JPS63166146A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPS63166146A
JPS63166146A JP61312203A JP31220386A JPS63166146A JP S63166146 A JPS63166146 A JP S63166146A JP 61312203 A JP61312203 A JP 61312203A JP 31220386 A JP31220386 A JP 31220386A JP S63166146 A JPS63166146 A JP S63166146A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
storage alloy
alloy
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61312203A
Other languages
Japanese (ja)
Inventor
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Yasuko Ito
康子 伊藤
Isao Matsumoto
功 松本
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61312203A priority Critical patent/JPS63166146A/en
Publication of JPS63166146A publication Critical patent/JPS63166146A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the oxidation resistance and alkali resistance of a hydrogen storage alloy to lengthen the cycle life of an electrode by using a hydrogen storage alloy containing one or more oxides of transition metal elements in a specific hydrogen storage alloy. CONSTITUTION:A hydrogen storage alloy containing one or more oxides of transition metal elements in the hydrogen storage alloy having CaCu5 type crystal structure is used. By using this hydrogen storage alloy, the oxidation resistance and alkali resistance of an electrode are increased, and the hydrogen storage alloy for a sealed alkaline storage battery in which discharge capacity is not decreased even after charge-discharge cycle is repeated can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉形アルカリ蓄電池などの負極に用いる電
気化学的に水素の吸蔵・放出が可能な、水素吸蔵電極に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hydrogen storage electrode capable of electrochemically storing and desorbing hydrogen and used as a negative electrode of a sealed alkaline storage battery or the like.

従来の技術 従来、この種の水素吸蔵電極を負極に用いて、ニッケル
正極と組み合わせて密閉形ニッケルー水素蓄電池を構成
した場合、電池内圧がサイクル数とともに増加しサイク
ル寿命が極めて短いという欠点がある。これは、充放電
サイクルの繰シ返しによシ過充電時に正極から発生する
酸素ガスにより水素吸蔵合金の表面が酸化され、アルカ
リ電解液中で水酸化物を形成することによって、元の有
効な合金相が減少したり、水酸化物により充放電反応が
妨げられることになる。また、ある種の合金ではアルカ
リ電解液中に長時間水素吸蔵合金が放置されるため、合
金が腐食される。
BACKGROUND OF THE INVENTION Conventionally, when a sealed nickel-hydrogen storage battery is constructed by using this type of hydrogen storage electrode as a negative electrode and combining it with a nickel positive electrode, the disadvantage is that the internal pressure of the battery increases with the number of cycles and the cycle life is extremely short. This is because the surface of the hydrogen storage alloy is oxidized by the oxygen gas generated from the positive electrode during repeated charge/discharge cycles and overcharged, forming hydroxide in the alkaline electrolyte. The alloy phase may be reduced or the charge/discharge reaction may be hindered by hydroxide. Furthermore, in some types of alloys, hydrogen storage alloys are left in alkaline electrolytes for long periods of time, resulting in corrosion of the alloys.

このような合金の酸化、腐食、@粉化を防ぐために、負
極に用いる水素吸蔵電極の表面を耐酸化性を有する水素
吸蔵合金、例えばアモルファスでコーティングする方法
(特開昭e1−151967)や、水素吸蔵合金粉末を
銅やニッケルでコーティングする方法(特開昭61−1
01957.特開昭e 1−6406 ca )が提案
されている。
In order to prevent oxidation, corrosion, and pulverization of such alloys, there is a method of coating the surface of a hydrogen storage electrode used as a negative electrode with an oxidation-resistant hydrogen storage alloy, such as an amorphous material (Japanese Patent Laid-Open No. 1-151967), Method of coating hydrogen-absorbing alloy powder with copper or nickel (JP-A-61-1)
01957. JP-A-1-6406-ca) has been proposed.

発明が解決しようとする問題点 このような従来の構成では、水素吸蔵合金の根本的な耐
酸化能力は解決されておらず、充放電サイクルを150
〜200サイクル以上繰り返すと、放電容量が低下する
という問題があった。また、電極表面に耐酸化性の水素
吸蔵合金のコーティングやその粉末を金属でコーティン
グする方法は、水素吸蔵電極の構成が複雑で製造法を複
雑にする問題点も有している。
Problems to be Solved by the Invention In such a conventional configuration, the fundamental oxidation resistance ability of the hydrogen storage alloy has not been solved, and the charge/discharge cycle is limited to 150
There was a problem in that the discharge capacity decreased when the cycle was repeated for more than 200 cycles. Furthermore, the method of coating the electrode surface with an oxidation-resistant hydrogen storage alloy or coating its powder with metal has the problem that the structure of the hydrogen storage electrode is complicated and the manufacturing method is complicated.

本発明はこのような問題点を解決するもので、簡単な水
素吸蔵合金の構成により、これを用いた電極中の水素吸
蔵合金の耐酸化性、耐アルカリ性を向上させ、充放電サ
イクルを繰り返しても放電容量が低下しない密閉形アル
カリ蓄電池に必要な水素吸蔵電極を提供することを目的
とするものである。
The present invention solves these problems by improving the oxidation resistance and alkali resistance of the hydrogen storage alloy in an electrode using a simple structure of the hydrogen storage alloy, and by repeating charge and discharge cycles. Another object of the present invention is to provide a hydrogen storage electrode necessary for a sealed alkaline storage battery in which the discharge capacity does not decrease.

問題点を解決するための手段 この問題点を解決するために本発明は、Ca Cus型
の結晶構造をもつ水素吸蔵合金中に遷移金属元素の酸化
物または希土類元素の酸化物を1種以上含んだ水素吸蔵
合金を用いて水素吸蔵電極を構成したものである。
Means for Solving the Problem In order to solve this problem, the present invention includes a hydrogen storage alloy having a Ca Cu type crystal structure containing one or more oxides of transition metal elements or oxides of rare earth elements. The hydrogen storage electrode is constructed using a hydrogen storage alloy.

作  用 この構成により、水素吸蔵合金の耐酸化性、耐アルカリ
性を向上させる結果、充放電サイクルの繰シ返しによシ
ミ池内圧が上昇せず、サイクル寿命が向上することとな
る。
Function: With this configuration, the oxidation resistance and alkali resistance of the hydrogen storage alloy are improved, and as a result, the internal pressure of the stain pond does not increase due to repeated charging and discharging cycles, and the cycle life is improved.

以下本発明をその実施例により説明する。The present invention will be explained below with reference to Examples.

実施例1 Ca Cu s型の結晶構造をもつ水素吸蔵合金はMm
Ni5Co2を用い、遷移金属酸化物にはN i O。
Example 1 A hydrogen storage alloy with a Ca Cu s type crystal structure is Mm
Ni5Co2 was used, and N i O was used as the transition metal oxide.

Cooの2例を単独又は混合で用いた場合を示す。The case where two examples of Coo are used alone or in a mixture is shown.

N i O−? Cooを含んだ水素吸蔵合金は以下の
方法で作成した。市販のミツシュメタルMm (希土類
元素の混合物、例えばCe45wt%、 L a 30
w t%。
N i O-? A hydrogen storage alloy containing Coo was created by the following method. Commercially available Mitsushi Metal Mm (mixture of rare earth elements, e.g. Ce45wt%, La 30
wt%.

N d s w t%、他の希土類元素20wt%)と
Ni、C。
(Ndswt%, other rare earth elements 20wt%) and Ni, C.

の各試料をMm N i 3CO2合金の組成比になる
ように計量したものと、N i Oを3〜7wt%、C
ooを4wt%、NiOとCooの混合物(1対1の重
量比)を4wt%それぞれ混合しアーク溶解炉に入れて
、10〜10Torrまで真空状態にした後、アルゴン
ガス雰囲気中でアーク放電し、加熱溶解した。
Each sample was weighed to have a composition ratio of MmNi3CO2 alloy, and 3 to 7wt% of NiO, C
4 wt% of oo and 4 wt% of a mixture of NiO and Coo (1:1 weight ratio) were mixed, placed in an arc melting furnace, evacuated to 10 to 10 Torr, and then arc discharged in an argon gas atmosphere. Dissolved by heating.

さらに、この合金の均質性を良好にするために、アルゴ
ン雰囲気中にて1050℃で6時間熱処理を行いM i
 OあるいはCooを含んだ、すなわち酸素を含有した
Mm N i 3C02合金を得た。これらの合金粉末
をポリビニルアルコール1,5wt、%水溶液でペース
ト状にし、発泡ニッケル多孔体に充填。
Furthermore, in order to improve the homogeneity of this alloy, heat treatment was performed at 1050°C for 6 hours in an argon atmosphere.
A Mm N i 3C02 alloy containing O or Coo, that is, containing oxygen, was obtained. These alloy powders were made into a paste with a 1.5 wt% polyvinyl alcohol aqueous solution and filled into a foamed nickel porous body.

乾燥後、ao’cの比重1.30KOH溶液中で処理し
、水洗、乾燥後、加圧し電極とした。従来例に用いた電
極は、遷移金属の酸化物を含んでいないM m N i
 s CO2で構成された電極Aと、その合金粉末の表
面をCuでコーティングした粉末で構成された電極Bを
用いた。実施例で、用いた水素吸蔵電極を表1に示す。
After drying, it was treated in ao'c KOH solution with a specific gravity of 1.30, washed with water, dried, and then pressurized to form an electrode. The electrode used in the conventional example is M m N i which does not contain a transition metal oxide.
An electrode A made of s CO2 and an electrode B made of an alloy powder whose surface was coated with Cu were used. Table 1 shows the hydrogen storage electrodes used in the examples.

表1に示した電極を負極として用い、ニカド電池のAA
サイズで通常使用されている負極と同寸法とした。この
負極と、ニカド電池AAサイズに用いられる公知の発泡
メタル式二ソケル正極とをセパレータを介してAAサイ
ズの密閉形ニッケルー水素蓄電池を構成した。電解液に
は比重1.30KOH水溶液にL10H@f(20を4
09/l溶解したものを用いた。20℃雰囲気における
サイクル寿命測定時の充電条件は、/mAX4.5Hで
あり、放電条件は0.5 cm A (終止電圧1.o
v)である。A、B、D、H,Iの電極を用いて構成し
た電池の放電容量と充放電サイクル数を調べた結果を第
1図に示す。第1図から明らかなように、Ni 鉾Co
oを含んでいない合・金を用いた電極Aは、100サイ
クル程度の充放電サイクルの繰り返しにより放電容量が
低下した。また、合金粉末の表面にCuコーティングを
行った電極Bを用いた電池の寿命は、Aよりも向上した
が170サイクル程度で劣化した。これに対し、本実施
例で用いた電極り、H,Iを用いて構成した電池の寿命
は、300サイクルの充放電を繰り返しても劣化しなか
った。Nip、Coo単独やN i OとCooの混合
物を含んだMmN+3co2合金を用いることだより、
電池の寿命は著しく向上することがわかった。
Using the electrode shown in Table 1 as a negative electrode, the AA of Ni-Cd battery was
The size is the same as the negative electrode normally used. An AA size sealed nickel-metal hydride storage battery was constructed by interposing this negative electrode and a known foamed metal disokel positive electrode used for AA size NiCd batteries with a separator interposed therebetween. The electrolyte is a specific gravity 1.30 KOH aqueous solution and L10H@f (20 to 4
09/l was used. The charging conditions for cycle life measurement in a 20°C atmosphere were /mAX4.5H, and the discharging conditions were 0.5 cm A (final voltage 1.0
v). FIG. 1 shows the results of examining the discharge capacity and number of charge/discharge cycles of batteries constructed using electrodes A, B, D, H, and I. As is clear from Figure 1, Ni Hoko Co
Electrode A using an alloy/metal that does not contain o had a decreased discharge capacity after repeated charge/discharge cycles of about 100 cycles. Furthermore, the life of the battery using electrode B, in which the surface of the alloy powder was coated with Cu, was improved over electrode A, but deteriorated after about 170 cycles. On the other hand, the life of the battery constructed using the electrodes H and I used in this example did not deteriorate even after 300 cycles of charging and discharging. News of using MmN+3co2 alloy containing Nip, Coo alone or a mixture of NiO and Coo,
It was found that battery life was significantly improved.

表に示したA、B、D、H,Iの電極を用いて構成した
電池の内圧と充放電サイクル数の関係を調べた結果を第
2図に示す。電池内圧は、図示していないが電池ケース
底部にドリルで1φmの穴をあけ、圧力センサーを取カ
付けた固定装置に電池を固定し、測定した。電池内圧測
定時の充電条件は、/、 cm A X 4.5 Hで
ある。第2図から明らかなように、NiOやCooを含
んでいない電極Aは、100サイクル程度の充放電サイ
クルの繰り返しにより電池内圧は20Kg/−以上に上
昇した。
FIG. 2 shows the results of investigating the relationship between the internal pressure and the number of charge/discharge cycles of batteries constructed using electrodes A, B, D, H, and I shown in the table. Although not shown, the battery internal pressure was measured by drilling a 1φm hole in the bottom of the battery case and fixing the battery to a fixing device equipped with a pressure sensor. The charging conditions when measuring the internal pressure of the battery were /, cm A x 4.5 H. As is clear from FIG. 2, in electrode A which does not contain NiO or Coo, the battery internal pressure rose to 20 kg/- or more after about 100 charge/discharge cycles.

また、合金粉末の表面にCuコーティングを行った電極
Bを用いた電池の内圧は、170サイクル程度で20 
Kg/ ct1以上に上昇した。これに対し、本実施例
で用いた電極り、H,Iを用いて構成した電池の内圧は
、300サイクルの充放電を繰り返しても上昇せず、は
ぼ一定の値を示した。以上(7)、JうK、N ioヤ
Coo 単独−又はN i OとCo。
In addition, the internal pressure of a battery using electrode B with Cu coating on the surface of alloy powder was 20
It rose to more than Kg/ct1. On the other hand, the internal pressure of the battery constructed using the electrodes H and I used in this example did not increase even after 300 cycles of charging and discharging, and remained almost constant. Above (7), JK, Nio and Coo alone - or Nio and Co.

の混合物を含んだMrn N i s C02合金を負
極に用いた場合、電池内圧がサイクル数々ともに上昇せ
ず、サイクル寿命が向上した。
When a Mrn N i s C02 alloy containing a mixture of the above was used for the negative electrode, the internal pressure of the battery did not increase with each cycle, and the cycle life was improved.

第3図に、C,D、E、F、Gの電極を用いて構成した
電池の充放電サイクル数と電池内圧の関係を示す。第3
図から明らかなように、NiOを含んだ合金を用いた電
池の内圧は、充放電サイクルにより増大しない。しかし
ながら、NiOを7wt、%含んだ電極Gを用いた電池
の内圧は、9.5Kg/CfIと高くなった。7wt、
%以上のLa2O3を含んだ電極を用いた場合には、1
0 Kg / ClI以上となり、漏液やガス漏れが発
生し、サイクル寿命が短くなった。したがって、N i
 O−p Co Oの遷移金属酸化物の含有量は7wt
%以下が好ましい。
FIG. 3 shows the relationship between the number of charge/discharge cycles and the battery internal pressure for batteries constructed using electrodes C, D, E, F, and G. Third
As is clear from the figure, the internal pressure of the battery using the NiO-containing alloy does not increase with charge/discharge cycles. However, the internal pressure of the battery using electrode G containing 7 wt% of NiO was as high as 9.5 Kg/CfI. 7wt,
When using an electrode containing 1% or more of La2O3,
0 Kg/ClI or more, liquid leakage and gas leakage occurred, and the cycle life was shortened. Therefore, N i
The content of transition metal oxide in O-p Co O is 7wt
% or less is preferable.

実施例2 次に希土類元素の酸化物を用いた例を説明する。Example 2 Next, an example using an oxide of a rare earth element will be explained.

Ca Cu 6型の結晶構造をもつ水素吸蔵合金はM 
mN 13 CQ 2を用い、希土類元素の酸化物には
La2o3.Coo2の2例を単独又は混合で用いた場
合を示す。希土類酸化物を含んだ水素吸蔵合金は以下の
方法で作成した。市販のミツシュメタルMm (希土類
元素の混合物、例えばCe45wt、%。
The hydrogen storage alloy with the Ca Cu type 6 crystal structure is M
mN 13 CQ 2 was used, and La2o3. The case where two examples of Coo2 are used alone or in combination is shown. A hydrogen storage alloy containing a rare earth oxide was prepared by the following method. Commercially available Mitshu Metal Mm (mixture of rare earth elements, e.g. Ce45wt, %.

La30Wt−%、Nd5wt、%、他の希土類元素2
0Wt、%)とNi、Goの各試料をMmNi5CO2
合金の組成比になるように計量したものと、La2o3
を3〜7%v t % 。
La30Wt-%, Nd5wt,%, other rare earth elements 2
0Wt, %), Ni, and Go samples as MmNi5CO2
Weighed to match the composition ratio of the alloy, and La2o3
3-7%vt%.

Ce O2を4wt、%、La2o3とCe O2の混
合物(1対10重量比)を4wt、%をそれぞれ混合し
、ア一り溶解炉て入れて、10〜10  Torrまで
真空状態にした後、アルゴンガス雰囲気中でアーク放電
し、加熱溶解した。さらに、この合金の均質性を良好に
するために、アルゴン雰囲気中にて1000℃で6時間
熱処理を行いLa2Q3やCe 02を含んだMrn 
N is C02合金を得た。次に、この合金を粗粉砕
後、ボールミルで3B1im以下の粉末にし、水素吸蔵
電極に用いる合金粉末を得た。これらの合金粉末をポリ
ビニルアルコール1.5wt0%水溶液でペースト状に
し、発泡ニッケル多孔体に充填、乾燥後、80’Cの比
重1,3oKOH溶液中で処理し、水洗、乾燥後、加圧
し電極とした。
Mix 4 wt.% of CeO2 and 4 wt.% of a mixture of La2O3 and Ce O2 (1:10 weight ratio), place them in a melting furnace, make a vacuum state of 10 to 10 Torr, and then heat with argon. Arc discharge was performed in a gas atmosphere to heat and melt. Furthermore, in order to improve the homogeneity of this alloy, heat treatment was performed at 1000°C for 6 hours in an argon atmosphere to obtain Mrn containing La2Q3 and Ce02.
A Ni is C02 alloy was obtained. Next, this alloy was coarsely pulverized and made into a powder of 3B1im or less using a ball mill to obtain an alloy powder used for a hydrogen storage electrode. These alloy powders were made into a paste with a 1.5 wt 0% aqueous solution of polyvinyl alcohol, filled into a foamed nickel porous body, dried, treated in a KOH solution with a specific gravity of 1.3 o at 80'C, washed with water, dried, and then pressurized to form an electrode. did.

ここで用意した水素吸蔵電極を表2に示す。Table 2 shows the hydrogen storage electrodes prepared here.

表2に示した電極を負極として用い、実施例1と同様に
してAAサイズの密閉形ニッケルー水素蓄電池を構成し
た。これら電池の放電容量と充放電サイクル数を調べた
結果は第1図と同様な結果であり、電池内圧と充放電サ
イクル数との関係も第2図、第3図とほぼ同じであった
An AA size sealed nickel-metal hydride storage battery was constructed in the same manner as in Example 1 using the electrode shown in Table 2 as a negative electrode. The results of examining the discharge capacity and number of charge/discharge cycles of these batteries were similar to those shown in FIG. 1, and the relationship between the battery internal pressure and the number of charge/discharge cycles was also approximately the same as in FIGS. 2 and 3.

とくにLa2o3を7wt、%以下で含んだ合金を用い
た電池の内圧は、充放電サイクルにより増大しなかった
。しかしながら、La2O3を7wt、%含んだ電極G
′を用いた電池の内圧は、9−5Ky / ctdと高
くなった。7.1wt、%以上のL a 20 aを含
んだ電極を用いた場合には、10Kq/ad以上となり
、漏液やガス漏れが発生し、サイクル寿命が短くなった
。したがって、La2O3やCe O2の希土類酸化物
の含有量は7wt、%以下が好ましい。
In particular, the internal pressure of a battery using an alloy containing 7 wt.% or less of La2O3 did not increase due to charge/discharge cycles. However, the electrode G containing 7wt% La2O3
The internal pressure of the battery using ' was as high as 9-5 Ky/ctd. When an electrode containing 7.1 wt.% or more of L a 20 a was used, it was 10 Kq/ad or more, causing liquid leakage and gas leakage, and shortening the cycle life. Therefore, the content of rare earth oxides such as La2O3 and CeO2 is preferably 7 wt.% or less.

なお、この実施例2ではMrn N 13 Co 2に
ついて示したが、一般式LnNi6−xMx(Lnは希
土類元素単独、あるいは希土類元素の1種以上の混合物
、MはMn、Al、Co、Cu、Fe、Si、他の金属
であり、1種以上含む)で表わせる水素吸蔵合金を用い
ても同様の結果が得られた。また、希土類の酸化物につ
いては、La2O3,CeO述外の酸化ネオジウム、酸
化プラセオジウム、酸化サマリウム等の希土類酸化物で
も同様の結果が得られた。
In this Example 2, Mrn N 13 Co 2 was shown, but the general formula LnNi6-xMx (Ln is a rare earth element alone or a mixture of one or more rare earth elements, M is Mn, Al, Co, Cu, Fe , Si, and other metals (including one or more types), similar results were obtained. Furthermore, similar results were obtained with rare earth oxides such as neodymium oxide, praseodymium oxide, and samarium oxide other than La2O3 and CeO.

発明の効果 以上のように本発明によれば、CaCu6型の結晶構造
をもつ水素吸蔵合金中に、遷移金属元素の酸化物又は希
土類元素の酸化物を1種以上含んだ水素吸蔵合金を電極
に用いることによシ、簡単な電極の構成により、耐酸化
性、耐アルカリ性を向上させ、充放電サイクルを繰り返
しても放電容量が低下しない密閉形アルカリ蓄電池に必
要な水素吸蔵電極を提供できるという効果かえられる。
Effects of the Invention As described above, according to the present invention, a hydrogen storage alloy containing one or more oxides of transition metal elements or oxides of rare earth elements in a hydrogen storage alloy having a CaCu6 type crystal structure is used as an electrode. By using this method, it is possible to improve oxidation resistance and alkali resistance through a simple electrode configuration, and provide a hydrogen storage electrode necessary for sealed alkaline storage batteries whose discharge capacity does not decrease even after repeated charging and discharging cycles. I can be hatched.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電極のサイクル寿命を示す特性図、第
2図、第3図は電池内圧と充放電サイクルとの関係を示
す特性図である。
FIG. 1 is a characteristic diagram showing the cycle life of the electrode of the present invention, and FIGS. 2 and 3 are characteristic diagrams showing the relationship between battery internal pressure and charge/discharge cycles.

Claims (4)

【特許請求の範囲】[Claims] (1)CaCu_5型の結晶構造をもつ水素吸蔵合金中
に遷移金属元素の酸化物を1種以上含んだ水素吸蔵合金
を備えたことを特徴とする水素吸蔵電極。
(1) A hydrogen storage electrode comprising a hydrogen storage alloy containing one or more oxides of transition metal elements in the hydrogen storage alloy having a CaCu_5 type crystal structure.
(2)遷移金属の酸化物量が7wt%以下であることを
特徴とする特許請求の範囲第1項記載の水素吸蔵電極。
(2) The hydrogen storage electrode according to claim 1, wherein the amount of transition metal oxide is 7 wt% or less.
(3)CaCu_5型の結晶構造をもつ水素吸蔵合金中
に希土類元素の酸化物を1種以上含んだ水素吸蔵合金を
備えたことを特徴とする水素吸蔵電極。
(3) A hydrogen storage electrode comprising a hydrogen storage alloy containing one or more rare earth element oxides in the hydrogen storage alloy having a CaCu_5 type crystal structure.
(4)希土類元素の酸化物含有量が7wt%以下である
ことを特徴とする特許請求の範囲第3項記載の水素吸蔵
電極。
(4) The hydrogen storage electrode according to claim 3, wherein the rare earth element oxide content is 7 wt% or less.
JP61312203A 1986-12-26 1986-12-26 Hydrogen storage electrode Pending JPS63166146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61312203A JPS63166146A (en) 1986-12-26 1986-12-26 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61312203A JPS63166146A (en) 1986-12-26 1986-12-26 Hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPS63166146A true JPS63166146A (en) 1988-07-09

Family

ID=18026448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312203A Pending JPS63166146A (en) 1986-12-26 1986-12-26 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPS63166146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239566A (en) * 1989-03-10 1990-09-21 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280963A (en) * 1985-10-01 1987-04-14 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280963A (en) * 1985-10-01 1987-04-14 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239566A (en) * 1989-03-10 1990-09-21 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
US5043233A (en) * 1989-03-10 1991-08-27 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JP2680669B2 (en) * 1989-03-10 1997-11-19 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage battery

Similar Documents

Publication Publication Date Title
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0586029B2 (en)
JP2752970B2 (en) Hydrogen storage electrode
JPH0582024B2 (en)
JPS63166146A (en) Hydrogen storage electrode
JPH04179056A (en) Alkaline storage battery
JPH0562429B2 (en)
JP3200822B2 (en) Nickel-metal hydride storage battery
US5401463A (en) Hydrogen-occlusion alloy electrode
JPH0690924B2 (en) Storage battery electrode
JPH0562428B2 (en)
JP2679441B2 (en) Nickel-metal hydride battery
JPH05174869A (en) Processing method for sealed type nickel-hydrogen battery
JPS62119864A (en) Enclosed-type alkaline storage battery
JPH028419B2 (en)
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH0690922B2 (en) Sealed alkaline storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JPH04173933A (en) Hermetically sealed alkaline storage battery
JPS6243063A (en) Alkaline storage battery
JPS60193266A (en) Sealed type alkaline storage battery
JPH04176833A (en) Hydrogen storage alloy electrode
JPH09129227A (en) Nickel-hydrogen storage battery