JPS6280963A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPS6280963A
JPS6280963A JP60216105A JP21610585A JPS6280963A JP S6280963 A JPS6280963 A JP S6280963A JP 60216105 A JP60216105 A JP 60216105A JP 21610585 A JP21610585 A JP 21610585A JP S6280963 A JPS6280963 A JP S6280963A
Authority
JP
Japan
Prior art keywords
negative electrode
alloy
battery
metal oxide
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60216105A
Other languages
Japanese (ja)
Other versions
JP2717784B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60216105A priority Critical patent/JP2717784B2/en
Publication of JPS6280963A publication Critical patent/JPS6280963A/en
Application granted granted Critical
Publication of JP2717784B2 publication Critical patent/JP2717784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge cycle life by using a negative electrode comprising a specified metal oxide soluble type hydrogen occlusion alloy or hydride, a positive electrode, a separator, and alkaline electrolyte. CONSTITUTION:A negative electrode consists of a metal oxide soluble type hydrogen occlusion alloy in which oxygen is contained as an oxide of metal (element) constituting hydrogen occlusion alloy in the hydrogen occlusion alloy which electrochemically absorbs and desorbs hydrogen. The negative electrode 1 and a nickel positive electrode 2 are spirally wound via a separator 3 and they are accommodated in a case (a negative case) 4, and insulating plates 5, 6 are placed, then the case is sealed with a sealing plate 8 having a safety vent 7. Since oxygen is contained in the alloy in a form of oxide, the swelling of the negative electrode is reduced, and the distribution of electrolyte in the battery is uniformly kept without removing of electrolyte held in the separator. Thereby, a sealed alkaline storage battery in which increase in internal resistance caused by increase in the number of cycles is decreased and cycle life is increased can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気化学的に水素を吸蔵・放出する水素吸蔵
合金を負極に用いた密閉形アルカリ蓄電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a sealed alkaline storage battery using a hydrogen storage alloy that electrochemically stores and releases hydrogen as a negative electrode.

(従来の技術) 二次電池としては、鉛蓄電池、ニッケルーカドミウム蓄
電池が最も広く知られているが、これらの蓄電池は負極
中に固形状の活物質を含むために、重量または容量の単
位当りエネルギー貯蔵容量が比較的少ない。このエネル
ギー貯蔵容量を向上させるため、水素吸蔵合金を負極と
し、正極には例えばニッケル酸化物を用いた蓄電池が提
案されている( U、S、P 3,874,928 )
。この電池系はモツケルーカドミウム蓄電池より高容量
が可能で低公害の蓄電池として期待されている。
(Prior art) Lead-acid batteries and nickel-cadmium storage batteries are the most widely known secondary batteries, but because these batteries contain a solid active material in the negative electrode, the per unit weight or capacity Energy storage capacity is relatively low. In order to improve this energy storage capacity, storage batteries have been proposed that use a hydrogen storage alloy as the negative electrode and, for example, nickel oxide as the positive electrode (U, S, P 3,874,928).
. This battery system has higher capacity than Mozukeru cadmium storage batteries and is expected to be a low-pollution storage battery.

従来技術の代表例としてLaNi5合金を負極として用
いた電池は、サイクル寿命が短かいという問題がある。
Batteries using LaNi5 alloy as a negative electrode as a representative example of the prior art have a problem of short cycle life.

その上、合金の主要構成金属であるLaが高価であるた
め、電極自体のコストも当然高くなる。そこで、このL
aNi5合金負極を改良し、低コスト化を図った電極組
成が提案されている(特開昭51−13934号)。即
ち、Laの1部又は全部ヲMrrI(ミツシーメタル)
で置換したLnNi 5 *LnCo5系を用いた電池
である。
Moreover, since La, which is the main constituent metal of the alloy, is expensive, the cost of the electrode itself is naturally high. Therefore, this L
An electrode composition that improves the aNi5 alloy negative electrode and lowers the cost has been proposed (Japanese Patent Laid-Open No. 13934/1983). That is, part or all of La wo MrrI (Mitsushi Metal)
This is a battery using LnNi 5 *LnCo5 system substituted with .

一方、特開昭49−15933号公報にはTi2Niと
T1Niの粒界て酸素を入れて、T i2N 1とT1
Ni間の膨張のひずみを小さくして長寿命を図ると云う
提案がある。しかし、この酸素がgの様な型で加わるの
か不明であり、本文中には合金製造時に酸素雰囲気とし
て酸素を混入する方法が記載されているがこの方法では
密閉形アルカリ蓄電池の負極に用いた場合、望ましい結
果が得られなかった。
On the other hand, in Japanese Patent Application Laid-Open No. 49-15933, oxygen is introduced at the grain boundary between Ti2Ni and T1Ni, and Ti2N1 and T1
There is a proposal to extend the life by reducing the expansion strain between Ni. However, it is unclear whether this oxygen is added in the form of g, and the text describes a method of mixing oxygen as an oxygen atmosphere during alloy production, but this method does not allow the use of oxygen in the negative electrode of a sealed alkaline storage battery. In this case, the desired results were not obtained.

(発明が解決しようとする問題点) LaNi  M+nNi 5を負極に用いた密閉形蓄電
池では高価であったシ、放電容量が小さく、サイクル寿
命も短いなどの問題点があり、Niの一部にCOを置換
した合金系も提案されているが、サイクル数と共に負極
自体の膨張により電池内の電解液分布のバランスがくず
れ、電池抵抗の増大をオねき、放電電圧の低下など性能
面で改善すべき点を有している。
(Problems to be solved by the invention) Sealed storage batteries using LaNi M+nNi 5 as the negative electrode have problems such as being expensive, having a small discharge capacity, and short cycle life. An alloy system has been proposed in which the negative electrode itself expands with the number of cycles, but the electrolyte distribution within the battery is unbalanced due to the expansion of the negative electrode itself, resulting in an increase in battery resistance and a reduction in discharge voltage, which may lead to performance improvements. It has a certain point.

本発明は上記問題点に鑑み、比較的安価な材料を用いて
負極を構成し、電池内抵抗の上昇を抑制し、充・放電サ
イクル寿命の長い密閉形アルカリ蓄電池を得ることにあ
る。
In view of the above-mentioned problems, the present invention aims to provide a sealed alkaline storage battery in which a negative electrode is constructed using a relatively inexpensive material, an increase in internal resistance of the battery is suppressed, and a charge/discharge cycle life is long.

(問題点を解決するための手段) 本発明は、負極、正極、セ・臂レータ及びアルカリ電解
液を有す不密閉形アルカリ蓄電池において、負極が、水
素を電気化学的に吸蔵・放出する水素吸蔵合金の中に前
記水素吸蔵合金を構成している金属(元素)の酸化物と
して酸素が含有しているところの金属酸化物溶解型水素
吸蔵合金又は水素化物からなることを特徴とする。
(Means for Solving the Problems) The present invention provides an unsealed alkaline storage battery having a negative electrode, a positive electrode, a central electrode, and an alkaline electrolyte, in which the negative electrode electrochemically absorbs and releases hydrogen. It is characterized by being made of a metal oxide-dissolved hydrogen storage alloy or hydride in which oxygen is contained in the storage alloy as an oxide of the metal (element) constituting the hydrogen storage alloy.

(作用) 水素吸蔵合金は電気化学的に水素を吸蔵するとガス状で
水素を吸蔵する場合と同様に微細化すると同時に膨張す
る傾向にある。これは水素を吸蔵した時とそうでない時
の合金自体の格子定数が異なり、水素を吸蔵した時の方
が少し大き、くなることによる。この現象を少しでも抑
制するために、本発明においては水素吸蔵合金を構成す
る金属(元素)の酸化物を加える。他の金属(元素)の
酸化物であると金属と酸化物が融合しない場合もあり、
本発明のように同種の酸化物を融合さす方が作用効果も
大きい。
(Function) When a hydrogen-absorbing alloy electrochemically absorbs hydrogen, it tends to become finer and expand at the same time, as in the case of absorbing hydrogen in a gaseous state. This is because the lattice constant of the alloy itself is different when hydrogen is occluded and when it is not, and it is slightly larger when hydrogen is occluded. In order to suppress this phenomenon as much as possible, in the present invention, oxides of metals (elements) constituting the hydrogen storage alloy are added. If it is an oxide of another metal (element), the metal and oxide may not fuse.
Fusing oxides of the same type as in the present invention has a greater effect.

(実施例) 市販のMm(ミッシユメタル)、La(ランタン)。(Example) Commercially available Mm (missile metal) and La (lantern).

Niにニッケル) ’、 Co (コバルト)から構成
される試料を一定の組成比に秤量、混合し、アーク溶解
法によシ加熱溶解させた。
A sample consisting of Ni, nickel) and Co (cobalt) was weighed and mixed at a constant composition ratio, and heated and melted using an arc melting method.

ここで云う血は一般に市販されている希土類金属の混合
物であり、組成としてはLa(ランタン):25〜35
重t%、ce(セリウム)、:40〜50重景%、Nd
(ネオジム):5〜15重量%、’Pr(プラセオジウ
ム)=2〜10重量%、その他希土類金属:1〜5重量
係である。
The blood mentioned here is a mixture of rare earth metals that is generally commercially available, and its composition is La (lanthanum): 25 to 35.
Heavy t%, ce (cerium), :40-50 heavy weight%, Nd
(Neodymium): 5 to 15% by weight, 'Pr (praseodymium) = 2 to 10% by weight, and other rare earth metals: 1 to 5% by weight.

また上記試料に金属酸化物として、少なくとも1種のL
a2O3+Co0eNiOeを0.05〜2重量係程加
えて同時だ溶解し、金属酸化物溶解型の水素吸蔵合金を
製造した。
In addition, at least one type of L as a metal oxide is added to the above sample.
A2O3+Co0eNiOe was added in a weight ratio of 0.05 to 2 and simultaneously melted to produce a metal oxide dissolving type hydrogen storage alloy.

また比較のために金属酸化物を添加しない水素吸蔵合金
を製造し、従来型とした。
For comparison, a hydrogen storage alloy without the addition of metal oxides was manufactured and used as a conventional type.

これらの合金を粗粉砕後、?−ルミルなどで38μm以
下の微粉末とした後、P、V、A (ポリビニルアルコ
ール)樹脂溶液(約1重量%)と混合し、このイースト
状合金を発泡状金属多孔体(支持体)内に充てんし、加
圧乾燥後、リードを取付は電極とした。合金(又は水素
化物)17!iを用いて負極とし、公知の焼結形ニッケ
ル正極をセ・母レータを介して第1図に示す単2形の密
閉形アルカリ蓄電池(容量2.0 Ah )を構成した
。第1図において、水素吸蔵合金からなる負極板1とニ
ッケル正極2はセ・母レータ3を介してうずまき状にケ
ース(→4内に配置され、絶縁板5.6を入れて安全弁
7のある封口板8で密閉化されている。9は正極リード
10と接続している正極端子(1)である。
After coarsely grinding these alloys,? - After making it into a fine powder of 38 μm or less using Lumil, etc., mix it with a P, V, A (polyvinyl alcohol) resin solution (approximately 1% by weight), and put this yeast-like alloy into a foamed metal porous body (support). After filling and drying under pressure, the leads were attached as electrodes. Alloy (or hydride) 17! A sealed AA alkaline storage battery (capacity 2.0 Ah) as shown in FIG. In Fig. 1, a negative electrode plate 1 made of a hydrogen storage alloy and a nickel positive electrode 2 are arranged in a spiral shape in a case (→4) via a central plate 3, and an insulating plate 5. It is sealed with a sealing plate 8. 9 is a positive electrode terminal (1) connected to a positive electrode lead 10.

なお、正極律則になるように、正極容量よシ負極容量を
大きくした、電池の充・放電条件として、0.2 C(
400mA)で7時間充電し、0.2 C(400mA
)で放電した。充・放電サイクル試験の温度はすべて室
温とし、20サイクル毎に電池内抵抗を測定し、電池内
の液分布状態を調べた。
In addition, in order to comply with the positive electrode law, the charging and discharging conditions for a battery with larger positive electrode capacity than negative electrode capacity are 0.2 C (
Charge at 0.2C (400mA) for 7 hours,
) was discharged. The temperature in all charge/discharge cycle tests was room temperature, and the internal resistance of the battery was measured every 20 cycles to examine the state of liquid distribution within the battery.

本実施例て用いた電池は単2サイズ(標準公称容量1.
65Ah)で、しかも標準容量よりも高容量になる様に
正極・負極共活物質が多く充てんされているので、電解
液量のバランスが長寿命に大きな影響を与える。本実施
例ではその1例として合金組成としてWkn o、5 
La Q、5 NI K 5 CO1,5を選び、添加
する金属酸化物としてLa2O3(A) 、 Coo(
B)、 NiO(C)等を用い、前取って水素吸蔵合金
を製造した後、粉末状態で混合し再溶解した合金を(旬
とする、比較のために無添加の場合を(蜀とする。
The batteries used in this example were AA size (standard nominal capacity 1.
65Ah), and is filled with a large amount of co-active material for the positive and negative electrodes to have a higher capacity than the standard capacity, so the balance of the amount of electrolyte has a great effect on the long life. In this example, as an example, the alloy composition is Wkno, 5
Select La Q,5 NI K 5 CO1,5 and add La2O3(A), Coo(
B) After preparing a hydrogen storage alloy using NiO(C), etc., the alloy was mixed in a powder state and remelted. .

充・放電サイクルと電池内部抵の関係を第2図に示す。Figure 2 shows the relationship between charge/discharge cycles and battery internal resistance.

初期サイクル数による試験(20サイクル)後最初の電
池内抵抗を測定するとfA) 、 (B) 、 (C)
 、 CD) 。
When the first internal resistance of the battery is measured after the initial cycle test (20 cycles), fA), (B), (C)
, CD).

(E)共殆んど大差なく6〜8mΩであった。しかし、
サイクル数が増大するにしたがって、従来形電池(F3
の抵抗は除々に上昇し、100サイクル後は急激だ上昇
する。これに対して、本発明による電池は(C)を除い
て、10〜15mΩの範囲内であり大きな抵抗の上昇は
見られない。しかしくC)は他の電池と比べて内部抵抗
が大きいが、従来形と比べるとまだ1/3以下である。
(E) Both were 6 to 8 mΩ with almost no significant difference. but,
As the number of cycles increases, conventional batteries (F3
The resistance increases gradually, and after 100 cycles it increases sharply. On the other hand, in the batteries according to the present invention, except for (C), the resistance is within the range of 10 to 15 mΩ, and no significant increase in resistance is observed. However, although C) has a higher internal resistance than other batteries, it is still less than 1/3 of the conventional type.

従来形電池はサイクル数と共に電極が膨張し、セ・母レ
ータ内に保持する電解液量が少しづつ減少し、最初注液
した時の電解液量分布が変化するために、電池内抵抗が
大きくなっている。放電電流が400mAであるから1
00mΩの抵抗になると電池電圧は0.04 V低下す
る。
In conventional batteries, the electrodes expand with the number of cycles, and the amount of electrolyte held in the battery cell gradually decreases, causing a change in the distribution of the amount of electrolyte when first injected, resulting in a large internal resistance. It has become. Since the discharge current is 400mA, 1
When the resistance becomes 00 mΩ, the battery voltage decreases by 0.04 V.

仮に中間電圧が1.25 Vの時、1.21Vまで電圧
が下がり、それだけ出力低下となるので実用上大きな問
題となる。従来形電池はこの観点から大きな問題を持つ
。これに対して、本発明による電池は、合金の中だ酸化
物の形で酸素が融合しているために、負極自体の膨張も
少なくセ・ぐレータ内に保持している電解液を排除する
こともなく電池内で電解液の分布が保持されている。と
くに高容量化を図った電池はこの傾向が強いために、電
解液量のバランスによる影響は顕著に現われる。Ni0
(C)の場合は他の酸化物と比べて少し性能がよくない
If the intermediate voltage is 1.25 V, the voltage will drop to 1.21 V, which will cause a corresponding drop in output, which will be a big problem in practice. Conventional batteries have a major problem from this point of view. On the other hand, in the battery according to the present invention, oxygen is fused in the form of oxide in the alloy, so the expansion of the negative electrode itself is small and the electrolyte held in the separator can be removed. The distribution of the electrolyte within the battery is maintained without any problems. This tendency is particularly strong in batteries designed to increase the capacity, so the influence of the balance of the amount of electrolyte becomes noticeable. Ni0
In the case of (C), the performance is slightly lower than that of other oxides.

これは均質に溶解し難い点にも影響されている。This is also influenced by the fact that it is difficult to dissolve homogeneously.

また、La2O3の量として0.049重量%以下では
その効果が少なく、1.01重量%以上になると金属酸
化物が均質に溶解せず、合金自体の性質を変えてしまう
。すなわち、水素吸蔵性能の低下に結び付くために、0
.05〜2重量係が望ましい。
Further, if the amount of La2O3 is less than 0.049% by weight, the effect will be small, and if it is more than 1.01% by weight, the metal oxide will not be dissolved homogeneously and the properties of the alloy itself will change. In other words, 0
.. A weight ratio of 05 to 2 is desirable.

Cooの量もLa2O3と同様な性質があり同様な傾向
を示す。これに対してNiOは0.05〜1.5重量%
が望ましく、多く入れてもLa2O3、の様な効果は出
なかった。また、合金粉末と金属酸化物(ここではLa
2O3を用いた)粉末を混合し、再溶解した合金の特性
が最もすぐれ、両者が均質に融合しているものと考えら
れる。酸化物の量が多くなると合金と融合せず析出する
部分も観察されるので、本発明に示す範囲が最適と考え
られる。
The amount of Coo also has the same properties as La2O3 and shows a similar tendency. On the other hand, NiO is 0.05 to 1.5% by weight.
is desirable, and even if a large amount was added, it did not produce the same effect as La2O3. In addition, alloy powder and metal oxide (here La
It is thought that the alloy obtained by mixing the powder (using 2O3) and remelting it has the best properties, and that the two are homogeneously fused. As the amount of oxide increases, some parts are observed where it does not fuse with the alloy and precipitates, so the range shown in the present invention is considered to be optimal.

合金構成以外の他の金属酸化物を加えても少しは効果が
あるが、合金と調和のとれた融合が出来る場合はよいが
、そうでない場合は逆効果となりうる。1例としてMm
 (La) Ni Co 4元素を上げたが、他の合金
系又は水素化物から出発してもほぼ同様な効果が期待で
きる。
Adding metal oxides other than those in the alloy composition has some effect, but it is good if it can be harmoniously fused with the alloy, but if it is not, it can have the opposite effect. As an example, Mm
(La)NiCoAlthough the four elements are listed above, almost the same effect can be expected even if starting from other alloy systems or hydrides.

(発明の効果) 以上の様に、本発明によれば、サイクル数と共に電池内
部抵抗の上昇も少なく、サイクル寿命の長い密閉形アル
カリ蓄電池が得られる。
(Effects of the Invention) As described above, according to the present invention, a sealed alkaline storage battery with a long cycle life and a small increase in battery internal resistance with the number of cycles can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の負極を用いた密閉形アルカリ蓄電池の
構成を示す図である。 第2図はサイクル数と電池内抵抗の関係について、従来
形電池と本発明形電池を比較した図である。 1・・・負極板、2・・・正極板、3・・・セ・ぐレー
タ、4・・・ケース(→、5,6・・・絶縁板、7・・
・安全弁、8・・・封口板、9・・・正極リード。
FIG. 1 is a diagram showing the structure of a sealed alkaline storage battery using the negative electrode of the present invention. FIG. 2 is a diagram comparing a conventional battery and a battery of the present invention with respect to the relationship between the number of cycles and the internal resistance of the battery. 1... Negative electrode plate, 2... Positive electrode plate, 3... Separator, 4... Case (→, 5, 6... Insulating plate, 7...
- Safety valve, 8... Sealing plate, 9... Positive electrode lead.

Claims (3)

【特許請求の範囲】[Claims] (1)水素を電気化学的に吸蔵・放出する水素吸蔵合金
の中に前記水素吸蔵合金を構成している金属(元素)の
酸化物として酸素が含有している金属酸化物溶解型水素
吸蔵合金又は水素化物からなる負極と、正極、セパレー
タ及びアルカリ電解液を有する密閉形アルカリ蓄電池。
(1) A metal oxide-dissolved hydrogen storage alloy that electrochemically absorbs and releases hydrogen, and which contains oxygen as an oxide of the metal (element) that constitutes the hydrogen storage alloy. Or a sealed alkaline storage battery having a negative electrode made of a hydride, a positive electrode, a separator, and an alkaline electrolyte.
(2)前記水素吸蔵合金が主にLaを25〜70重量%
を含有する希土類金属、ニッケル、コバルトなどから構
成され、金属酸化物として少なくとも1種がLa_2O
_3、CoO、NiOなどからなり、各々が0.05〜
2重量%(La_2O_3)、0.05〜2重量%(C
oO)、0.05〜1.5重量%(NiO)の範囲内に
ある特許請求の範囲第(1)項記載の密閉形アルカリ蓄
電池。
(2) The hydrogen storage alloy mainly contains 25 to 70% by weight of La.
It is composed of rare earth metals containing La_2O, nickel, cobalt, etc., and at least one metal oxide contains La_2O.
_3, CoO, NiO, etc., each of which is 0.05~
2% by weight (La_2O_3), 0.05-2% by weight (C
The sealed alkaline storage battery according to claim 1, wherein the amount of NiO is within the range of 0.05 to 1.5% by weight (NiO).
(3)前以って溶解した水素吸蔵合金と金属酸化物を相
互に粉末状で混合し、再度両者を溶解してなる金属酸化
物溶解型水素吸蔵又は水素化物を負極に用いる特許請求
の範囲第(1)項記載の密閉形アルカリ蓄電池。
(3) Claims in which a metal oxide-dissolved hydrogen storage alloy or hydride, which is obtained by mixing a previously dissolved hydrogen storage alloy and a metal oxide in powder form and then melting the two again, is used as the negative electrode. The sealed alkaline storage battery described in paragraph (1).
JP60216105A 1985-10-01 1985-10-01 Sealed alkaline storage battery Expired - Fee Related JP2717784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216105A JP2717784B2 (en) 1985-10-01 1985-10-01 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216105A JP2717784B2 (en) 1985-10-01 1985-10-01 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6280963A true JPS6280963A (en) 1987-04-14
JP2717784B2 JP2717784B2 (en) 1998-02-25

Family

ID=16683319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216105A Expired - Fee Related JP2717784B2 (en) 1985-10-01 1985-10-01 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2717784B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249364A (en) * 1986-04-22 1987-10-30 Toshiba Corp Nickel oxide-hydrogen secondary battery
JPS63166146A (en) * 1986-12-26 1988-07-09 Matsushita Electric Ind Co Ltd Hydrogen storage electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249364A (en) * 1986-04-22 1987-10-30 Toshiba Corp Nickel oxide-hydrogen secondary battery
JPH07101616B2 (en) * 1986-04-22 1995-11-01 株式会社東芝 Nickel oxide / hydrogen secondary battery
JPS63166146A (en) * 1986-12-26 1988-07-09 Matsushita Electric Ind Co Ltd Hydrogen storage electrode

Also Published As

Publication number Publication date
JP2717784B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
EP0666606B1 (en) Hydrogen-occlusion alloy for electrode of a sealed battery
JPS6280963A (en) Sealed alkaline storage battery
JPH0582024B2 (en)
JPS6215769A (en) Nickel-hydrogen alkaline battery
JPS6220245A (en) Enclosed type alkaline storage battery
JPS62119864A (en) Enclosed-type alkaline storage battery
JPS62139258A (en) Electrode for storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH03226539A (en) Hydrogen storage alloy electrode
JPH01132049A (en) Hydrogen storage electrode
JPS60193266A (en) Sealed type alkaline storage battery
JPH05174867A (en) Metal-hydrogen alkaline storage battery
JPH07107845B2 (en) Alkaline storage battery
JPH11191412A (en) Alkaline storage battery
EP0484964A1 (en) Hydrogen-occlusion alloy electrode
JPH04255673A (en) Manufacture of metal hydride storage battery
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH0467576A (en) Charging method for nickel-hydrogen storage battery
JPS62108458A (en) Nickel-hydrogen secondary cell
JPS60130063A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS61288371A (en) Hydrogen occlusion electrode
JPS61292855A (en) Metal oxide and hydrogen cell
JPH04162354A (en) Sealed secondary battery having metal hydride electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees