JPH05174869A - Processing method for sealed type nickel-hydrogen battery - Google Patents
Processing method for sealed type nickel-hydrogen batteryInfo
- Publication number
- JPH05174869A JPH05174869A JP3361178A JP36117891A JPH05174869A JP H05174869 A JPH05174869 A JP H05174869A JP 3361178 A JP3361178 A JP 3361178A JP 36117891 A JP36117891 A JP 36117891A JP H05174869 A JPH05174869 A JP H05174869A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- charging process
- initial
- charge
- sealed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/345—Gastight metal hydride accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、密閉型ニッケル水素電
池の処理法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a sealed nickel hydrogen battery.
【0002】[0002]
【従来の技術】従来、負極活物質として水素吸蔵合金を
負極活物質とし、充放電により水素を吸蔵と放出する式
の密閉型ニッケル水素電池の製造は、密閉ニッケル水素
電池の組立て完了時には、未だ正極、負極共に化成して
居らず、その後初充電処理により化成して居る場合が多
い。2. Description of the Related Art Conventionally, the manufacture of a sealed nickel-hydrogen battery of the type that uses a hydrogen storage alloy as a negative electrode active material as a negative electrode active material and absorbs and releases hydrogen by charging and discharging has not yet been completed at the completion of assembly of the sealed nickel-hydrogen battery. In many cases, neither the positive electrode nor the negative electrode has been formed, and then the initial charging process has formed.
【0003】[0003]
【発明が解決しようとする課題】上記従来の密閉型ニッ
ケル水素電池の製造において、密閉ニッケル水素電池の
組立て完了後、初充電工程に入るまでの間に数時間乃至
数十時間の間があり、従って、その間、該未化成の密閉
電池は放置されることが多い。このように放置された
後、該密閉電池に初充電処理を行うと、内部に発生する
ガスにより内圧が高くなり、また所定の初期活性化が得
られるまで、即ち所定の電池容量が出るまで充電放電サ
イクル回数が多くなる傾向がある等の不都合を生じた。
この不都合は、その放置中に、未化成の負極、即ち、水
素吸蔵合金の表面が酸化などの悪影響を受けるためと考
えられる。従って、組立て完了した密閉電池を初充電処
理を受けるまでの間放置しておいても、上記の酸化等の
悪影響を受け難くして、初充電処理時に発生するガス内
圧を減少させ、而も、初期活性化のための充放電サイク
ルの回数を少なくし、高能率に化成した密閉電池が得ら
れるようにすることが望ましい。In the production of the above-mentioned conventional sealed nickel-hydrogen battery, there are several hours to several tens of hours between the completion of the assembly of the sealed nickel-hydrogen battery and the start of the initial charging step. Therefore, during that time, the unformed sealed battery is often left unattended. When the sealed battery is subjected to the initial charging process after being left in this way, the internal pressure increases due to the gas generated inside, and it is charged until a predetermined initial activation is obtained, that is, a predetermined battery capacity is obtained. There are inconveniences such as a tendency that the number of discharge cycles tends to increase.
It is considered that this inconvenience occurs because the unformed negative electrode, that is, the surface of the hydrogen storage alloy, is adversely affected by oxidation or the like during the standing. Therefore, even if the assembled battery is left to stand until it is subjected to the initial charging process, it is less likely to be adversely affected by the above-mentioned oxidation and the like, and the gas internal pressure generated during the initial charging process is reduced. It is desirable to reduce the number of charge / discharge cycles for initial activation so that a highly efficient sealed battery can be obtained.
【0004】[0004]
【課題を解決するための手段】本発明は、上記従来の課
題を解決し、上記の要望を満足した密閉型ニッケル水素
電池の処理法を提供するもので、組立て完了した未化成
の密閉型ニッケル水素電池を、その組立て完了後初充電
処理を施されるまでの間に、定格容量の100%以下の
充電処理を行うことを特徴とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a method for treating a sealed nickel-hydrogen battery that satisfies the above-mentioned needs. A feature of the hydrogen battery is that the battery is charged to 100% or less of the rated capacity before the initial charging process after the assembly is completed.
【0005】[0005]
【作用】上記のように、未化成の密閉電池に初充電処理
を行う前に定格容量の100%以下の充電処理を行うこ
とにより、酸素ガスの発生量が少なく、負極を卑側にシ
フトさせることが出来る。従って、このように一旦該充
電処理を行った密閉ニッケル水素電池は、そのまゝしば
らく放置しておいても、酸化などの悪影響を受け難く、
その後初充電処理を行った場合、発生するガスによる内
圧は低く抑えることができ、而も、初期活性化までの充
放電サイクル回数を少なくすることができ、高能率且つ
経済的に化成した密閉型ニッケル水素電池が得られる。As described above, the unformed sealed battery is charged to 100% or less of the rated capacity before the initial charge, so that the amount of oxygen gas generated is small and the negative electrode is shifted to the base side. You can Therefore, the sealed nickel-metal hydride battery once subjected to the charging process in this way is less likely to be adversely affected by oxidation or the like even if left for a while.
When the initial charging process is performed after that, the internal pressure due to the generated gas can be kept low, and the number of charge and discharge cycles until the initial activation can be reduced, and the sealed type is highly efficient and economically formed. A nickel hydrogen battery is obtained.
【0006】[0006]
【実施例】次に本発明実施例を説明する。従来と同様に
して、下記のように正極板と負極板を製造する。即ち、
正極板として、例えば、水素化ニッケル粉末に導電材と
増粘材を所定の配合割合で添加して混合し、得られたス
ラリーを発泡ニッケル基板に充填し、乾燥、圧延して、
所定のニッケル極板を所定の寸法に切断して正極板を得
た。一方、負極板として、例えば、水素吸蔵合金である
SLmNi4.0Co0.5Al0.5を機械的に粉砕
し、得られた合金粉末に結着剤として、PVdF(ポリ
フツ化ビニリデン)粉末を0.3wt.%、Ni粉を1
5wt.%添加し、更に増粘剤としてCMCを1wt.
%添加して混合し、スラリー状の負極活物質合剤とし、
これをエキスパンドメタルなどの多孔シートの両面に充
填塗布し、乾燥、圧延を施し、次でこれを真空雰囲気下
で180℃で1時間熱処理し、切断して水素吸蔵合金電
極板、即ち負極板を得た。これらの正極板と負極板とを
ナイロンセパレータを介して積層、捲回して捲回極板群
となし、これを円筒状の電池缶に収容し、所定の濃度の
アルカリ電解液を所定量注入し、電池蓋を施して、AA
−Type 1000mAhの円筒型密閉ニッケル水素
電池の組立てを完了した。かくして、かゝる未化成の密
閉電池を比較試験のため多数用意した。尚、電池内圧測
定用に、専用のセンサーを各密閉電池にセットしておい
た。EXAMPLES Examples of the present invention will be described below. A positive electrode plate and a negative electrode plate are manufactured in the same manner as in the conventional method. That is,
As the positive electrode plate, for example, a conductive material and a thickening agent are added to and mixed with a nickel hydride powder at a predetermined mixing ratio, the resulting slurry is filled into a foamed nickel substrate, dried, and rolled,
A given nickel electrode plate was cut into a given size to obtain a positive electrode plate. On the other hand, as the negative electrode plate, for example, SLmNi 4.0 Co 0.5 Al 0.5 which is a hydrogen storage alloy is mechanically crushed, and PVdF (polyvinylidene fluoride) powder is used as a binder in the obtained alloy powder. 0.3 wt. %, Ni powder 1
5 wt. % Of CMC as a thickener.
% And mixed to obtain a slurry negative electrode active material mixture,
This is filled and applied on both sides of a porous sheet such as expanded metal, dried and rolled, and then heat-treated at 180 ° C. for 1 hour in a vacuum atmosphere and cut to form a hydrogen storage alloy electrode plate, that is, a negative electrode plate. Obtained. These positive electrode plate and negative electrode plate are laminated via a nylon separator and wound to form a wound electrode plate group, which is housed in a cylindrical battery can and injected with a predetermined amount of an alkaline electrolyte of a predetermined concentration. , With battery cover, AA
-Assembly of Type 1000 mAh cylindrical sealed nickel-hydrogen battery. Thus, a large number of such unformed sealed batteries were prepared for the comparative test. A dedicated sensor was set in each sealed battery for measuring the battery internal pressure.
【0007】かゝる未化成の密閉電池について、先ず、
従来の製造法に従い、数字間乃至数十時間放置した後、
初充電処理を行う。例えば、上記の組立て完了した密閉
電池を室温にて15時間放置した後、下記表1に示す初
充電処理を行い、密閉型ニッケル水素電池を製造した。
この電池を以下従来電池と称する。一方、本発明によれ
ば、上記の組立て完了した密閉電池を、室温にて1時間
放置した後、充電を0.2Cで1時間(即ち、その電池
の定格容量の20%の充電)を行った後、15時間放置
し、次で、下記表1に示す初充電処理を行い、密閉型ニ
ッケル水素電池を製造した。この電池を以下本発明電池
Aと称する。また別に、上記の組立て完了した密閉電池
を室温にて14時間放置した後、充電を0.2Cで1時
間(即ち、その定格容量の20%)の充電処理を行った
後、15時間放置し、次で、下記表1に示す初充電処理
を行い、密閉型ニッケル水素電池を製造した。この電池
を以下本発明電池Bと称する。上記の初充電処理は、
0.2Cで150%充電し、放電を0.2Cで1Vまで
室温で3回の充電放電サイクル行った。但し、2回の充
放電サイクル後、40℃で24時間放置した後、3回目
の充放電サイクルを行った。上記の従来電池、本発明電
池A及び本発明電池Bについて、夫々、各回の充放電サ
イクル後の電池容量、放電平均電圧、内圧を夫々測定し
た。その結果を下記表1に示す。Regarding such an unformed sealed battery,
According to the conventional manufacturing method, after leaving for between numbers or tens of hours,
Perform the initial charging process. For example, after leaving the assembled sealed battery at room temperature for 15 hours, the initial charging treatment shown in Table 1 below was performed to manufacture a sealed nickel-hydrogen battery.
This battery is hereinafter referred to as a conventional battery. On the other hand, according to the present invention, the sealed battery thus assembled is left at room temperature for 1 hour and then charged at 0.2 C for 1 hour (that is, 20% of the rated capacity of the battery). After that, the battery was left for 15 hours, and then the initial charging treatment shown in Table 1 below was performed to manufacture a sealed nickel-hydrogen battery. This battery is hereinafter referred to as Battery A of the invention. Separately, the assembled battery is left at room temperature for 14 hours, charged at 0.2 C for 1 hour (that is, 20% of its rated capacity), and then left for 15 hours. Then, the initial charging treatment shown in Table 1 below was performed to manufacture a sealed nickel-hydrogen battery. This battery is hereinafter referred to as Battery B of the invention. The first charging process above is
The battery was charged to 150% at 0.2 C, and discharged at 0.2 C to 1 V by performing three charge / discharge cycles at room temperature. However, after two charge / discharge cycles, the sample was left at 40 ° C. for 24 hours and then the third charge / discharge cycle was performed. The battery capacity, the average discharge voltage, and the internal pressure of each of the above conventional battery, the present invention battery A, and the present invention battery B were measured after each charge / discharge cycle. The results are shown in Table 1 below.
【0008】[0008]
【表1】 [Table 1]
【0009】表1から分るように、従来法に従い密閉電
池組立て完了後、15時間放置したものを、そのまゝ初
充電処理した場合には、充放電サイクル1回行った時点
での電池容量は1000mAh以下の990mAhにす
ぎず、定格容量に達しないばかりか、その内圧は、充放
電サイクル1回目で0.80Kgf/cm2、2回目で
0.92Kgf/cm2、3回目で1.02Kgf/c
m2と大きな内圧を生じた。これに対し、本発明に従い
密閉電池組立て完了後、15時間放置したものに初充電
処理の前に前記の充電処理(以下予充電処理と称する)
を行ったものは、その後、15時間及び14時間夫々放
置した後でも、その夫々の初充電処理において、充放電
サイクル1回目で既にその電池容量は1000mAh以
上に達する一方、その内圧は、充放電サイクル1回目で
0.4Kgf/cm2以下と低く、且つその3回目でも
0.45Kgf/cm2以下にとゞまり、予充電処理を
行わない場合に比し、その内圧は著しく減少した。ま
た、放電平均電圧も向上した。As can be seen from Table 1, when the sealed battery was assembled for 15 hours according to the conventional method and then left to stand for 15 hours, the battery capacity at the time of one charge / discharge cycle 1.02Kgf is only in the following 990mAh 1000mAh, not only does not reach the rated capacity, the internal pressure is, in the charge-discharge cycle the first time in 0.80Kgf / cm 2, 2 time in 0.92Kgf / cm 2, 3 time / C
A large internal pressure of m 2 was generated. On the other hand, after completion of the sealed battery assembly according to the present invention, the battery is left for 15 hours before the above-mentioned charging process (hereinafter referred to as precharging process) before the initial charging process
After that, even after being left for 15 hours and 14 hours respectively, the battery capacity already reached 1000 mAh or more at the first charge / discharge cycle in each initial charge treatment, while the internal pressure was changed to charge / discharge. cycle 1st at 0.4 kgf / cm 2 or less and low and the third time also 0.45Kgf / cm 2 or less in the Isuzu words, compared to the case without precharge process, the internal pressure was significantly reduced. Also, the average discharge voltage was improved.
【0010】上記のように、予充電処理の有無により、
初充電処理において、上記のように電池容量、内圧など
に差が出る理由は、次のように考えられる。即ち、従来
のように、密閉電池組立て完了後、初充電工程に移され
るまでの放置期間中に、未化成の負極は少なくとも酸化
を受ける。その結果、そのまゝ次の初充電処理を行え
ば、その工程において、酸素ガスの発生が著しく、内圧
が増大すると共に、初期活性化に時間がかゝる。これに
対し、未化成の密閉電池に、初充電処理前に、即ち予充
電処理を行えば、未化成で貴側にある該負極は還元作用
を受け、卑側となる。その結果、初充電処理において、
酸素ガスの発生が少なく、内圧は減少し、且つ早期に初
期活性化が得られるものと推測される。As described above, depending on the presence or absence of the precharge process,
The reason why the battery capacity, the internal pressure, and the like differ as described above in the initial charging process is considered as follows. That is, as in the conventional case, the unformed negative electrode is at least oxidized during the standing period after completion of the sealed battery assembly and before the transfer to the initial charging step. As a result, if the subsequent initial charging process is performed, oxygen gas is remarkably generated in the process, the internal pressure increases, and the initial activation takes time. On the other hand, if the unformed sealed battery is subjected to the pre-charging process before the initial charging process, the unformed and noble side negative electrode is subjected to the reducing action and becomes the base side. As a result, in the initial charging process,
It is presumed that the generation of oxygen gas is small, the internal pressure is reduced, and the initial activation is obtained early.
【0011】尚、この場合、予充電処理は、処理すべき
電池の定格容量の100%以下、通常5〜100%の範
囲で行うことにより、完全充電しない程度で行うことに
より、正極からのO2ガスが発生しないようにして該予
充電処理による負極の酸化を未然に防止することができ
る。上記の具体例では、密閉電池組立て完了後長時間放
置後、予充電処理を行ったが、その組立て完了後、直ち
に予充電処理を行っても良い。要するに、初充電工程に
入る前に上記の充電処理を行うことにより本発明の上記
の効果をもたらし、その目的を達成することができる。In this case, the precharge treatment is performed within 100% or less of the rated capacity of the battery to be treated, usually within the range of 5 to 100%, so that the precharge treatment is performed to the extent that the battery is not completely charged. Oxidation of the negative electrode due to the precharge treatment can be prevented in advance by preventing the generation of two gases. In the above-described specific example, the precharge process is performed after leaving the closed battery for a long time after completion of the assembly, but the precharge process may be performed immediately after the completion of the assembly. In short, the above-mentioned effects of the present invention can be brought about by carrying out the above-mentioned charging treatment before entering the initial charging step, and the object can be achieved.
【0012】[0012]
【発明の効果】このように本発明によるときは、密閉型
ニッケル水素電池の組立て完了後、初充電処理を行うま
での間に、その電池の定格容量の100%以下で予充電
処理を行うときは、その後放置しても負極の合金表面の
酸化が防止されて、その初充電処理において、内圧を減
少せしめることができ、而も初期活性化のための充放電
サイクルを少なくすることができる効果を有する。As described above, according to the present invention, when precharging treatment is performed at 100% or less of the rated capacity of the sealed nickel-metal hydride battery after completion of assembly and before initial charging treatment. The effect is that the oxidation of the alloy surface of the negative electrode is prevented even if it is left unattended after that, the internal pressure can be reduced in the initial charge treatment, and the charge / discharge cycle for initial activation can be reduced. Have.
Claims (1)
水素電池を、その組立て完了後初充電処理を施されるま
での間に、定格容量の100%以下の充電処理を行うこ
とを特徴とする密閉型ニッケル水素電池の処理法。1. An unformed hermetically sealed nickel-hydrogen battery that has been assembled is charged to 100% or less of its rated capacity before the initial charging after the assembly is completed. Treatment method of sealed nickel-hydrogen battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3361178A JPH05174869A (en) | 1991-12-21 | 1991-12-21 | Processing method for sealed type nickel-hydrogen battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3361178A JPH05174869A (en) | 1991-12-21 | 1991-12-21 | Processing method for sealed type nickel-hydrogen battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05174869A true JPH05174869A (en) | 1993-07-13 |
Family
ID=18472514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3361178A Pending JPH05174869A (en) | 1991-12-21 | 1991-12-21 | Processing method for sealed type nickel-hydrogen battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05174869A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645003A (en) * | 1992-06-09 | 1994-02-18 | Furukawa Battery Co Ltd:The | Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode |
EP0696825A1 (en) | 1994-08-09 | 1996-02-14 | Japan Storage Battery Company Limited | Method for manufacturing nickel-metal-hydride battery |
US20150004474A1 (en) * | 2013-07-01 | 2015-01-01 | Samsung Sdl Co., Ltd. | Secondary battery |
CN113903998A (en) * | 2021-09-30 | 2022-01-07 | 蜂巢能源科技有限公司 | A kind of lithium ion battery and preparation method thereof |
-
1991
- 1991-12-21 JP JP3361178A patent/JPH05174869A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645003A (en) * | 1992-06-09 | 1994-02-18 | Furukawa Battery Co Ltd:The | Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode |
EP0696825A1 (en) | 1994-08-09 | 1996-02-14 | Japan Storage Battery Company Limited | Method for manufacturing nickel-metal-hydride battery |
US20150004474A1 (en) * | 2013-07-01 | 2015-01-01 | Samsung Sdl Co., Ltd. | Secondary battery |
CN113903998A (en) * | 2021-09-30 | 2022-01-07 | 蜂巢能源科技有限公司 | A kind of lithium ion battery and preparation method thereof |
CN113903998B (en) * | 2021-09-30 | 2023-02-14 | 蜂巢能源科技有限公司 | Lithium ion battery and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0773878A (en) | Manufacture of metal hydride electrode | |
JPH05174869A (en) | Processing method for sealed type nickel-hydrogen battery | |
JPH11339793A (en) | Hydrogen storage alloy for battery, its manufacture and alkaline storage battery using it | |
JP2899849B2 (en) | Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode | |
JP3432870B2 (en) | Method for producing metal hydride electrode | |
JP2001135311A (en) | Alkaline storage battery | |
JP3399265B2 (en) | Alkaline battery with nickel positive electrode and method of activating the same | |
JPH10255775A (en) | Hydrogen storage alloy electrode and its manufacture | |
JP3454612B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
JP3746086B2 (en) | Method for manufacturing nickel-metal hydride battery | |
JPH06163071A (en) | Sealed type nickel-hydrogen battery and its manufacture | |
JP3448886B2 (en) | Method for producing cadmium negative electrode plate for alkaline storage battery | |
JPH0963573A (en) | Manufacture of hydrogen storage alloy electrode | |
JPH0513077A (en) | Manufacture of hydrogen storage alloy electrode | |
JPH05190175A (en) | Surface treatment of hydrogen storage alloy for alkaline secondary battery | |
JPH0232750B2 (en) | ||
JP3322449B2 (en) | Method for producing metal hydride electrode | |
JPS63166146A (en) | Hydrogen storage electrode | |
JP3685726B2 (en) | Method for producing sintered cadmium negative electrode | |
JPS6139453A (en) | Enclosed metallic oxide-hydrogen battery | |
JPS617575A (en) | Manufacture of sealed alkaline storage battery utilizing hydrogen absorption negative electrode | |
JP2003068291A (en) | Chemical conversion method of sealed nickel-hydrogen storage battery | |
JPH04328252A (en) | Hydrogen storage alloy electrode | |
JP3177311B2 (en) | Manufacturing method of alkaline storage battery | |
JPS5836834B2 (en) | Manufacturing method for sealed storage batteries |