JPH0689948A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0689948A
JPH0689948A JP24043892A JP24043892A JPH0689948A JP H0689948 A JPH0689948 A JP H0689948A JP 24043892 A JP24043892 A JP 24043892A JP 24043892 A JP24043892 A JP 24043892A JP H0689948 A JPH0689948 A JP H0689948A
Authority
JP
Japan
Prior art keywords
resin
silica particles
silica
semiconductor device
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24043892A
Other languages
Japanese (ja)
Other versions
JP3017888B2 (en
Inventor
Yutaka Aoki
豊 青木
Satoshi Tanigawa
聡 谷川
Mutsuko Ota
睦子 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP4240438A priority Critical patent/JP3017888B2/en
Publication of JPH0689948A publication Critical patent/JPH0689948A/en
Application granted granted Critical
Publication of JP3017888B2 publication Critical patent/JP3017888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide a semiconductor device sealed with a resin with low-stress and excellent heat resistance, especially, an optical semiconductor sealed with a transparent resin having low-stress and excellent heat resistance. CONSTITUTION:This device is manufactured by sealing a semiconductor element with a resin composition composed of a thermosetting resin, curing agent, <=5X10<-5>mol/g of a hydroxyl group, and silica particles having particle sizes of <=0.1mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性および低応力性
に優れた封止樹脂により樹脂封止された半導体装置に関
するものであり、特に透明封止樹脂により樹脂封止され
た光半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device resin-sealed with a sealing resin having excellent heat resistance and low stress, and particularly to an optical semiconductor device resin-sealed with a transparent sealing resin. It is about.

【0002】[0002]

【従来の技術】現在、多くの光半導体装置は透明エポキ
シ樹脂で封止されているが、樹脂硬化体の内部応力によ
り、素子が劣化する問題がある。例えば,LED(発光
ダイオ−ド)の場合、輝度が低下する。そこで、本発明
者達は、透明かつ低応力の樹脂硬化体を得るために、光
の波長よりも充分に小さい、具体的には粒子径が0.1
μm以下のシリカ超微粒子を樹脂に充填することを提案
した。(特願平3−133418)
2. Description of the Related Art At present, many optical semiconductor devices are sealed with transparent epoxy resin, but there is a problem that the element is deteriorated by the internal stress of the resin cured body. For example, in the case of an LED (light emitting diode), the brightness decreases. Therefore, the present inventors have found that in order to obtain a transparent and low-stress resin cured product, the particle size is sufficiently smaller than the wavelength of light, specifically, the particle size is 0.1.
It has been proposed to fill the resin with ultrafine silica particles of less than μm. (Japanese Patent Application No. 3-133418)

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ようにシリカ超微粒子を樹脂に添加する方法は、樹脂硬
化体の内部応力を低減し、かつ透明性を維持することは
出来ても、未だ耐熱性において満足できるものではな
い。
However, although the method of adding ultrafine silica particles to a resin as described above can reduce the internal stress of a cured resin and maintain its transparency, it is still resistant to heat. I am not satisfied with sex.

【0004】本発明は、このような事情に鑑みなされた
もので、シリカ超微粒子を充填した低応力性、耐熱性に
優れた封止樹脂により樹脂封止された半導体装置を提供
するものであり、特に低応力性、耐熱性に優れた透明封
止樹脂により樹脂封止された光半導体装置を提供するも
のである。
The present invention has been made in view of the above circumstances, and provides a semiconductor device resin-sealed with a sealing resin filled with ultrafine silica particles and excellent in low stress and heat resistance. In particular, the present invention provides an optical semiconductor device resin-encapsulated by a transparent encapsulating resin which is excellent in low stress and heat resistance.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の半導体装置は、下記の(A)〜(C)成
分を含む熱硬化性樹脂組成物を用いて半導体素子を封止
するという構成をとる。 (A)熱硬化性樹脂。 (B)硬化剤成分。 (C)水酸基量が5×10-5mol/g以下であり、か
つ粒子径が0.1μm以下であるシリカ粒子。
In order to achieve the above object, the semiconductor device of the present invention encapsulates a semiconductor element using a thermosetting resin composition containing the following components (A) to (C). Take the configuration. (A) Thermosetting resin. (B) Hardener component. (C) Silica particles having an amount of hydroxyl groups of 5 × 10 −5 mol / g or less and a particle diameter of 0.1 μm or less.

【0006】本発明者らは、一連の研究の過程で、シリ
カ粒子上への硬化剤成分の吸着には、シリカ粒子表面の
水酸基が大きく関与していることを突き止めた。すなわ
ち、水酸基量が少ないシリカを用いた場合、Tgは低下
しないことを見出し、この発明に到達した。
In the course of a series of researches, the present inventors have found out that the hydroxyl groups on the surface of silica particles are largely involved in the adsorption of the curing agent component on the silica particles. That is, the inventors have found that Tg does not decrease when silica having a small amount of hydroxyl groups is used, and arrived at the present invention.

【0007】本発明に用いる熱硬化性樹脂組成物は、熱
硬化性樹脂(A成分)、硬化剤成分(B成分)及び、水
酸基量が5×10-5mol/g以下であり、かつ粒子径
が0.1μm以下であるシリカ粒子(C成分)とを用い
て得られるものであって、通常、液状、粉末状もしく
は、この粉末を打錠したタブレット状になっている。
The thermosetting resin composition used in the present invention comprises a thermosetting resin (component A), a curing agent component (component B), and a hydroxyl group content of 5 × 10 -5 mol / g or less and particles. It is obtained by using silica particles (component C) having a diameter of 0.1 μm or less, and is usually in the form of a liquid, a powder, or a tablet formed by compressing this powder.

【0008】上記熱硬化性樹脂(A成分)としては、特
にエポキシ樹脂が好適であり、ビスフェノ−ル型エポキ
シ樹脂、脂環式エポキシ樹脂、ノボラック型エポキシ樹
脂、など特に限定しないが、光半導体用の透明樹脂とし
ては、ビスフェノ−ル型エポキシ樹脂、脂環式エポキシ
樹脂が好ましい。このようなエポキシ樹脂としては、一
般に、エポキシ当量100〜1000、軟化点120℃
以下のものが用いられる。光半導体用の透明樹脂として
は、前二者のエポキシ樹脂に、他のエポキシ樹脂を併用
しても良いが、その使用割合は、エポキシ樹脂全体の5
0重量%以下に設定するのが好適である。
As the thermosetting resin (component A), an epoxy resin is particularly suitable, and there is no particular limitation such as a bisphenol type epoxy resin, an alicyclic epoxy resin, a novolac type epoxy resin, but for optical semiconductors. The transparent resin is preferably a bisphenol type epoxy resin or an alicyclic epoxy resin. Such an epoxy resin generally has an epoxy equivalent of 100 to 1000 and a softening point of 120 ° C.
The following are used: As the transparent resin for optical semiconductors, other epoxy resins may be used in combination with the former two epoxy resins, but the usage ratio is 5% of the total epoxy resin.
It is preferably set to 0% by weight or less.

【0009】硬化剤成分としては、硬化剤および硬化促
進剤が含まれる。硬化剤としては、アミン系、酸無水物
系、フェノ−ル系硬化剤など特に限定しないが、光半導
体用の透明樹脂としては、好ましくは、酸無水物系硬化
剤が用いられ、その分子量は140〜200程度のもの
が好適である。例えば、ヘキサヒドロ無水フタル酸、テ
トラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタ
ル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラ
ヒドロ無水フタル酸等の無色ないし淡黄色の酸無水物が
挙げられる。上記酸無水物系硬化剤の配合量は、透明性
エポキシ樹脂とともに用いられ、透明性エポキシ樹脂1
00重量部(以下、「部」と略す)に対して、50〜2
00部の範囲に設定することが好ましい。また、硬化触
媒としては、三級アミン、イミダゾ−ル化合物及び有機
金属錯塩等が挙げられる
The curing agent component includes a curing agent and a curing accelerator. The curing agent is not particularly limited, such as amine-based, acid anhydride-based, and phenol-based curing agents, but as the transparent resin for optical semiconductors, an acid anhydride-based curing agent is preferably used, and its molecular weight is Those of about 140 to 200 are suitable. Examples thereof include colorless to pale yellow acid anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. The amount of the acid anhydride-based curing agent blended is used together with the transparent epoxy resin.
50 to 2 parts by weight with respect to 00 parts by weight (hereinafter, abbreviated as "part")
It is preferable to set it in the range of 00 parts. Further, examples of the curing catalyst include tertiary amines, imidazole compounds and organometallic complex salts.

【0010】(C)成分としてのシリカ粒子を得るには
通常、シリカ粒子を高温で処理することにより、表面の
水酸基を少なくすることができる。また、他の方法とし
てはヘキサメチルジシラザン(以下、HMDSという)
あるいはシランカップリング剤で、通常のシリカ粒子表
面の水酸基を処理することで、水酸基量を少なくするこ
とが可能である。さらに、高温処理済みのシリカ粒子を
HMDSあるいはシランカップリング剤で処理すること
で、より効果的に水酸基量を少なくすることも可能であ
る。シランカップリング剤としては、γ−グリシドキシ
プロピルトリメトキシシラン、β−(3.4エポキシシ
クロヘキシル)エチルトリメトキシシラン、γ−アミノ
プロピルトリエトキシシランなどのアルコキシシランな
どが挙げられる。なお処理剤としてのHMDSとシラン
カップリング剤を比較した場合、HMDSの方が好適で
ある。その理由は、HMDSの方が得られる半導体装置
の耐熱性および低応力性に優れるようになるからであ
る。
In order to obtain the silica particles as the component (C), it is usually possible to reduce the number of hydroxyl groups on the surface by treating the silica particles at a high temperature. As another method, hexamethyldisilazane (hereinafter referred to as HMDS)
Alternatively, the amount of hydroxyl groups can be reduced by treating the hydroxyl groups on the surface of ordinary silica particles with a silane coupling agent. Furthermore, it is possible to more effectively reduce the amount of hydroxyl groups by treating the silica particles that have been subjected to high temperature treatment with HMDS or a silane coupling agent. Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, β- (3.4 epoxycyclohexyl) ethyltrimethoxysilane, and alkoxysilanes such as γ-aminopropyltriethoxysilane. When comparing HMDS as a treating agent with a silane coupling agent, HMDS is more preferable. The reason is that the HMDS is more excellent in heat resistance and low stress of the obtained semiconductor device.

【0011】本発明において用いるシリカ粒子は、上述
の如き数値範囲の水酸基量と粒子径を有しているが、こ
の数値範囲を外れると、透明性、耐熱性、低応力性が劣
るという不都合が生ずるからである。
The silica particles used in the present invention have an amount of hydroxyl groups and a particle diameter within the above-mentioned numerical ranges, but if the silica particles are out of these numerical ranges, the transparency, heat resistance and low stress are inferior. Because it will occur.

【0012】なお上記シリカ粒子(C成分)としては、
単独で使っても良いし、通常のシリカと併用しても良
い。その場合も、混在シリカの水酸基量は5×10-5
ol/g以下が好ましく、1×10-5mol/g以下で
あれば、なお好適である。その時の通常シリカの使用割
合は、総シリカ量にたいして50重量%以下が望まし
い。また、その場合のシリカ粒子の総量は、熱硬化性樹
脂組成物全体の10〜90重量%の範囲に設定すること
が望ましい。ただし、シリカの粒子径は、熱硬化性樹脂
組成物が透明封止樹脂の場合は、透明性を保持するため
に、光の波長よりも充分に小さい粒子が必要のため、
0.1μm以下であることが望ましい。なお、光半導体
用透明樹脂の透明性とは、着色透明の場合も含み、硬化
体の厚さ1mm相当で、600nmの波長の光透過率が
80〜100%であるものをいう。(測定は分光光度計
による)。
As the above silica particles (component C),
It may be used alone or in combination with ordinary silica. Even in that case, the amount of hydroxyl groups in the mixed silica is 5 × 10 −5 m
It is preferably ol / g or less, more preferably 1 × 10 −5 mol / g or less. At that time, the normal silica content is preferably 50% by weight or less based on the total silica content. Further, in that case, the total amount of silica particles is preferably set within a range of 10 to 90% by weight of the entire thermosetting resin composition. However, the particle size of silica, when the thermosetting resin composition is a transparent sealing resin, in order to maintain the transparency, it is necessary to have particles sufficiently smaller than the wavelength of light,
It is preferably 0.1 μm or less. The transparency of the transparent resin for optical semiconductors includes the case of being colored and transparent, and means that the cured product has a thickness of 1 mm and the light transmittance at a wavelength of 600 nm is 80 to 100%. (Measurement is by a spectrophotometer).

【0013】シリカの水酸基量は次のような滴定で求め
ることができる。 1.既知量(2g)のシリカ、エタノ−ル10ml、界
面活性剤10重量%水溶液2.5g、および塩化ナトリ
ウム20重量%水溶液140mlを混合し、シリカ分散
液を作製する。界面活性剤はエマルゲン910(花王
(株)製)を使用する。 2.上記シリカ分散液を攪拌しながら0.05N塩酸で
pHを4.00に調製する。 3.次に、0.05N水酸化ナトリウム水溶液をビュレ
ットで徐々に滴下し、pHが9.00を30秒間保つ点
を終点とし、その時の0.05N水酸化ナトリウム水溶
液の消費量から水酸基量を数1により算出する。
The amount of hydroxyl groups of silica can be determined by the following titration. 1. A known amount (2 g) of silica, 10 ml of ethanol, 2.5 g of a 10 wt% aqueous solution of a surfactant, and 140 ml of a 20 wt% aqueous solution of sodium chloride are mixed to prepare a silica dispersion. Emulgen 910 (manufactured by Kao Corporation) is used as the surfactant. 2. While stirring the silica dispersion, the pH is adjusted to 4.00 with 0.05N hydrochloric acid. 3. Next, a 0.05N aqueous solution of sodium hydroxide was gradually added dropwise with a buret, and the point where the pH was kept at 9.00 for 30 seconds was set as the end point. Calculate by

【数1】 X:水酸化ナトリウム水溶液の規定度、上記の場合X=
0.05 Y:水酸化ナトリウム水溶液の滴下量(ml) Z:シリカの質量(g)
[Equation 1] X: normality of sodium hydroxide aqueous solution, in the above case X =
0.05 Y: drop amount of aqueous sodium hydroxide solution (ml) Z: mass of silica (g)

【0014】なお、本発明に用いる熱硬化性樹脂組成物
には、上記(A)〜(C)成分以外に、必要に応じて染
料、変性剤、変色防止剤、老化防止剤、離型剤、反応性
ないし非反応性の希釈剤などの従来公知の添加剤を適宜
配合することができる。
In the thermosetting resin composition used in the present invention, in addition to the above components (A) to (C), if necessary, a dye, a modifier, a discoloration preventing agent, an antiaging agent, a release agent. Conventionally known additives such as a reactive or non-reactive diluent can be appropriately added.

【0015】上記熱硬化性樹脂組成物は、例えば次のよ
うに製造することができる。すなわち、上記各成分の原
料を適宜配合し、予備混合した後、混練機に掛けて混練
して溶融混合する。そして、これを室温に冷却した後、
公知の手段によって、粉砕し、必要に応じて打錠すると
いう一連の工程により製造することができる。熱硬化性
樹脂組成物が液状の場合は、上記各成分を混合するだけ
でよい。ただし、シリカ粒子が超微粒子の場合、特願平
4−116822のようにあらかじめ有機溶媒にシリカ
超微粒子を分散させ、ついでこのシリカ超微粒子の分散
液と樹脂成分を混合させ、その後、脱溶媒するとよい。
The thermosetting resin composition can be produced, for example, as follows. That is, the raw materials of the above components are appropriately blended, premixed, and then put in a kneader to be kneaded and melt-mixed. And after cooling it to room temperature,
It can be manufactured by a series of steps of crushing by known means and tableting if necessary. When the thermosetting resin composition is in a liquid state, it suffices to mix the above components. However, when the silica particles are ultrafine particles, as in Japanese Patent Application No. 4-116822, the silica ultrafine particles are previously dispersed in an organic solvent, then the dispersion liquid of the silica ultrafine particles and the resin component are mixed, and then the solvent is removed. Good.

【0016】このような熱硬化性樹脂組成物を用いて
の、半導体素子の封止は、特に限定するものではなく、
通常のトランスファ−成形、注型などの公知のモ−ルド
方法により行うことができる。
The encapsulation of the semiconductor element using such a thermosetting resin composition is not particularly limited,
It can be carried out by a known molding method such as ordinary transfer molding or casting.

【0017】[0017]

【実施例】以下、実施例を用いて本発明を説明する。 実施例1 粒子径が0.07μmで水酸基量が20×10-5mol
/gであるシリカ超微粒子をHMDSで表面処理するこ
とにより、水酸基量を0.8×10-5mol/gまで減
少させた。このシリカ超微粒子200部、エポキシ当量
185のビスフェノ−ルA型エポキシ樹脂(液状樹脂)
100部、4−メチルヘキサヒドロ無水フタル酸100
部、2−エチル−4−メチルイミダゾ−ル0.4部、お
よび酸化防止剤2.5部を混合し、シリカ超微粒子を含
有するエポキシ樹脂組成物を得た。 実施例2 実施例1のHMDSで表面処理したシリカ超微粒子15
0部、エポキシ当量650のビスフェノ−ルA型エポキ
シ樹脂(固形樹脂)80部、トリグリシジルイソシアヌ
レ−ト(固形樹脂)20部、テトラヒドロ無水フタル酸
44部、2−エチル−4−メチルイミダゾ−ル0.4
部、および酸化防止剤2.5部を混合し、シリカ超微粒
子を含有するエポキシ樹脂組成物を得た。 実施例3 メチルイソブチルケトンに分散した粒子径が0.01μ
mで水酸基量が40×10-5mol/gであるシリカ超
微粒子(溶媒中のシリカ超微粒子は30重量%であっ
た)をHMDSで表面処理することにより、水酸基量を
0.5×10-5mol/gまで減少させた。このシリカ
超微粒子のメチルイソブチルケトン分散液200部にエ
ポキシ当量650のビスフェノ−ルA型エポキシ樹脂4
0部、トリグリシジルイソシアヌレ−ト10部、テトラ
ヒドロ無水フタル酸22部を溶解させた。そして、これ
を減圧して脱溶媒した後、硬化触媒として2−エチル−
4−メチルイミダゾ−ル0.2部、および酸化防止剤
1.2部を混合し、シリカ超微粒子を含有するエポキシ
樹脂組成物を得た。 実施例4 実施例3において表面処理をHMDSからγ−グリシド
キシプロピルトリメトキシシランに変えた以外は同様に
して水酸基量4.6×10-5mol/gのシリカ超微粒
子を得て、実施例3と同様の作業により、シリカ超微粒
子を含有するエポキシ樹脂組成物を得た。 比較例1 実施例1において、シリカをHMDSで表面処理しなか
った。 比較例2 実施例2において、シリカをHMDSで表面処理しなか
った。 比較例3 実施例3において、シリカをHMDSで表面処理しなか
った。
EXAMPLES The present invention will be described below with reference to examples. Example 1 The particle size was 0.07 μm and the amount of hydroxyl groups was 20 × 10 −5 mol.
The amount of hydroxyl groups was reduced to 0.8 × 10 −5 mol / g by surface-treating the ultrafine silica particles having an amount of / g with HMDS. Bisphenol A type epoxy resin (liquid resin) having 200 parts of these ultrafine silica particles and an epoxy equivalent of 185
100 parts, 4-methylhexahydrophthalic anhydride 100
Parts, 2-ethyl-4-methylimidazole 0.4 parts, and antioxidant 2.5 parts were mixed to obtain an epoxy resin composition containing ultrafine silica particles. Example 2 Silica ultrafine particles 15 surface-treated with HMDS of Example 1
0 part, 80 parts of bisphenol A type epoxy resin (solid resin) having an epoxy equivalent of 650, 20 parts of triglycidyl isocyanurate (solid resin), 44 parts of tetrahydrophthalic anhydride, 2-ethyl-4-methylimidazole LE 0.4
Parts and 2.5 parts of an antioxidant were mixed to obtain an epoxy resin composition containing silica ultrafine particles. Example 3 The particle size dispersed in methyl isobutyl ketone is 0.01 μm.
The amount of hydroxyl groups was 0.5 × 10 5 by surface-treating silica ultrafine particles having a hydroxyl group amount of 40 × 10 −5 mol / g in m (the silica ultrafine particles in the solvent was 30% by weight) with HMDS. -5 mol / g. Bisphenol A type epoxy resin 4 having an epoxy equivalent of 650 was added to 200 parts of this methyl ultrabutyl fine particle dispersion of silica.
0 part, 10 parts of triglycidyl isocyanurate and 22 parts of tetrahydrophthalic anhydride were dissolved. Then, this was depressurized to remove the solvent, and 2-ethyl-
0.2 parts of 4-methylimidazole and 1.2 parts of antioxidant were mixed to obtain an epoxy resin composition containing ultrafine silica particles. Example 4 In the same manner as in Example 3, except that the surface treatment was changed from HMDS to γ-glycidoxypropyltrimethoxysilane, ultrafine silica particles having a hydroxyl group amount of 4.6 × 10 −5 mol / g were obtained and carried out. By the same operation as in Example 3, an epoxy resin composition containing ultrafine silica particles was obtained. Comparative Example 1 In Example 1, silica was not surface treated with HMDS. Comparative Example 2 In Example 2, the silica was not surface treated with HMDS. Comparative Example 3 In Example 3, silica was not surface treated with HMDS.

【0018】次に、実施例1〜4及び比較例1〜3で得
られたエポキシ樹脂組成物を用いて、硬化温度150℃
で、LEDを樹脂封止して光半導体装置を作製し、この
光半導体装置の高温での通電輝度劣化を測定した。その
結果を下記の表1に示す。なお、通電輝度劣化の測定
は、次のようにして行った。すなわち、光半導体装置
(LEDデバイス)に定電流を流し、輝度として電流印
加後5秒後の受光素子の出力電流値を求め劣化率を測定
した。測定条件は、評価素子0.5×0.5mmのGa
As、パッケ−ジとしては、直径5mmのパイロットラ
ンプを用い、80℃雰囲気下において、20mA通電の
1000時間後の輝度劣化率である。
Next, using the epoxy resin compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 3, a curing temperature of 150 ° C.
Then, the LED was resin-sealed to fabricate an optical semiconductor device, and the deterioration of energization luminance at high temperature of this optical semiconductor device was measured. The results are shown in Table 1 below. In addition, the measurement of the luminance deterioration by energization was performed as follows. That is, a constant current was passed through the optical semiconductor device (LED device), and the output current value of the light receiving element 5 seconds after the current application was calculated as the luminance and the deterioration rate was measured. The measuring condition is Ga of 0.5 × 0.5 mm evaluation element.
As a package, a pilot lamp having a diameter of 5 mm was used, and the luminance deterioration rate was 1000 hours after energization of 20 mA in an atmosphere of 80 ° C.

【0019】[0019]

【表1】 [Table 1]

【0020】上記表1の結果から、比較例1〜3の樹脂
はTgが低いため、、樹脂の耐熱性が低く、樹脂が熱劣
化で黄変し、樹脂の光透過率が大きく低下したため輝度
が劣化した。それに対し、各実施例は樹脂の耐熱性が高
いので熱劣化もなく、輝度劣化が抑制された。
From the results shown in Table 1 above, the resins of Comparative Examples 1 to 3 have a low Tg, so that the heat resistance of the resins is low, the resins yellow due to thermal deterioration, and the light transmittance of the resins is greatly reduced, resulting in a decrease in luminance. Has deteriorated. On the other hand, in each of the examples, since the heat resistance of the resin was high, there was no heat deterioration and the deterioration of luminance was suppressed.

【0021】[0021]

【発明の効果】以上の如く、本発明においては、水酸基
量5×10-5mol/g以下かつ粒子径0.1μm以下
のシリカ粒子を用いてなる透明封止樹脂組成物により光
半導体素子を封止しているので、得られる光半導体装置
は耐熱性、低応力性および透明性に優れる。なお今迄の
説明では、熱硬化性樹脂として透明封止樹脂を取り上げ
て説明してきたが、本発明の技術思想は樹脂封止半導体
全般の耐熱性、低応力性を良好にするためにも適用可能
であり、従って透明な熱硬化性樹脂以外の熱硬化性樹脂
を用いる場合にも有用である。
As described above, according to the present invention, an optical semiconductor element is formed by a transparent encapsulating resin composition containing silica particles having a hydroxyl group amount of 5 × 10 −5 mol / g or less and a particle diameter of 0.1 μm or less. Since it is sealed, the obtained optical semiconductor device is excellent in heat resistance, low stress and transparency. In the above description, the transparent encapsulating resin was taken as the thermosetting resin for explanation, but the technical idea of the present invention is also applied to improve heat resistance and low stress of resin encapsulating semiconductors in general. It is possible and therefore also useful when using thermosetting resins other than transparent thermosetting resins.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記の(A)〜(C)成分を含む樹脂組
成物を用いて半導体素子を封止してなる半導体装置。 (A)熱硬化性樹脂。 (B)硬化剤成分。 (C)水酸基量が5×10-5mol/g以下であり、か
つ粒子径が0.1μm以下であるシリカ粒子。
1. A semiconductor device obtained by encapsulating a semiconductor element using a resin composition containing the following components (A) to (C). (A) Thermosetting resin. (B) Hardener component. (C) Silica particles having an amount of hydroxyl groups of 5 × 10 −5 mol / g or less and a particle diameter of 0.1 μm or less.
【請求項2】 (C)成分のシリカ粒子がヘキサメチル
ジシラザンあるいはシランカップリング剤でシリカ粒子
を処理してなるものである請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the silica particles as the component (C) are obtained by treating the silica particles with hexamethyldisilazane or a silane coupling agent.
【請求項3】 下記の(A)〜(C)成分を含む半導体
素子封止用熱硬化性樹脂組成物。 (A)熱硬化性樹脂。 (B)硬化剤成分。 (C)水酸基量が5×10-5mol/g以下であリ、か
つ粒子径が0.1μm以下であるシリカ粒子。
3. A thermosetting resin composition for encapsulating a semiconductor device, which contains the following components (A) to (C). (A) Thermosetting resin. (B) Hardener component. (C) Silica particles having an amount of hydroxyl groups of 5 × 10 −5 mol / g or less and a particle diameter of 0.1 μm or less.
【請求項4】 (C)成分のシリカ粒子がヘキサメチル
ジシラザンあるいはシランカップリング剤でシリカ粒子
を処理してなるものである請求項3記載の半導体素子封
止用熱硬化性樹脂組成物。
4. The thermosetting resin composition for encapsulating a semiconductor device according to claim 3, wherein the silica particles as the component (C) are obtained by treating the silica particles with hexamethyldisilazane or a silane coupling agent.
JP4240438A 1992-09-09 1992-09-09 Semiconductor device Expired - Lifetime JP3017888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4240438A JP3017888B2 (en) 1992-09-09 1992-09-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240438A JP3017888B2 (en) 1992-09-09 1992-09-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0689948A true JPH0689948A (en) 1994-03-29
JP3017888B2 JP3017888B2 (en) 2000-03-13

Family

ID=17059498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240438A Expired - Lifetime JP3017888B2 (en) 1992-09-09 1992-09-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3017888B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078871A1 (en) * 1999-06-21 2000-12-28 Daikin Industries, Ltd. Crosslinkable elastomer composition and molded article produced from the composition
JP2008537761A (en) * 2005-04-05 2008-09-25 モーメンティブ・パフォーマンス・マテリアルズ・インク Curing system, adhesive system, and electronic device manufacturing method
WO2009008283A1 (en) * 2007-07-10 2009-01-15 Arakawa Chemical Industries, Ltd. Optical semiconductor-sealing composition
JP2010254951A (en) * 2009-03-31 2010-11-11 Hitachi Chem Co Ltd Liquid resin composition for electronic part, and electronic part device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078871A1 (en) * 1999-06-21 2000-12-28 Daikin Industries, Ltd. Crosslinkable elastomer composition and molded article produced from the composition
JP2008537761A (en) * 2005-04-05 2008-09-25 モーメンティブ・パフォーマンス・マテリアルズ・インク Curing system, adhesive system, and electronic device manufacturing method
WO2009008283A1 (en) * 2007-07-10 2009-01-15 Arakawa Chemical Industries, Ltd. Optical semiconductor-sealing composition
JPWO2009008283A1 (en) * 2007-07-10 2010-09-09 荒川化学工業株式会社 Composition for optical semiconductor encapsulation
US8263686B2 (en) 2007-07-10 2012-09-11 Arakawa Chemical Industries, Ltd. Optical semiconductor-sealing composition
JP2010254951A (en) * 2009-03-31 2010-11-11 Hitachi Chem Co Ltd Liquid resin composition for electronic part, and electronic part device
JP2013147666A (en) * 2009-03-31 2013-08-01 Hitachi Chemical Co Ltd Liquid resin composition for electronic component and electronic component device
JP2014240499A (en) * 2009-03-31 2014-12-25 日立化成株式会社 Liquid resin composition for electronic component and electronic component device
JP2016074918A (en) * 2009-03-31 2016-05-12 日立化成株式会社 Liquid resin composition for electronic component and electronic component device

Also Published As

Publication number Publication date
JP3017888B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US7307286B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JPH0725987A (en) Epoxy resin composition for sealing optical semiconductor
JP3153171B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor
JP2001261933A (en) Epoxy resin for sealing optical semiconductor element and optical semiconductor device
JP4722686B2 (en) Manufacturing method of resin composition for encapsulating optical semiconductor element, resin composition for encapsulating optical semiconductor element and optical semiconductor device obtained thereby
JP2001323135A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP5242530B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device
JP3017888B2 (en) Semiconductor device
JP2009013264A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
JPH06232296A (en) Semiconductor device
JP2796187B2 (en) Optical semiconductor device
JPH0288621A (en) Epoxy resin composition for sealing semiconductor
JP2837478B2 (en) Optical semiconductor device
WO2014199728A1 (en) Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device
JP2703609B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
TWI782155B (en) Epoxy resin composition for encapsulation of semiconductor device and semiconductor device encapsulated using the same
JP6094450B2 (en) White thermosetting epoxy resin composition for LED reflector, and optical semiconductor device including cured product of the composition
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JPH056946A (en) Optical semiconductor device
JPH03237749A (en) Optical semiconductor device
JPH06302726A (en) Thermosetting resin composition
JPS6225686B2 (en)
JPS6070781A (en) Resin seal type light-emitting device
JP3394736B2 (en) Epoxy resin composition and semiconductor device
JPH06283631A (en) Manufacture of thermosetting resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121224

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121224