサンにおいて、な
かでもメチルフエニルポリシロキサン,ジフエニルポリ
シロキサン等を用いるのが特に好適である。このような
オルガノポリシロキサンは、数平均分子量4500〜13000
を有するものが好適である。
In the above general formula (I), it is preferable to use those having m + n = 30 to 90. Further, the number of phenyl groups is preferably 30 to 140 in one molecule. Further, among the organopolysiloxanes represented by the above general formula (I), it is particularly preferable to use methylphenyl polysiloxane, diphenyl polysiloxane and the like. Such an organopolysiloxane has a number average molecular weight of 4500 to 13000.
Are preferred.

なお、上記特定のオルガノポリシロキサン(D成分)
の配合量は、エポキシ樹脂100部に対して5〜100部の範
囲内に設定することが好ましい。すなわち、オルガノポ
リシロキサンが5部未満では硬化物の弾性率が充分低下
しないために、また100部を超えると弾性率は低下する
が線膨張係数が大きくなり過ぎ、その結果、充分な低応
力効果が得られなくなる傾向がみられるからである。
The above specific organopolysiloxane (D component)
Is preferably set in the range of 5 to 100 parts with respect to 100 parts of the epoxy resin. That is, when the organopolysiloxane content is less than 5 parts, the elastic modulus of the cured product is not sufficiently reduced, and when it is more than 100 parts, the elastic modulus is reduced but the coefficient of linear expansion becomes too large, and as a result, a sufficient low stress effect is obtained. This is because there is a tendency that it becomes impossible to obtain.

この発明に用いるエポキシ樹脂組成物には、上記A〜
D成分以外に、必要に応じて染料,変性剤,変色防止
剤,老化防止剤,離型剤,反応性ないし非反応性の希釈
剤等の従来公知の添加剤を適宜配合することができる。
The epoxy resin composition used in the present invention includes the above A to
In addition to the component D, conventionally known additives such as a dye, a denaturant, a discoloration inhibitor, an antioxidant, a release agent, and a reactive or non-reactive diluent can be appropriately compounded as required.

この発明に用いる上記エポキシ樹脂組成物は、例えば
つぎのようにして製造することができる。すなわち、上
記各成分原料を適宜配合し予備混合した後、混練機に掛
けて混練して溶融混合する。そして、これを室温に冷却
した後、公知の手段によつて粉砕し、必要に応じて打錠
するという一連の工程により製造することができる。ま
た、上記各成分原料の配合に先立つて、予め透明性エポ
キシ樹脂(A成分)と特定のオルガノポリシロキサン
(D成分)をキシレン等の有機溶媒中に均一溶解し温度
130℃で約5時間熱処理し予備反応させることにより変
性透明性エポキシ樹脂を作製する。そして、上記変性エ
ポキシ樹脂組成物に残りの酸無水物系硬化剤(B成
分),硬化触媒(C成分)および従来公知の添加剤を所
定の割合で配合した後、上記と同様の製法にしたがい製
造することもできる。このように、予め透明性エポキシ
樹脂(A成分)と特定のオルガノポリシロキサン(D成
分)とを反応させ透明性エポキシ樹脂を予備変性させる
のが効果の点から好ましい。さらに、上記エポキシ樹脂
組成物が液状物の場合は、上記各成分を混合するのみで
よい。
The epoxy resin composition used in the present invention can be produced, for example, as follows. That is, after appropriately mixing and preliminarily mixing the above-mentioned respective component raw materials, the mixture is kneaded in a kneading machine and melt-mixed. After cooling to room temperature, it can be manufactured by a series of steps of pulverizing by a known means and tableting as required. Prior to the mixing of the above-mentioned components, the transparent epoxy resin (component A) and the specific organopolysiloxane (component D) are uniformly dissolved in an organic solvent such as xylene beforehand.
A modified transparent epoxy resin is prepared by heat-treating at 130 ° C. for about 5 hours and pre-reacting. Then, after the remaining acid anhydride-based curing agent (component B), curing catalyst (component C) and a conventionally known additive are blended in the above-mentioned modified epoxy resin composition in a predetermined ratio, the same production method as described above is followed. It can also be manufactured. As described above, it is preferable from the viewpoint of the effect that the transparent epoxy resin (component A) and the specific organopolysiloxane (component D) are reacted in advance to preliminarily modify the transparent epoxy resin. Further, when the epoxy resin composition is a liquid, it is only necessary to mix the above components.

このようなエポキシ樹脂組成物を用いての光半導体素
子の封止は、特に限定するものではなく、通常のトラン
スフアー成形,注型等の公知のモールド方法により行う
ことができる。
The sealing of the optical semiconductor element using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding and casting.

このようにして得られる光半導体装置は、透明性に優
れ、内部応力が極めて小さく高い信頼性を備えている。
これは、特定のオルガノポリシロキサンを用いることに
よりエポキシ樹脂が変性処理されて低応力性が向上し、
しかも樹脂成分の硬化体の屈折率と上記特定のオルガノ
ポリシロキサンの屈折率の差が非常に小さいからである
と考えられる。
The optical semiconductor device obtained in this manner has excellent transparency, extremely low internal stress, and high reliability.
This is because, by using a specific organopolysiloxane, the epoxy resin is modified and the low stress property is improved,
Moreover, it is considered that the difference between the refractive index of the cured resin component and the refractive index of the specific organopolysiloxane is very small.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明の光半導体装置は、エポキシ
樹脂組成物硬化体の屈折率とそれ自体の屈折率との差が
小さいオルガノポリシロキサンを用い、これを含むエポ
キシ樹脂組成物を用いて光半導体素子を樹脂封止して得
られたものである。このため、この封止樹脂が光透過性
に優れ、しかもその内部応力が小さくなつており、例え
ば発光素子ではその輝度劣化の抑制等が効果的になされ
信頼性が極めて高くなる。
As described above, the optical semiconductor device of the present invention uses an organopolysiloxane having a small difference between the refractive index of the cured epoxy resin composition and the refractive index of itself, and uses the epoxy resin composition containing the same. It is obtained by sealing a semiconductor element with a resin. For this reason, this sealing resin is excellent in light transmittance, and its internal stress is small. For example, in a light emitting element, for example, in a light emitting element, suppression of luminance degradation is effectively performed, and reliability is extremely increased.

つぎに、実施例について比較例と併せて説明する。 Next, examples will be described together with comparative examples.

〔実施例1〕 エポキシ当量185のビスフエノールA型エポキシ樹脂
(液状樹脂)73部、エポキシ当量252の下記の構造式で
表される脂環式エポキシ樹脂(液状樹脂)27部に、 数平均分子量が11000で屈折率が1.531の両末端アミノ変
性メチルフエニルポリシロキサン22部添加し、これをキ
シレン中で約130℃で5時間熱処理したのち、脱キシレ
ンすることにより変性エポキシ樹脂を得た。つぎに、上
記変性エポキシ樹脂122部に、4−メチルヘキサヒドロ
無水フタル酸100部と2−エチル−4−メチルイミダゾ
ール0.4部を添加混合したものを120℃で熱硬化させエポ
キシ樹脂組成物硬化体を得た。この硬化体の光透過率は
厚み4mmで80%という高い値であつた。
Example 1 73 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, and 27 parts of an alicyclic epoxy resin (liquid resin) represented by the following structural formula having an epoxy equivalent of 252, A modified epoxy resin is obtained by adding 22 parts of amino-modified methylphenylpolysiloxane having a number average molecular weight of 11,000 and a refractive index of 1.531 at both ends with amino-modified methylphenylpolysiloxane, heat-treating it at about 130 ° C. for 5 hours in xylene, and then de-xylene. Was. Next, a mixture obtained by adding and mixing 100 parts of 4-methylhexahydrophthalic anhydride and 0.4 part of 2-ethyl-4-methylimidazole to 122 parts of the modified epoxy resin was heat-cured at 120 ° C. to obtain a cured epoxy resin composition. I got The light transmittance of this cured product was as high as 80% at a thickness of 4 mm.

なお、上記配合物において、両末端アミノ変性メチル
フエニルポリシロキサンでエポキシ樹脂を変性しない場
合、すなわち、エポキシ当量185のビスフエノールA変
エポキシ樹脂73部、エポキシ当量252の脂環式エポキシ
樹脂27部、4−メチルヘキサヒドロ無水フタル酸100部
と2−エチル−4−メチルイミダゾール0.4部を添加混
合したものを120℃で熱硬化させたエポキシ樹脂組成物
硬化体の屈折率は1.531であり、上記両末端アミノ変性
メチルフエニルポリシロキサンの屈折率と等しい。
In the above formulation, when the epoxy resin is not modified with amino-modified methylphenylpolysiloxane at both ends, that is, 73 parts of bisphenol A modified epoxy resin having an epoxy equivalent of 185, 27 parts of an alicyclic epoxy resin having an epoxy equivalent of 252. The epoxy resin composition cured product obtained by adding and mixing 100 parts of 4-methylhexahydrophthalic anhydride and 0.4 part of 2-ethyl-4-methylimidazole at 120 ° C. has a refractive index of 1.531, It is equal to the refractive index of the amino-modified methylphenylpolysiloxane at both ends.

〔実施例2〕 エポキシ当量185のビスフエノールA型エポキシ樹脂
(液状樹脂)62部、エポキシ当量252の下記の構造式で
表される脂環式エポキシ樹脂(液状樹脂)38部に、 数平均分子量8000で屈折率が1.527の両末端アミノ変性
メチルフエニルポリシロキサン22部添加し、これらをキ
シレン中で約130℃で5時間熱処理したのち、脱キシレ
ンすることにより変性エポキシ樹脂を得た。つぎに、上
記変性エポキシ樹脂122部に、4−メチルヘキサヒドロ
無水フタル酸100部と2−エチル−4−メチルイミダゾ
ール0.42部を添加混合したものを120℃で熱硬化させエ
ポキシ樹脂組成物硬化体を得た。この硬化体の光透過率
は厚み4mmで88%という高い値であつた。
Example 2 62 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, and 38 parts of an alicyclic epoxy resin (liquid resin) represented by the following structural formula having an epoxy equivalent of 252, A modified epoxy resin was obtained by adding 22 parts of an amino-modified methylphenylpolysiloxane having a number average molecular weight of 8000 and a refractive index of 1.527 at both ends with amino-modified methyl phenylpolysiloxane, heat-treating these in xylene at about 130 ° C. for 5 hours, and then removing the xylene. . Next, a mixture obtained by adding and mixing 100 parts of 4-methylhexahydrophthalic anhydride and 0.42 part of 2-ethyl-4-methylimidazole to 122 parts of the modified epoxy resin was heat-cured at 120 ° C. to obtain a cured epoxy resin composition. I got The light transmittance of this cured product was as high as 88% at a thickness of 4 mm.

なお、上記配合物において、両末端アミノ変性メチル
フエニルポリシロキサンでエポキシ樹脂を変性しない場
合、すなわち、エポキシ当量185のビスフエノールA型
エポキシ樹脂62部、エポキシ当量252の脂環式エポキシ
樹脂38部、4−メチルヘキサヒドロ無水フタル酸100部
と2−エチル−4−メチルイミダゾール0.4部を添加混
合したものを120℃で熱硬化させたエポキシ樹脂組成物
硬化体の屈折率は1.527であり、上記両末端アミノ変性
メチルフエニルポリシロキサンの屈折率と等しい。
In the above formulation, when the epoxy resin is not modified with amino-modified methylphenylpolysiloxane at both ends, that is, 62 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 185, and 38 parts of an alicyclic epoxy resin having an epoxy equivalent of 252. The refractive index of a cured epoxy resin composition obtained by heat-curing a mixture of 100 parts of 4-methylhexahydrophthalic anhydride and 0.4 part of 2-ethyl-4-methylimidazole at 120 ° C. is 1.527, It is equal to the refractive index of the amino-modified methylphenylpolysiloxane at both ends.

〔実施例3〕 両末端アミノ変性メチルフエニルポリシロキサンの使
用量を5部に、また変性エポキシ樹脂の使用量を105部
にそれぞれ変えた。それ以外は実施例1と同様にしてエ
ポキシ樹脂組成物硬化体を得た。この硬化体の光透過率
は厚み4mmで86%という高い値であつた。
Example 3 The amount of the amino-modified methylphenylpolysiloxane at both ends was changed to 5 parts, and the amount of the modified epoxy resin was changed to 105 parts. Otherwise in the same manner as in Example 1, a cured product of the epoxy resin composition was obtained. The light transmittance of this cured product was as high as 86% at a thickness of 4 mm.

なお、上記配合物において、両端末アミノ変性メチル
フエニルポリシロキサンでエポキシ樹脂を変性しない場
合、すなわち、エポキシ当量185のビスフエノールA型
エポキシ樹脂73部、エポキシ当量252の脂環式エポキシ
樹脂27部、4−メチルヘキサヒドロ無水フタル酸100部
と2−エチル−4−メチルイミダゾール0.4部を添加混
合したものを120℃で熱硬化させたエポキシ樹脂組成物
硬化体の屈折率は1.531であり、上記両末端アミノ変性
メチルフエニルポリシロキサンの屈折率と等しい。
In the above composition, when the epoxy resin is not modified with both terminal amino-modified methylphenylpolysiloxane, that is, 73 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 185 and 27 parts of an alicyclic epoxy resin having an epoxy equivalent of 252. The epoxy resin composition cured product obtained by adding and mixing 100 parts of 4-methylhexahydrophthalic anhydride and 0.4 part of 2-ethyl-4-methylimidazole at 120 ° C. has a refractive index of 1.531, It is equal to the refractive index of the amino-modified methylphenylpolysiloxane at both ends.

〔実施例4〕 両末端アミノ変性メチルフエニルポリシロキサンの使
用量を100部に、また変性エポキシ樹脂の使用量を200部
にそれぞれ変えた。それ以外は実施例2と同様にしてエ
ポキシ樹脂組成物硬化体を得た。この硬化体の光透過率
は厚み4mmで80%という高い値であつた。
Example 4 The amount of amino-modified methylphenylpolysiloxane at both ends was changed to 100 parts, and the amount of modified epoxy resin was changed to 200 parts. Otherwise, the procedure of Example 2 was repeated to obtain a cured epoxy resin composition. The light transmittance of this cured product was as high as 80% at a thickness of 4 mm.

〔実施例5〕 オルガノポリシロキサンとして、下記の一般式(II)
で表される数平均分子量6000で屈折率が1.531のオルガ
ノポリシロキサンを用いた。それ以外は実施例1と同様
にしてエポキシ樹脂組成物硬化体を得た。この硬化体の
光透過率は厚み4mmで82%という高い値であつた。
Example 5 As an organopolysiloxane, the following general formula (II)
An organopolysiloxane having a number average molecular weight of 6000 and a refractive index of 1.531 was used. Otherwise in the same manner as in Example 1, a cured product of the epoxy resin composition was obtained. The light transmittance of this cured product was as high as 82% at a thickness of 4 mm.

なお、上記配合物において、上記一般式(II)で表さ
れるオルガノポリシロキサンでエポキシ樹脂を変性しな
い場合、すなわち、エポキシ当量185のビスフエノール
A型エポキシ樹脂73部、エポキシ当量252の脂環式エポ
キシ樹脂27部、4−メチルヘキサヒドロ無水フタル酸10
0部と2−エチル−4−メチルイミダゾール0.4部を添加
混合したものを120℃で熱硬化させたエポキシ樹脂組成
物硬化体の屈折率は1.531であり、上記一般式(II)で
表されるオルガノポリシロキサンの屈折率と等しい。
In the above formulation, when the epoxy resin is not modified with the organopolysiloxane represented by the general formula (II), that is, 73 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 185 and an alicyclic compound having an epoxy equivalent of 252 27 parts of epoxy resin, 4-methylhexahydrophthalic anhydride 10
A cured product of an epoxy resin composition obtained by thermally curing at 120 ° C. a mixture obtained by adding and mixing 0 part and 0.4 part of 2-ethyl-4-methylimidazole has a refractive index of 1.531 and is represented by the general formula (II). It is equal to the refractive index of the organopolysiloxane.

〔実施例6〕 実施例1の配合成分を同量用い、予め変性エポキシ樹
脂を作製せず、各成分を配合混合し、混練機にかけて混
練して溶融混合した。そして、これを120℃で熱硬化さ
せエポキシ樹脂組成物硬化体を得た。この硬化体の光透
過率は厚み4mmで80%という高い値であつた。
[Example 6] Using the same amount of the components of Example 1 but without preparing a modified epoxy resin in advance, the components were mixed and mixed, kneaded in a kneader and melt-mixed. This was thermally cured at 120 ° C. to obtain a cured epoxy resin composition. The light transmittance of this cured product was as high as 80% at a thickness of 4 mm.

なお、上記配合物において、両末端アミノ変性メチル
フエニルポリシロキサンを用いなかつた場合、すなわ
ち、エポキシ当量185のビスフエノールA型エポキシ樹
脂73部、エポキシ当量252の脂環式エポキシ樹脂27部、
4−メチルヘキサヒドロ無水フタル酸100部と2−エチ
ル−4−メチルイミダゾール0.4部を添加混合したもの
を120℃で熱硬化させたエポキシ樹脂組成物硬化体の屈
折率は1.531であり、上記両末端アミノ変性メチルフエ
ニルポリシロキサンの屈折率と等しい。
Incidentally, in the above formulation, when not using amino-modified methylphenylpolysiloxane at both ends, 73 parts of bisphenol A type epoxy resin having an epoxy equivalent of 185, 27 parts of an alicyclic epoxy resin having an epoxy equivalent of 252,
The epoxy resin composition cured product obtained by adding and mixing 100 parts of 4-methylhexahydrophthalic anhydride and 0.4 part of 2-ethyl-4-methylimidazole at 120 ° C. has a refractive index of 1.531. It is equal to the refractive index of the terminal amino-modified methylphenylpolysiloxane.

〔比較例1〕 エポキシ当量185のビスフエノールA型エポキシ樹脂
(液状樹脂)100部に数平均分子量が8000で屈折率が1.5
27の両末端アミノ変性メチルフエニルポリシロキサン22
部を添加し、これらをキシレン中で約130℃で5時間熱
処理したのち、脱キシレンすることにより変性エポキシ
樹脂を得た。つぎに、上記変性エポキシ樹脂122部に、
4−メチルヘキサヒドロ無水フタル酸100部と2−エチ
ル−4−メチルイミダゾール0.42部を添加混合したもの
を120℃で熱硬化させたエポキシ樹脂組成物硬化体を得
た。この硬化体の光透過率は厚み4mmで9%で、外見は
白濁していた。
[Comparative Example 1] 100 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185 had a number average molecular weight of 8000 and a refractive index of 1.5.
27 Both ends amino-modified methylphenyl polysiloxane 22
Then, after heat-treating these in xylene at about 130 ° C. for 5 hours, dexylene was obtained to obtain a modified epoxy resin. Next, in the modified epoxy resin 122 parts,
A mixture of 100 parts of 4-methylhexahydrophthalic anhydride and 0.42 parts of 2-ethyl-4-methylimidazole was heat-cured at 120 ° C. to obtain a cured epoxy resin composition. The light transmittance of this cured product was 9% at a thickness of 4 mm, and the appearance was cloudy.

なお、上記硬化体の光透過率が低かつた原因は、上記
配合混合物において、両末端アミノ変性メチルフエニル
ポリシロキサンによりエポキシ樹脂を変性しない場合、
すなわち、エポキシ当量185のビスフエノールA型エポ
キシ樹脂100部、4−メチルヘキサヒドロ無水フタル酸1
00部、2−エチル−4−メチルイミダゾール0.42部を混
合したものを120℃で熱硬化させたエポキシ樹脂組成物
硬化体の屈折率が1.541であり、上記両末端アミノ変性
メチルフエニルポリシロキサンの屈折率1.527と比較す
ると差が0.01以上であつたためである。
The light transmittance of the cured product was low because the epoxy resin was not modified with amino-modified methylphenylpolysiloxane at both ends in the mixture.
That is, 100 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 185, 4-methylhexahydrophthalic anhydride 1
00 parts, a mixture of 0.42 parts of 2-ethyl-4-methylimidazole was heat-cured at 120 ° C., and the cured product of the epoxy resin composition had a refractive index of 1.541. This is because the difference was 0.01 or more as compared with the refractive index of 1.527.

〔比較例2〕 オルガノポリシロキサンを用いずに、ビスフエノール
A型エポキシ樹脂(液状樹脂)100部に4−メチルヘキ
サヒドロ無水フタル酸100部と2−エチル−4−メチル
イミダゾール0.42部を添加混合してエポキシ樹脂組成物
を得た。
[Comparative Example 2] 100 parts of 4-methylhexahydrophthalic anhydride and 0.42 part of 2-ethyl-4-methylimidazole were added to 100 parts of bisphenol A type epoxy resin (liquid resin) and mixed without using organopolysiloxane. Thus, an epoxy resin composition was obtained.

つぎに、上記実施例1〜5および比較例2で得られた
エポキシ樹脂組成物を用いて発光ダイオードを注型によ
り樹脂封止して光半導体装置を作製した。そして、この
光半導体装置の通電輝度劣化を測定した。その結果を下
記の表に示す。なお、上記通電輝度劣化の測定方法は、
つぎのようにして行つた。すなわち、上記光半導体装置
(LEDデバイス)に定電流を流し、輝度として電流印加
5秒後の受光素子の出力電流値を求め劣化率を測定し
た。
Next, using the epoxy resin compositions obtained in Examples 1 to 5 and Comparative Example 2, a light-emitting diode was resin-molded by casting to produce an optical semiconductor device. Then, the current-carrying luminance degradation of this optical semiconductor device was measured. The results are shown in the table below. The method for measuring the current-carrying luminance degradation is as follows:
I went as follows. That is, a constant current was applied to the optical semiconductor device (LED device), and as a luminance, an output current value of the light receiving element after 5 seconds from the current application was obtained, and the deterioration rate was measured.

パツケージ:直径5mmのパイロツトランプ。Package: Pilot lamp with a diameter of 5mm.

評価素子:GaAs,0.5mm×0.5mm。Evaluation element: GaAs, 0.5 mm x 0.5 mm.

評価条件:−30℃放置で20mA通電の1000時間後の輝度劣
化率を測定した。
Evaluation conditions: The luminance degradation rate was measured after 1000 hours of 20 mA conduction at −30 ° C.

上記表の結果から、実施例品は比較例品に比べて輝度
劣化が抑制され、光透過性とともに低応力性も向上して
いることがわかる。
From the results in the above table, it can be seen that the luminance of the example product is suppressed as compared with the comparative example product, and the low stress property as well as the light transmittance is improved.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の(A)〜(D)成分を含有するエポ
キシ樹脂組成物を用いて光半導体素子を封止してなる光
半導体装置。 (A)透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。 (D)上記(A),(B)および(C)成分からなる硬
化体との常温での屈折率の差が±0.01の範囲にあるオル
ガノポリシロキサン。
An optical semiconductor device comprising an optical semiconductor element encapsulated with an epoxy resin composition containing the following components (A) to (D). (A) Transparent epoxy resin. (B) an acid anhydride-based curing agent; (C) a curing catalyst. (D) An organopolysiloxane having a difference in refractive index at room temperature from a cured product comprising the components (A), (B) and (C) within a range of ± 0.01.
【請求項2】(D)成分のオルガノポリシロキサンが下
記の一般式(I)で表されるものである請求項(1)記
載の光半導体装置。
2. The optical semiconductor device according to claim 1, wherein the organopolysiloxane as the component (D) is represented by the following general formula (I).
【請求項3】上記(D)成分のオルガノポリシロキサン
により予め上記(A)成分の透明性エポキシ樹脂を変性
してなる請求項(1)または(2)記載の光半導体装
置。
3. The optical semiconductor device according to claim 1, wherein the transparent epoxy resin as the component (A) is modified in advance with the organopolysiloxane as the component (D).
【請求項4】透明性エポキシ樹脂が、ビスフエノール型
エポキシ樹脂および脂環式エポキシ樹脂の少なくとも一
方である請求項(1)〜(3)のいずれか一項に記載の
光半導体装置。
4. The optical semiconductor device according to claim 1, wherein the transparent epoxy resin is at least one of a bisphenol-type epoxy resin and an alicyclic epoxy resin.
【請求項5】オルガノポリシロキサンの使用量が、透明
性エポキシ樹脂100重量部に対して5〜100重量部の範囲
に設定されている請求項(1)〜(4)のいずれか一項
に記載の光半導体装置。
5. The method according to claim 1, wherein the amount of the organopolysiloxane is set in a range of 5 to 100 parts by weight based on 100 parts by weight of the transparent epoxy resin. The optical semiconductor device according to the above.
【請求項6】下記の(A)〜(D)成分を含有する光半
導体封止用エポキシ樹脂組成物。 (A)透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。 (D)上記(A),(B)および(C)成分からなる硬
化体との常温での屈折率の差が±0.01の範囲にあるオル
ガノポリシロキサン。
6. An epoxy resin composition for encapsulating an optical semiconductor, comprising the following components (A) to (D). (A) Transparent epoxy resin. (B) an acid anhydride-based curing agent; (C) a curing catalyst. (D) An organopolysiloxane having a difference in refractive index at room temperature from a cured product comprising the components (A), (B) and (C) within a range of ± 0.01.
【請求項7】(D)成分のオルガノポリシロキサンが下
記の一般式(I)で表されるものである請求項(6)記
載の光半導体封止用エポキシ樹脂組成物。
7. The epoxy resin composition for optical semiconductor encapsulation according to claim 6, wherein the organopolysiloxane of the component (D) is represented by the following general formula (I).
JP2234105A 1989-12-28 1990-09-03 Optical semiconductor device Expired - Lifetime JP2760889B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34009589 1989-12-28
JP1-340095 1989-12-28

Publications (2)

Publication Number Publication Date
JPH03237749A JPH03237749A (en) 1991-10-23
JP2760889B2 true JP2760889B2 (en) 1998-06-04

Family

ID=18333668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234105A Expired - Lifetime JP2760889B2 (en) 1989-12-28 1990-09-03 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2760889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508545A1 (en) 2005-10-18 2012-10-10 Asahi Kasei Chemicals Corporation Thermosetting resin composition and photosemiconductor encapsulation material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903171B2 (en) * 1998-10-05 2005-06-07 Promerus, Llc Polymerized cycloolefins using transition metal catalyst and end products thereof
US6800373B2 (en) * 2002-10-07 2004-10-05 General Electric Company Epoxy resin compositions, solid state devices encapsulated therewith and method
TW200507885A (en) 2003-07-17 2005-03-01 Gunze Kk Suture prosthetic material for automatic sewing device
JP2008255295A (en) * 2007-04-09 2008-10-23 Asahi Kasei Chemicals Corp Thermosetting composition and optical semiconductor sealing material
CN112759891A (en) * 2020-12-28 2021-05-07 广东盈骅新材料科技有限公司 Epoxy resin composition, and transparent composite material and laminate containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508545A1 (en) 2005-10-18 2012-10-10 Asahi Kasei Chemicals Corporation Thermosetting resin composition and photosemiconductor encapsulation material

Also Published As

Publication number Publication date
JPH03237749A (en) 1991-10-23

Similar Documents

Publication Publication Date Title
JPH10158473A (en) Epoxy resin composition for sealing optical semiconductor element, and optical semiconductor device sealed by using this epoxy resin composition
JP3153171B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor
JP2760889B2 (en) Optical semiconductor device
JP2005330335A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
JP3623530B2 (en) Optical semiconductor device
JPH06100762A (en) Epoxy resin composition
JPS60124617A (en) Resin-sealed emitter
JP2796187B2 (en) Optical semiconductor device
JPS6362363A (en) Optical semiconductor device
JP2837478B2 (en) Optical semiconductor device
JP2872848B2 (en) Optical semiconductor device
JP2001207019A (en) Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same
JP3017888B2 (en) Semiconductor device
JP2703609B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
JP2804360B2 (en) Optical semiconductor device
JP3183474B2 (en) Epoxy resin composition
JPS6225686B2 (en)
JPH06232296A (en) Semiconductor device
KR920001443B1 (en) Thermosetting epoxy resin compositions for light-emitting elements
JPH056946A (en) Optical semiconductor device
JP2703617B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
JP2002030133A (en) Epoxy resin composition for optical semiconductor and optical semiconductor device
JP2001234073A (en) Resin composition for semiconductor sealing and sealed semiconductor device
JPH08198953A (en) Photosemiconductor device
JP3207278B2 (en) Resin composition for optical semiconductor encapsulation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13