JPH0564420B2 - - Google Patents

Info

Publication number
JPH0564420B2
JPH0564420B2 JP59171970A JP17197084A JPH0564420B2 JP H0564420 B2 JPH0564420 B2 JP H0564420B2 JP 59171970 A JP59171970 A JP 59171970A JP 17197084 A JP17197084 A JP 17197084A JP H0564420 B2 JPH0564420 B2 JP H0564420B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
equilibrium dissociation
battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59171970A
Other languages
Japanese (ja)
Other versions
JPS6151760A (en
Inventor
Nobuyuki Yanagihara
Hiroshi Kawano
Munehisa Ikoma
Koji Gamo
Yoshio Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59171970A priority Critical patent/JPS6151760A/en
Publication of JPS6151760A publication Critical patent/JPS6151760A/en
Publication of JPH0564420B2 publication Critical patent/JPH0564420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素
吸蔵電極を負極とし、この負極に吸蔵している水
素を正極の酸化物と電気化学的に反応させて電気
エネルギーを発生するアルカリ蓄電池に関する。 従来例の構成とその問題点 従来の鉛一酸化鉛蓄電池、ニツケル−カドミウ
ム蓄電池等の電池は、酸化物電極を持つために、
重量または容積の単位当りのエネルギー貯蔵容量
が比較的低い。そこでエネルギー貯蔵容量の向上
を図るために、負極として可逆的に水素を吸蔵・
放出する水素吸蔵合金を用い、吸蔵した水素を活
物質とする電極が提案されている。たとえば特開
昭51−13934号公報には、水素吸蔵合金として
LaCO5、LaNi5合金などが提案されている。これ
らの水素吸蔵電極は、1種類の水素吸蔵合金から
なつているため、比較的大きな放電容量を有して
いる。しかし、ニツケル正極と組合せて密閉型の
アルカリ蓄電池を構成した場合、LaCo5合金は水
素平衡解離圧力が低いため(LaNi5合金に比べ約
1/30)、水素が水素吸蔵電極内で比較的安定に
存在し、過充電状態で正極から発生する酸素ガス
を水素吸蔵電極と界面で水素吸蔵合金中の水素と
反応して水を生成する機構が円滑に進行しにくい
問題点を有する。一方、LaNi5合金は水素平衡解
離圧力が高いため(LaCO5合金に比べ約30倍、
合金の界面で水素ガスと正極から発生する酸素ガ
スとの反応性は良いが、とくに高温時において充
電しにくい傾向があるためおよび自己放電が大き
いため放電容量が小さくなる。 発明の目的 本発明の目的は、上記に鑑み、負極の放電容量
が大きく、しかも過充電時に正極から発生する酸
素ガスの吸収能力向上を図り、高容量かつ電池内
圧が低く、安全性の高いアルカリ蓄電池を提供す
ることである。 発明の構成 本発明は、水素平衡解離圧力の異なる2種類以
上の水素吸蔵合金粉末又はその水素化物粉末から
なる水素吸蔵電極を用いるものであつて、上記水
素吸蔵合金粉末の中で水素平衡解離圧力が常温
(20℃)で1〜5気圧及び1気圧以下の水素平衡
解離圧力を有する水素吸蔵合金を少なくともそれ
ぞれ1種含有するのが望ましい。また、上記水素
平衡解離圧力の異なる複数の水素吸蔵合金の混合
物粉末において、常温で水素平衡解離圧力が1〜
5気圧の範囲内にある水素吸蔵合金が5重量%か
ら20重量%含有していることが望ましい。 実施例の説明 実施例 1 純度99.5%以上のランタン、ニツケル、コバル
ト金属を用いて、元素比でLa:Niが1:5にな
る配合組成混合物、及び元素比でLa:Ni:Coが
1:3:2になる配合組成混合物を各々アーク溶
解炉にて溶解し、LaNi5、LiNi3Co2合金を製造
した。この各々の合金試料をアルゴン雰囲気のド
ライボツクス中で粉砕し、篩分けして300メツシ
ユ通過の粉末を用意した。ついで、LaNi5合金粉
末AとLaNi3Co2合金粉末Bを各種の配合比で混
合し、この混合粉末に結着剤としてポビニルアル
コールの水溶液を用いてペースト状とし、これを
ニツケルの発泡多孔体に加圧充填し、約200Kg/
cm2の圧力で加圧圧縮後乾燥した。こうして得た電
極を負極とし、公知の焼結式酸化ニツケル正極を
用いて、公称2.0Ah程度に相当する単2型密閉ア
ルカリ蓄電池を2種類ずつ構成した。すなわち容
量測定用は負極律速とし、電池内圧測定用は正極
律速とした。 上記容量測定用の電池を40℃の温度において
0.1c(10時間率で負極容量の130%以上充電した
後、温度40℃から20℃に冷却するため)1日間以
上放置して0.2C(5時間率)で放電し、1.0Vまで
の放電容量を測定した。また温度20℃における充
電電流レート0.1Cから1Cまでの過充電特性を電
圧上昇変化で調べた。各種負極試料は第1表に示
す通りである。 第2表に各種負極試料の放電容量試験結果と過
充電時の電池内圧を示す。電池内圧は正極の理論
容量に対して160%充電した時、各充電率毎に示
したものである。
Industrial Application Field The present invention uses a hydrogen storage electrode that reversibly stores and releases hydrogen as a negative electrode, and generates electrical energy by electrochemically reacting the hydrogen stored in the negative electrode with an oxide on the positive electrode. Regarding alkaline storage batteries. Structure of conventional examples and their problems Because conventional batteries such as lead monoxide batteries and nickel-cadmium batteries have oxide electrodes,
Relatively low energy storage capacity per unit of weight or volume. Therefore, in order to improve energy storage capacity, hydrogen can be reversibly absorbed and used as a negative electrode.
Electrodes have been proposed that use hydrogen storage alloys that release hydrogen and use the stored hydrogen as an active material. For example, in Japanese Patent Application Laid-Open No. 13934/1986, there is
LaCO 5 and LaNi 5 alloys have been proposed. Since these hydrogen storage electrodes are made of one type of hydrogen storage alloy, they have a relatively large discharge capacity. However, when a sealed alkaline storage battery is constructed in combination with a nickel positive electrode, the LaCo 5 alloy has a low hydrogen equilibrium dissociation pressure (approximately 1/30 compared to the LaNi 5 alloy), so hydrogen is relatively stable within the hydrogen storage electrode. The problem is that the mechanism in which oxygen gas generated from the positive electrode in an overcharged state reacts with hydrogen in the hydrogen storage alloy at the interface with the hydrogen storage electrode to generate water does not proceed smoothly. On the other hand, LaNi 5 alloy has a high hydrogen equilibrium dissociation pressure (approximately 30 times that of LaCO 5 alloy,
Although the reactivity between hydrogen gas and oxygen gas generated from the positive electrode is good at the interface of the alloy, it tends to be difficult to charge, especially at high temperatures, and because self-discharge is large, the discharge capacity is small. Purpose of the Invention In view of the above, the object of the present invention is to provide a highly safe alkaline battery with a large negative electrode discharge capacity and an improved ability to absorb oxygen gas generated from the positive electrode during overcharging. The purpose is to provide storage batteries. Structure of the Invention The present invention uses a hydrogen storage electrode made of two or more types of hydrogen storage alloy powders or hydride powders thereof having different hydrogen equilibrium dissociation pressures. It is desirable that the hydrogen storage alloy contains at least one hydrogen storage alloy having a hydrogen equilibrium dissociation pressure of 1 to 5 atm and 1 atm or less at room temperature (20° C.). In addition, in the above-mentioned powder mixture of a plurality of hydrogen storage alloys having different hydrogen equilibrium dissociation pressures, the hydrogen equilibrium dissociation pressures are 1 to 1 at room temperature.
Preferably, the hydrogen storage alloy contains 5% to 20% by weight of a hydrogen storage alloy with a pressure range of 5 atm. Description of Examples Example 1 Using lanthanum, nickel, and cobalt metals with a purity of 99.5% or more, a composition mixture with an elemental ratio of La:Ni of 1:5 and an elemental ratio of La:Ni:Co of 1: LaNi 5 and LiNi 3 Co 2 alloys were produced by melting each of the 3:2 composition mixtures in an arc melting furnace. Each of the alloy samples was ground in a dry box in an argon atmosphere and sieved to prepare a powder that could pass through 300 meshes. Next, LaNi 5 alloy powder A and LaNi 3 Co 2 alloy powder B are mixed at various blending ratios, and this mixed powder is made into a paste using an aqueous solution of povinyl alcohol as a binder. Pressurized filling to the body, approximately 200Kg/
It was compressed and dried at a pressure of cm 2 . Using the thus obtained electrode as a negative electrode and a known sintered nickel oxide positive electrode, two types of AA sealed alkaline storage batteries each having a nominal capacity of about 2.0 Ah were constructed. That is, the negative electrode was rate-limiting for capacity measurement, and the positive electrode was rate-limiting for measuring battery internal pressure. The above battery for capacity measurement was placed at a temperature of 40℃.
0.1C (to cool down from 40℃ to 20℃ after charging over 130% of the negative electrode capacity at a 10 hour rate) Leave it for more than 1 day and discharge at 0.2C (5 hour rate) until it reaches 1.0V. Capacity was measured. In addition, the overcharge characteristics at a charging current rate of 0.1C to 1C at a temperature of 20℃ were investigated by changing the voltage increase. Various negative electrode samples are shown in Table 1. Table 2 shows the discharge capacity test results of various negative electrode samples and the battery internal pressure during overcharging. The internal pressure of the battery is shown for each charging rate when the battery is charged to 160% of the theoretical capacity of the positive electrode.

【表】 なおLaNi5合金は温度25℃で水素平衡解離圧力
は2気圧であり、平衡解離圧力の高い合金であ
る。 一方、LaNi3Co2合金は温度25℃で0.3気圧であ
り、平衡解離圧力の低い合金である。
[Table] The LaNi 5 alloy has a hydrogen equilibrium dissociation pressure of 2 atm at a temperature of 25°C, and is an alloy with a high equilibrium dissociation pressure. On the other hand, LaNi 3 Co 2 alloy has a low equilibrium dissociation pressure of 0.3 atm at a temperature of 25°C.

【表】 第2表からわかる様に、従来型の合金単体を負
極とした電池No.1は、水素平衡解離圧力の低い材
料のみを用いているため、容量は大きいが、電池
内圧は0.1〜1.0Cにおいて、3.7〜8.2Kg/cm2と非常
に高い値を示す。一方電池No.8は水素平衡解離圧
力の高い材料のみを用いているため、同じ範囲で
電池内圧は1.5〜4.5Kg/cm2と低い反面、電池容量
が小さい。この場合、周囲温度が0℃以下になる
と、水素平衡解離圧力の低い水素吸蔵電極は益々
反応性が乏しくなり、放電容量が小さくなる。常
温(20℃)以上では水素平衡解離圧力が高くなる
ので、放電容量は大きくなるが、初期段階ではま
だ酸素ガス吸収が不十分で、電池内圧が上昇す
る。とくに水素平衡解離圧力の低い合金程、初期
活性(酸素ガスの吸収作用)がよくなり、充・放
電サイクルをくりかえすと電池内圧は低い方にシ
フトする。一方、水素平衡解離圧力が高い場合は
充電中の酸素ガスの吸収は初期において優れる
が、水素吸蔵速度がやや悪く、しかも自己放電が
大きいため、放電容量が小さくなる。しかも容量
が正規通り出るようになると、逆に水素ガスの蓄
積が進み、電池内圧が上昇する傾向にある。した
がつて、実用的に電池容量と電池内圧の両方を比
較的満足する電池はNo.3〜5である。水素平衡解
離圧力の異なる合金でも比較的水素平衡解離圧力
の低い範囲の合金を混合することによつて、単体
よりは実用範囲の拡大ができると共に、とくにそ
の中でも水素平衡解離圧力の高い方の合金の割合
は5〜20重量%が実用状優れている。 実施例 2 次に水素平衡解離圧力が実施例1より高い範囲
の合金を混合する場合を示す。即ちこの場合は、
周囲温度が10℃以下のように低い場合を意味す
る。 純度99.5%以上の、ミツシユメタル(Mm;希
土類元素の混合物)、ランタン、カルシウム、ニ
ツケル金属を用いて、元素比でMm:Ca:Niが
0.5:0.5:5になる配合組成混合物、及び元素比
でLa:Ca:Niが0.5:0.5:5になる配合組成混
合物を各々高周波溶解炉にて溶解し、Mm0.5Ca0.5
Ni5、La0.5Ca0.5Ni5合金を製造した。 Mm0.5Ca0.5Ni5合金は水素平衡解離圧力の高い材
料であり(温度20℃で水素平衡解離圧力は6気
圧、La0.5Ca0.5Ni5合金は低い材料(温度20℃で水
素平衡解離圧力は約0.8気圧)である。これらの
合金を第3表に示すような割合で混合した負極を
用いて、実施例1と同様にして電池を構成した。
負極容量測定用の電池では10℃の温度において、
0.1(10時間率)で負極容量の130℃充電した後、
温度10℃から20℃になるまで1日間以上放置し
て、0.2C(5時間率)で放電し、1.0Vまでの放電
容量を測定した。また、温度20℃における充電電
流レート0.1Cから1Cまでの過充電特性を電圧上
昇変化で調べた。電池内圧は正極の理論容量の
160%充電した時、各充電率毎に示したものであ
る。その結果を第4表に示す。
[Table] As can be seen from Table 2, battery No. 1, which uses a conventional alloy as a negative electrode, has a large capacity because it uses only materials with low hydrogen equilibrium dissociation pressure, but the internal pressure of the battery is 0.1~ At 1.0C, it shows a very high value of 3.7 to 8.2Kg/ cm2 . On the other hand, since battery No. 8 uses only materials with a high hydrogen equilibrium dissociation pressure, the battery internal pressure is low at 1.5 to 4.5 Kg/cm 2 in the same range, but the battery capacity is small. In this case, when the ambient temperature becomes 0° C. or lower, a hydrogen storage electrode with a low hydrogen equilibrium dissociation pressure becomes increasingly less reactive and has a smaller discharge capacity. At room temperature (20°C) or above, the hydrogen equilibrium dissociation pressure increases, so the discharge capacity increases, but at the initial stage oxygen gas absorption is still insufficient and the internal pressure of the battery increases. In particular, the lower the hydrogen equilibrium dissociation pressure of an alloy, the better the initial activity (oxygen gas absorption effect), and the internal pressure of the battery will shift to a lower side when charge/discharge cycles are repeated. On the other hand, when the hydrogen equilibrium dissociation pressure is high, absorption of oxygen gas during charging is excellent at the initial stage, but the hydrogen absorption rate is somewhat slow and self-discharge is large, resulting in a small discharge capacity. Moreover, when the capacity is returned to normal, hydrogen gas accumulates and the internal pressure of the battery tends to rise. Therefore, batteries Nos. 3 to 5 have relatively satisfactory battery capacity and battery internal pressure in practical terms. By mixing alloys with relatively low hydrogen equilibrium dissociation pressures, even among alloys with different hydrogen equilibrium dissociation pressures, the practical range can be expanded compared to single materials, and in particular, the alloy with a higher hydrogen equilibrium dissociation pressure can be mixed. A ratio of 5 to 20% by weight is excellent in practical use. Example 2 Next, a case where an alloy having a hydrogen equilibrium dissociation pressure higher than that of Example 1 is mixed will be described. That is, in this case,
This means when the ambient temperature is as low as 10℃ or less. Using Mitsushi metal (Mm; a mixture of rare earth elements), lanthanum, calcium, and nickel metal with a purity of 99.5% or higher, the elemental ratio is Mm:Ca:Ni.
A composition mixture with a composition ratio of 0.5:0.5:5 and a composition composition mixture with an element ratio of La:Ca:Ni of 0.5:0.5:5 are respectively melted in a high frequency melting furnace to obtain Mm 0.5 Ca 0.5
A Ni 5 , La 0.5 Ca 0.5 Ni 5 alloy was produced. The Mm 0.5 Ca 0.5 Ni 5 alloy is a material with a high hydrogen equilibrium dissociation pressure (at a temperature of 20°C, the hydrogen equilibrium dissociation pressure is 6 atm), and the La 0.5 Ca 0.5 Ni 5 alloy is a material with a low hydrogen equilibrium dissociation pressure (at a temperature of 20°C, the hydrogen equilibrium dissociation pressure is 6 atm). (approximately 0.8 atm).A battery was constructed in the same manner as in Example 1 using a negative electrode in which these alloys were mixed in the proportions shown in Table 3.
In batteries for negative electrode capacity measurement, at a temperature of 10℃,
After charging at 130℃ of negative electrode capacity at 0.1 (10 hour rate),
The battery was left for more than one day until the temperature reached 10°C to 20°C, and discharged at 0.2C (5 hour rate), and the discharge capacity up to 1.0V was measured. In addition, the overcharging characteristics at a charging current rate of 0.1C to 1C at a temperature of 20℃ were investigated by changing the voltage increase. The battery internal pressure is the theoretical capacity of the positive electrode.
The figures are shown for each charging rate when the battery is charged to 160%. The results are shown in Table 4.

【表】【table】

【表】 第4表からもわかる様に、実施例1の結果と同
じ傾向にあり、水素平衡解離圧力の相対的な差異
を利用することによつて、電池容量と充電時の電
池内圧の改善を図ることができる。 実施例で示したように、水素平衡解離圧力が1
〜5気圧及び1気圧以下の水素吸蔵合金を少なく
ともそれぞれ1種含有すると電池性能がよくなる
ことがわかる。また、常温で水素平衡解離圧力が
1〜5気圧の範囲内にある水素吸蔵合金が5〜20
重量%含有していると、とくに実用上の電池性能
が優れている。水素平衡解離圧力が常温で10気圧
以上ある合金材料は、高温時の充電が殆んどでき
なくて、逆に水素発生が優先して負極からおきる
と共に、正極から発生する酸素ガスの負極での吸
収能も十分発揮しなくなる。1から5気圧の範囲
内にある合金がとくに実用上望ましい。各実施例
では1気圧を境界して20℃で1気圧より高い合金
とそれより低い合金に分けたものを示した。実施
例1は周囲温度が高い場合を想定した実施例であ
り、実施例2は周囲温度が低い場合を想定した実
施例である。また、各実施例では2種類の混合物
を用いたが、さらに他の合金系を用いてもよい。
また、水素平衡解離圧力の異なる3種以上を用い
ても同じ効果が期待できる。 実施例では、水素吸蔵合金を出発材料として負
極を構成したが、この負極の充電時には合金は大
半が水素化物に変化するので、前もつて水素化物
の型で負極を製造し、電池をLaNi5-xMx系合金、
CaNi5-xMx系合金(M:遷移金属)はCaCu型六
方晶構造を有する合金系であり、同じ結晶構造を
持つている。したがつて、単に類似した水素平衡
解離圧力の合金を単に混合しただけではその相乗
効果が少なく合金単独の効果しか出ない。合金粒
子の表面から水素が出たり、入つたりする場合、
常温(20℃)において1気圧の雰囲気が重要であ
る。雰囲気が1気圧以上になると合金粒子の表面
から水素が出やすい状態にあり、充電中に正極か
ら発生する酸素により合金を酸化させることがな
く、水素と反応して水を形成する。このために電
池内圧力の急激な上昇を抑制することができる。 発明の効果 以上のように、本発明のアルカリ蓄電池は、放
電容量も比較的大きく、密内型電池においては、
充放電時のガス発生も少なく、電池内圧の上昇を
抑制することができる。
[Table] As can be seen from Table 4, the results are the same as those of Example 1, and by utilizing the relative difference in hydrogen equilibrium dissociation pressure, battery capacity and battery internal pressure during charging can be improved. can be achieved. As shown in the examples, when the hydrogen equilibrium dissociation pressure is 1
It can be seen that the battery performance improves when at least one hydrogen storage alloy is contained at ~5 atm and at least 1 atm. In addition, hydrogen storage alloys whose hydrogen equilibrium dissociation pressure is in the range of 1 to 5 atm at room temperature are 5 to 20
When the content is % by weight, the practical battery performance is particularly excellent. Alloy materials with a hydrogen equilibrium dissociation pressure of 10 atmospheres or more at room temperature are hardly able to be charged at high temperatures; on the contrary, hydrogen generation takes priority from the negative electrode, and at the same time oxygen gas generated from the positive electrode is absorbed by the negative electrode. Absorption capacity is also not fully exerted. Alloys in the range of 1 to 5 atmospheres are particularly desirable for practical purposes. In each example, alloys with a temperature higher than 1 atm and alloys with a lower temperature at 20°C are shown, with the boundary being 1 atm. Example 1 is an example assuming a case where the ambient temperature is high, and Example 2 is an example assuming a case where the ambient temperature is low. Moreover, although two types of mixtures were used in each example, other alloy systems may also be used.
Moreover, the same effect can be expected even if three or more types having different hydrogen equilibrium dissociation pressures are used. In the example, the negative electrode was constructed using a hydrogen storage alloy as a starting material, but when this negative electrode is charged, most of the alloy changes to hydride, so the negative electrode was previously manufactured in the hydride type, and the battery was made of LaNi 5 . -x M x alloy,
CaNi 5-x M x alloy (M: transition metal) is an alloy having a CaCu-type hexagonal crystal structure, and has the same crystal structure. Therefore, if alloys having similar hydrogen equilibrium dissociation pressures are simply mixed together, the synergistic effect will be small and only the effect of the alloys alone will be produced. When hydrogen exits or enters the surface of alloy particles,
An atmosphere of 1 atm at room temperature (20°C) is important. When the atmosphere is 1 atm or more, hydrogen is likely to come out from the surface of the alloy particles, and the alloy is not oxidized by oxygen generated from the positive electrode during charging, but reacts with hydrogen to form water. Therefore, it is possible to suppress a sudden increase in the internal pressure of the battery. Effects of the Invention As described above, the alkaline storage battery of the present invention has a relatively large discharge capacity, and in a closed battery,
There is also less gas generation during charging and discharging, and an increase in battery internal pressure can be suppressed.

Claims (1)

【特許請求の範囲】 1 水素平衡解離圧力の異なる複数の水素吸蔵合
金またはその水素化合物からなる水素吸蔵電極を
用いたアルカリ蓄電池において、水素吸蔵電極が
常温で1〜5気圧及び1気圧以下の水素平衡解離
圧力を有する水素吸蔵合金を少なくともそれぞれ
1種含有するアルカリ蓄電池。 2 水素吸蔵合金またはその水素化物の混合物に
おいて、常温で水素平衡解離圧力が1〜5気圧の
範囲内にある水素吸蔵合金またはその水素化物の
比率が5重量%から20重量%である特許請求の範
囲第1項記載のアルカリ蓄電池。
[Scope of Claims] 1. In an alkaline storage battery using a hydrogen storage electrode made of a plurality of hydrogen storage alloys or hydrogen compounds thereof having different hydrogen equilibrium dissociation pressures, the hydrogen storage electrode has a hydrogen storage capacity of 1 to 5 atmospheres and 1 atmosphere or less at room temperature. An alkaline storage battery each containing at least one hydrogen storage alloy having an equilibrium dissociation pressure. 2. A patent claim in which the hydrogen storage alloy or its hydride mixture has a hydrogen equilibrium dissociation pressure of 1 to 5 atm at normal temperature, or the proportion of its hydride is 5% to 20% by weight. The alkaline storage battery according to scope 1.
JP59171970A 1984-08-18 1984-08-18 Alkaline storage battery Granted JPS6151760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171970A JPS6151760A (en) 1984-08-18 1984-08-18 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171970A JPS6151760A (en) 1984-08-18 1984-08-18 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6151760A JPS6151760A (en) 1986-03-14
JPH0564420B2 true JPH0564420B2 (en) 1993-09-14

Family

ID=15933126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171970A Granted JPS6151760A (en) 1984-08-18 1984-08-18 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6151760A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554456A (en) * 1994-06-14 1996-09-10 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734678Y2 (en) * 1976-09-07 1982-07-30

Also Published As

Publication number Publication date
JPS6151760A (en) 1986-03-14

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
EP0383991B1 (en) Alkaline storage battery using hydrogen absorbing alloy
JPH0586029B2 (en)
JP2752970B2 (en) Hydrogen storage electrode
JP2965475B2 (en) Hydrogen storage alloy
US5532076A (en) Hydrogen storage alloy and electrode therefrom
JP3598665B2 (en) Active materials for batteries and batteries
JPH0564420B2 (en)
JPS61214361A (en) Sealed alkaline storage battery
JP2713881B2 (en) Sealed metal oxide / hydrogen battery
JPH0690922B2 (en) Sealed alkaline storage battery
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPH0690924B2 (en) Storage battery electrode
JPS6119062A (en) Hydrogen occlusion electrode
JP2679441B2 (en) Nickel-metal hydride battery
JPH04176833A (en) Hydrogen storage alloy electrode
JPS63166146A (en) Hydrogen storage electrode
JPS6145562A (en) Alkaline storage battery
JPH0582127A (en) Enclosed type nickel-metal hydride storage battery
JPS62108458A (en) Nickel-hydrogen secondary cell
JPH09129227A (en) Nickel-hydrogen storage battery
JPS61168871A (en) Hydrogen occlusion electrode
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH0794176A (en) Hydrogen storage electrode
JPS5945190B2 (en) Hydrogen storage electrode