JPS5945190B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPS5945190B2
JPS5945190B2 JP51145784A JP14578476A JPS5945190B2 JP S5945190 B2 JPS5945190 B2 JP S5945190B2 JP 51145784 A JP51145784 A JP 51145784A JP 14578476 A JP14578476 A JP 14578476A JP S5945190 B2 JPS5945190 B2 JP S5945190B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
electrode
value
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51145784A
Other languages
Japanese (ja)
Other versions
JPS5370025A (en
Inventor
伸行 柳原
正一 池山
勉 岩城
良夫 森脇
孝治 蒲生
敏夫 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51145784A priority Critical patent/JPS5945190B2/en
Publication of JPS5370025A publication Critical patent/JPS5370025A/en
Publication of JPS5945190B2 publication Critical patent/JPS5945190B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は水素吸蔵電極、特にこの電極に吸蔵している水
素を酸素と電気化学反応させて電気エネルギーを発生す
る蓄電池に用いられる陰極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a hydrogen storage electrode, particularly a cathode used in a storage battery that generates electrical energy by electrochemically reacting hydrogen stored in the electrode with oxygen.

従来の鉛−酸化鉛蓄電池、ニッケル−カドミウム蓄電池
等の電池は、酸化物電極を持つために、重量または容積
の単位当たりのエネルギー貯蔵容量が比較的低い。
Batteries such as conventional lead-lead oxide batteries, nickel-cadmium batteries, etc. have relatively low energy storage capacity per unit of weight or volume due to their oxide electrodes.

そこでエネルギー貯蔵容量の向上を図るために、陰極と
して、水素を吸蔵する電極が提案されている。例えば特
開昭51−13934号公報には水素吸収材組成物とし
て、LhM3合金が提案されている。Lnはランタナム
からルテチウム(原子番号57〜71)を含むランタニ
ド金属の1つあるい林混合物でありうる。Mはニッケル
、コバルトあるいは両者の混合物のいずれかを示す。こ
の種のLn系合金は非常に高価であり、従つて放電容量
が大きく、製造が比較的容易で、もつと安価な陰極材料
が望まれている。本発明の目的は、上記に鑑み、安価で
かつ放電容量の大きい水素吸蔵陰極を提供することであ
る。
Therefore, in order to improve the energy storage capacity, an electrode that absorbs hydrogen has been proposed as a cathode. For example, JP-A-51-13934 proposes LhM3 alloy as a hydrogen absorbent composition. Ln can be one or a mixture of lanthanide metals from lanthanum to lutetium (atomic numbers 57-71). M represents either nickel, cobalt or a mixture of both. This type of Ln-based alloy is very expensive, and therefore a cathode material that has a large discharge capacity, is relatively easy to manufacture, and is also inexpensive is desired. In view of the above, an object of the present invention is to provide a hydrogen storage cathode that is inexpensive and has a large discharge capacity.

本発明の水素吸蔵電極は、水素を吸蔵する合金として、
式CaxNi3(ただし、xは0.85〜1.15)で
表される合金を用いるもので、LnM、合金、例えばL
aNi6と比較して安価で、しかも水素吸蔵能が大きい
特徴を有する。以下本発明を実施例により説明する。
The hydrogen storage electrode of the present invention includes, as an alloy that stores hydrogen,
It uses an alloy represented by the formula CaxNi3 (where x is 0.85 to 1.15), and LnM, an alloy such as L
Compared to aNi6, it is cheaper and has a higher hydrogen storage capacity. The present invention will be explained below with reference to Examples.

第1図は合金CaxNi6の組成と20±2℃における
水素吸蔵量との関係を示す。
FIG. 1 shows the relationship between the composition of alloy CaxNi6 and the amount of hydrogen storage at 20±2°C.

xの値はCaの原子数を示し、x値を0.8から1.3
まで増加させた場合、水素吸蔵量は約150Tnt/g
から225ゴ2夕に増加している、LaNi、合金の場
合は約160Tlij8ク程度である。第2図は各合金
組成における放電容量を示す。
The value of x indicates the number of Ca atoms, and the value of x is 0.8 to 1.3.
If the hydrogen storage capacity is increased to approximately 150Tnt/g
In the case of LaNi and alloys, it is about 160Tlij8k. Figure 2 shows the discharge capacity for each alloy composition.

ニッケル(5原子)に対してカルシウムが0.8原子の
CaO、8Nisの合金組成を持つ電極は合金活物質l
g当たりの放電容量がO、133Ah/gである。同様
にx値0.9、1.0、1.1、1.211.3の合金
組成を持つ電極は、合金活物質1’当たりの放電容量が
それぞれO、3、O、35、O、3、O、22。0.1
2Ah/gとなり、xの値が1.0付近で、放電容量は
最大値を示す。
The electrode has an alloy composition of CaO and 8Nis, where calcium is 0.8 atoms relative to nickel (5 atoms), and the alloy active material l
The discharge capacity per gram is O, 133Ah/g. Similarly, electrodes with alloy compositions with x values of 0.9, 1.0, 1.1, and 1.211.3 have discharge capacities per 1' of alloy active material of O, 3, O, 35, O, and O, respectively. 3, O, 22.0.1
2Ah/g, and the discharge capacity reaches its maximum value when the value of x is around 1.0.

カルシウムの量によつて、第2図の様に放電容量に山が
できるのは次の様な理由によるものと考えられる。
The reason why peaks are formed in the discharge capacity as shown in FIG. 2 depending on the amount of calcium is considered to be due to the following reasons.

まずX線回析の結果、x=0.8〜1.1の範囲では結
晶構造として六方晶系のCacu5型のみが検出された
が、x=1.2〜1.3の範囲では混晶が見られた。即
ち、CaCu,型以外の結晶構造ができていることを意
味する。一方、水素吸蔵成分と平衡圧力の関係から平坦
な平衡圧力の幅は、xの値が1.1より大きくなると小
さくなつてくる。これは、明らかにCacu5型の結晶
構造が減小して、他の結晶構造が増大しているものと考
えられる。従つて、xの値が増大するにつれて水素吸蔵
量は増加しても、常温、常圧における水素の放出量は減
小することになる。つまり一度吸蔵した水素は容易に放
出しなくなる、従つて、蓄電池を放電する時、水素の放
出量が減少し、電極容量が低下することになる。又、x
の値が0.8〜1.0の組成範囲では、水素吸蔵成分と
平衡圧力の関係から平担な平衡圧力の幅が、xの値が0
.8より大きくなるに従つて大きくなつてくる。このこ
とは明らかに、CaCu,型の結晶構造が徐々にシヤー
プになつていくものと考えられる。従つて、xの値が0
.8から1.0に増加するにつれて、常温、常圧におけ
る水素の放出量も増加することになる。xの値が0.8
の時は、水素吸蔵量が少ないので、当然電極容量も低い
。水素吸蔵量の増加と共に電極容量も増加し、その値が
1.0の時、放電容量は最大となる。一般にアルカリ蓄
電池の陰極としての放電容量は0.25AV9以上でな
いと、実用電池としての特徴がない。
First, as a result of X-ray diffraction, only the hexagonal Cacu5 type crystal structure was detected in the range of x = 0.8 to 1.1, but the mixed crystal structure in the range of x = 1.2 to 1.3. It was observed. That is, it means that a crystal structure other than CaCu type is formed. On the other hand, due to the relationship between the hydrogen storage component and the equilibrium pressure, the width of the flat equilibrium pressure becomes smaller when the value of x becomes larger than 1.1. This is considered to be due to a clear decrease in the Cacu5 type crystal structure and an increase in other crystal structures. Therefore, even though the amount of hydrogen storage increases as the value of x increases, the amount of hydrogen released at room temperature and pressure decreases. In other words, once the hydrogen is occluded, it is not easily released. Therefore, when the storage battery is discharged, the amount of hydrogen released decreases, and the electrode capacity decreases. Also, x
In the composition range where the value of
.. As it becomes larger than 8, it becomes larger. This clearly indicates that the CaCu type crystal structure gradually becomes sharper. Therefore, the value of x is 0
.. As the ratio increases from 8 to 1.0, the amount of hydrogen released at normal temperature and pressure also increases. The value of x is 0.8
When , the amount of hydrogen storage is small, so naturally the electrode capacity is also low. As the amount of hydrogen storage increases, the electrode capacity also increases, and when the value is 1.0, the discharge capacity is maximum. Generally, an alkaline storage battery has no characteristics as a practical battery unless its discharge capacity as a cathode is 0.25AV9 or more.

CaxNi,合金においては、第2図から明らかなよう
にxの値が0.85〜1.15まで即ち、ニツケル1原
子に対してカルシウム0.17〜0.23原子比の範囲
が有効な合金組成範囲であり、上記条件を十分に満たす
ことができる。実施例 1純度99.5%以上のカルシ
ウム金属と、純度99.5(F6以上のニツケル金属と
をCaxNi,のx値が0.8,0.9,1.0,1.
1,1.2,1.3となるようにそれぞれ混合してアー
ク溶解炉に入れ、10−4〜10−5t0rr.まで真
空吸引した後アルゴンガスを入れゲージ圧401<g/
c$N,Oの状態で溶解させる。
For CaxNi alloys, as is clear from Figure 2, the alloy is effective when the value of x is in the range of 0.85 to 1.15, that is, in the range of 0.17 to 0.23 atomic ratio of calcium to 1 atom of nickel. Within the composition range, the above conditions can be fully satisfied. Example 1 Calcium metal with a purity of 99.5% or higher and nickel metal with a purity of 99.5% or higher (CaxNi) with x values of 0.8, 0.9, 1.0, 1.
1, 1.2, and 1.3, respectively, and put them into an arc melting furnace and melt them at 10-4 to 10-5 t0rr. After vacuuming to
Dissolve in the state of c$N,O.

試料は数回反転させ、合金組成の均質化を図つた。こう
して得たボタン状の合金試料をアルゴン雰囲気中のドラ
イボツクス中で粉砕し、ふるい分けして粒度約40μ以
下のものを用意した。
The sample was inverted several times to homogenize the alloy composition. The button-shaped alloy sample thus obtained was crushed in a dry box in an argon atmosphere and sieved to prepare particles with a particle size of about 40 μm or less.

このCalCNi5合金粉末に結着剤としての弗素樹脂
の水性デイスパージヨンを固形分で10重量%混和して
ペースト状となし、これをニツケルの発泡体に加圧充填
し、約200幀温の圧力で加圧して電極とした。この電
極の大きさは40×40鼎,厚さ111であり、活物質
である前記合金粉末の充填量は約39である。第3図は
上記の電極を陰極とL公知の酸化ニツケル電極を陽極と
して組み合わせた蓄電池を示す。
This CalCNi5 alloy powder is mixed with an aqueous dispersion of fluororesin as a binder at a solid content of 10% by weight to form a paste, which is then pressure-filled into a nickel foam and heated to a pressure of about 200 degrees. Pressure was applied to form an electrode. The size of this electrode is 40 x 40 mm and the thickness is 111 mm, and the amount of the alloy powder, which is the active material, is about 39 mm. FIG. 3 shows a storage battery in which the above electrode is combined as a cathode and a known nickel oxide electrode as an anode.

図中1は陽極、2は陰極、3はセパレータ、4はアルカ
リ電解液、5は電槽、6は陽極端子、7は陰極端子、8
は注液口である。この電池の陰極として前記組成の異な
る CaxNi5合金を用いた電極を使用して充放電し、1
00mAの放電々流で放電容量を測定した結果、次のよ
うなことがわかつた。
In the figure, 1 is an anode, 2 is a cathode, 3 is a separator, 4 is an alkaline electrolyte, 5 is a battery container, 6 is an anode terminal, 7 is a cathode terminal, 8
is the liquid injection port. The battery was charged and discharged using an electrode using a CaxNi5 alloy having a different composition as the cathode.
As a result of measuring the discharge capacity with a discharge current of 00 mA, the following was found.

即ち、第2図でわかる様に、CaxNi5合金組成にお
いて、xの値が増加するにつれて合金の単位重量当たり
の放電容量は増加し、xの値が1.0の時最大放電容量
0.35AレTを示し、更にXの値が増加すると、逆に
、放電容量は減少した。アルカリ蓄電池陰極としての放
電容量は0.25Ah/f!以上でないと、実用電池と
しての特徴がないが、CaxNi,合金においては、x
の値0.85〜1.15が有効な合金組成範囲であり、
蓄電池の電極に使用するに極めて有利である。
That is, as shown in Figure 2, in the CaxNi5 alloy composition, as the value of x increases, the discharge capacity per unit weight of the alloy increases, and when the value of x is 1.0, the maximum discharge capacity is 0.35A. T, and as the value of X further increased, on the contrary, the discharge capacity decreased. The discharge capacity as an alkaline storage battery cathode is 0.25Ah/f! If it is not above, it has no characteristics as a practical battery, but in CaxNi, alloy, x
A value of 0.85 to 1.15 is an effective alloy composition range,
It is extremely advantageous for use in storage battery electrodes.

また合金材料もLn系材料と比較して安価である。例え
ばCa,.ONi,合金はLaNi,合金の尾以下の価
格である。また水素吸蔵速度も早く、比較的軽量であり
、LaNi系合金と比較して30〜60%軽い電極を構
成することができる。またLaNi.合金の放電容量は
約0.17AVSであり、CaONi,合金の最大放電
容量の約1A程度である。この様に、本発明によれば、
高い可逆容量について実用上重要な効果が得られ、比較
的安価で軽量な蓄電池を提供することができる。実施例
2 実施例1と同様にして合金粉末の充填量約20g1大き
さ80X80m1L1厚さ1.51!の電極を作り、こ
れを水素極とし、酸素極と組み合わせて酸素一水素燃料
電池発電装置を構成した。
Furthermore, alloy materials are also less expensive than Ln-based materials. For example, Ca, . ONi, an alloy, is less expensive than LaNi, an alloy. Furthermore, it has a fast hydrogen absorption rate and is relatively lightweight, allowing an electrode to be constructed that is 30 to 60% lighter than a LaNi alloy. Also LaNi. The discharge capacity of the alloy is about 0.17 AVS, which is about 1 A, which is the maximum discharge capacity of the CaONi alloy. Thus, according to the present invention,
A practically important effect of high reversible capacity can be obtained, and a relatively inexpensive and lightweight storage battery can be provided. Example 2 In the same manner as in Example 1, the amount of alloy powder packed was about 20 g, the size was 80 x 80 m, the length was 1.51 cm, and the thickness was 1.51 cm! We created an electrode, used it as a hydrogen electrode, and combined it with an oxygen electrode to construct an oxygen-hydrogen fuel cell power generation device.

第4図は同装置を示すもので、9は燃料電池、10は電
解液タンクであり、タンク内の電解液はポンプ11を備
えたパイプ12から電池9へ供給され、パイプ13を経
てタンク10内へ戻される。14は定電圧装置15を介
して電池9の出力端子に接続された負荷である。
FIG. 4 shows the same device, where 9 is a fuel cell and 10 is an electrolyte tank. The electrolyte in the tank is supplied from a pipe 12 equipped with a pump 11 to the battery 9, and via a pipe 13 to the tank 10. taken back inside. 14 is a load connected to the output terminal of the battery 9 via a constant voltage device 15.

なお16は電池の酸素室へ酸素を供給するパイプ、17
は同排出パイプ、18は電池の水素室へ水素を供給する
パイプ、19は同排出パイプである。なお、水素極は酸
素極と同様ガス拡散型電極として電池に組み込まれてお
り、片面は水素室に面し、他面は電解液と接している。
従つて通常は従来の水素極と同様に働くが、水素の貯蔵
ができるので、水素の供給が停止したときには、吸蔵し
ている水素を活物質として働く。本発明の陰極を用いた
上記構成の発電装置においては、燃料電池に事故があつ
て燃料の供給が停止された場合でも、陰極に吸蔵させた
水素により電力を取り出せる。しかもその放電容量はC
a,。
Note that 16 is a pipe that supplies oxygen to the oxygen chamber of the battery, and 17
18 is a pipe for supplying hydrogen to the hydrogen chamber of the battery, and 19 is the same discharge pipe. Note that, like the oxygen electrode, the hydrogen electrode is incorporated into the battery as a gas diffusion type electrode, with one side facing the hydrogen chamber and the other side in contact with the electrolyte.
Therefore, it normally works in the same way as a conventional hydrogen electrode, but since it can store hydrogen, when the supply of hydrogen is stopped, the stored hydrogen acts as an active material. In the power generating device having the above configuration using the cathode of the present invention, even if the fuel cell has an accident and the supply of fuel is stopped, electric power can be extracted from the hydrogen stored in the cathode. Moreover, its discharge capacity is C
a.

ONi,合金の場合0.35Ah×20:リリリ7Ay
秋あり、負荷が1Aであれば7時間の放電が可能である
。従つて、予備用電源として使用する場合等には非常に
効果が大きい。
ONi, alloy 0.35Ah x 20: 7Ay
If it is autumn and the load is 1A, it is possible to discharge for 7 hours. Therefore, it is very effective when used as a backup power source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCaxNi,合金のx値と吸蔵水素量との関係
を示す図、第2図はX値と放電容量との関係を示す図、
第3図は本発明の電極を用いた蓄電池の縦断面略図、第
4図は燃料電池発電装置の略図である。
Figure 1 is a diagram showing the relationship between the x value of CaxNi and the alloy and the amount of absorbed hydrogen, Figure 2 is a diagram showing the relationship between the X value and discharge capacity,
FIG. 3 is a schematic vertical cross-sectional view of a storage battery using the electrode of the present invention, and FIG. 4 is a schematic view of a fuel cell power generation device.

Claims (1)

【特許請求の範囲】[Claims] 1 水素を吸蔵する合金を構成要素とする水素吸蔵電極
であつて、前記合金が式Ca_xNi_5(ただし、x
は0.85〜1.15)で表される合金である水素吸蔵
電極。
1. A hydrogen storage electrode whose constituent element is an alloy that stores hydrogen, wherein the alloy has the formula Ca_xNi_5 (however, x
is 0.85 to 1.15).
JP51145784A 1976-12-03 1976-12-03 Hydrogen storage electrode Expired JPS5945190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51145784A JPS5945190B2 (en) 1976-12-03 1976-12-03 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51145784A JPS5945190B2 (en) 1976-12-03 1976-12-03 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS5370025A JPS5370025A (en) 1978-06-22
JPS5945190B2 true JPS5945190B2 (en) 1984-11-05

Family

ID=15393073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51145784A Expired JPS5945190B2 (en) 1976-12-03 1976-12-03 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPS5945190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA832570B (en) * 1982-04-28 1984-01-25 Energy Conversion Devices Inc Improved rechargeable battery and electrode used therein
CA1240363A (en) * 1983-10-28 1988-08-09 John E. Keem Electrodes made with disordered active material and method of making the same

Also Published As

Publication number Publication date
JPS5370025A (en) 1978-06-22

Similar Documents

Publication Publication Date Title
Bittner et al. Electrochemical utilization of metal hydrides
Geng et al. Charging/discharging stability of a metal hydride battery electrode
JPS60109183A (en) Sealed type nickel-hydrogen storage battery
JP2752970B2 (en) Hydrogen storage electrode
JPS636746A (en) Electrochemical battery
JPS5945190B2 (en) Hydrogen storage electrode
JPH0797504B2 (en) Sealed alkaline storage battery
Geng et al. Electrocatalytic characteristics of the metal hydride electrode for advanced Ni/MH batteries
JPS60109174A (en) Manufacture of hydrogen absorption electrode
Wasz et al. Sn-substituted LaNi5 alloys for metal hydride electrodes
JPS5846827B2 (en) Manufacturing method of hydrogen storage electrode
JP2713881B2 (en) Sealed metal oxide / hydrogen battery
JPS60220556A (en) Manufacturing method of hydrogen occluding electrode for enclosed storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JPS60119079A (en) Hydrogen absorption electrode
JPH0690922B2 (en) Sealed alkaline storage battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JP3114976B2 (en) Nickel hydride rechargeable battery
JPH0456427B2 (en)
JPS62119864A (en) Enclosed-type alkaline storage battery
Lee et al. Self-discharge characteristics of sealed Ni MH batteries using Zr1− xTixV0. 8Ni1. 6 anodes
Ryan et al. A rechargeable cell based on amorphous Ni− Zr
JPS60175367A (en) Production of negative electrode for closed storage battery
JPH01132049A (en) Hydrogen storage electrode