JPH0562803B2 - - Google Patents

Info

Publication number
JPH0562803B2
JPH0562803B2 JP60203477A JP20347785A JPH0562803B2 JP H0562803 B2 JPH0562803 B2 JP H0562803B2 JP 60203477 A JP60203477 A JP 60203477A JP 20347785 A JP20347785 A JP 20347785A JP H0562803 B2 JPH0562803 B2 JP H0562803B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic
thermal expansion
substrate
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60203477A
Other languages
Japanese (ja)
Other versions
JPS6265309A (en
Inventor
Koichi Tamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP20347785A priority Critical patent/JPS6265309A/en
Publication of JPS6265309A publication Critical patent/JPS6265309A/en
Publication of JPH0562803B2 publication Critical patent/JPH0562803B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は薄膜磁性素子、例えば薄膜磁気ヘツ
ド、薄膜磁気センサー等に用いられるFe−Si−
Cr系合金からなる軟磁性薄膜、特に熱膨張係数
が小さくしかも磁気特性に優れた軟磁性薄膜に関
するものである。 〔従来技術〕 近年、磁気応用分野では磁心が小型化、高周波
化、高密度化する傾向にあり、特に磁気記録分野
では高記録密度化に伴い、狭トラツク、短波長、
高周波帯域に使用される磁性材料が要求されてい
る。例えば固定ヘツド型デジタルオーデイオ、
PCM、垂直磁気記録等の分野は狭トラツク、短
波長、高周波帯域の方向に進んでいる。 磁性素子の小型化、高周波化に対しては、軟磁
性材料の薄板、薄帯が利用されつつあるが、未だ
これに十分に対応できる材料であるとはいえな
い。そこで注目されているのが、スパツタ法、蒸
着法、メツキ法等により製造される軟磁性薄膜で
ある。この薄膜は保磁力、透磁率の点で低周波領
域では劣るが、その形状の有利さから高周波領域
では格段に優れている。すなわち薄膜は、電気抵
抗の低い金属材料に特有のうず電流損失を著しく
低減することが可能であるために、高周波帯域に
おける透磁率の低下をおさえることができる。 一般に、薄膜は薄膜磁性素子の主要構成要素で
あり、その中でも軟磁性薄膜は磁性素子の性能を
決定するものである。これには、Ni−Fe系合金、
Fe−Si系合金、Fe−Si−Al系合金、さらにはCo
−Zr系合金に代表されるようなアモルフアス系
磁性薄膜が試作、検討されている。 〔発明が解決しようとする問題点〕 ところで、上記軟磁性薄膜にはそれぞれ一長一
短があり、これまでの研究報告では必ずしも満足
のできる結果が得られていない。なかでも、Fe
−Si系合金あるいはFe−Si−Al系合金などのFe
基軟磁性合金は、媒体の高抗磁力化に対応できる
飽和磁束密度の高い材料として期待されているに
もかかわらず、薄膜にすると透磁率が悪くなると
いう問題がある。これは後述するように薄膜と基
板との熱膨脹係数差に起因するものである。 さらに、この磁性薄膜はそのもの単体で用いら
れることはほとんどなく、他の磁性材料あるいは
非磁性材料からなる基板上に前記の種々の方法で
合金膜を形成し、多方面にわたる部品として利用
されている。この基板材料としてはMn−Zn系フ
エライト、結晶質ガラス等が用いられている。こ
の基板材料の熱膨張係数は100〜120×10-7/℃で
あり、最も大きいものでも140〜145×10-7/℃程
度である。一方、Fe−Si−Al系合金のなかでも
最も代表的な合金組成領域であるFe−9〜11%
Si−5〜7%Al合金(%は重量%を表す、以下
同じ)の熱膨張係数は約175×10-7/℃であり、
前記基板のそれに比べて30〜75×10-7/℃だけ大
きくなつている。(ここでの熱膨張係数は40〜600
℃の温度範囲における値である。以下特に断らな
い限り同じ温度範囲とする。)磁歪を介した熱応
力の磁気特性への寄与を最小にするために基板と
磁性薄膜の熱膨張係数を一致させるか、もしくは
近づけた方がよい。ここで、基板と磁性薄膜の熱
膨張係数が異なつていると次のような問題が生じ
る。 1 薄膜を形成する際に透磁率を改善する目的で
基板を200〜400℃に加熱することがある。この
場合、成膜後に薄膜を基板ごと冷却するが、こ
のときに熱収縮による歪が薄膜に導入され、こ
のために透磁率が低下する。この導入された歪
はいかなる処理を行つても容易には除去できな
い。 2 基板を加熱しない場合でも、成膜時に機械的
な歪が導入されるのでこの解放と、結晶構造の
改善を兼ねて400〜600℃の温度で熱処理が行わ
れる。このとき、基板と薄膜の熱膨張係数が異
なつていると、加熱あるいは冷却時に薄膜に熱
応力が導入されて透磁率の低下をまねく。 3 上記の熱収縮あるいは熱応力により薄膜にク
ラツクが発生し軟磁性薄膜としての機能を失
う。 以上のような問題点があるにもかかわらず、熱
膨張係数の大きな基板材料が工業的にはまだ得ら
れていない。また、熱膨張係数の小さなFe基板
軟磁性合金の磁性薄膜も提案されていない。 上記問題点を解消し得る軟磁性薄膜が実現でき
れば、薄膜磁性素子、特に薄膜磁気ヘツドの実用
化に大きく貢献できるものである。 従つて本発明はこのような実状に鑑みなされた
もので、その主たる目的は熱膨張係数が小さく、
基板とよく密着し、透磁率に優れ、しかも薄膜の
諸特性を向上させた軟磁性薄膜を提供することに
ある。 〔問題点を解決するための手段〕 Fe−Si−Al合金においてAlは熱膨張係数には
ほとんど関与していないので、Alに代る第3元
素として熱膨張係数を下げる元素について種々検
討した結果、Crが極めて有効であることを見い
だした。鉄(Fe)の熱膨張係数が140〜145×
10-7/℃であるためFe基合金では140×10-7/℃
以下を得ることが困難であろうと考えられてい
た。しかしFe−Si−Cr系合金で組成を限定する
ことにより140×10-7/℃以下の材料を実現でき
ることがわかつた。 すなわちFe−Si−Cr系合金においてSi量2〜
8%、Cr量8〜15%の組成範囲で熱膨張係数が
140×10-7/℃以下となり、特にSi量4〜6%、
Cr量9〜12%の組成範囲で130×10-7/℃という
極めて小さな熱膨張係数の材料が得られる。 Siは透磁率に大きく関与する元素であり、Cr
は透磁率、電気抵抗に影響を及ぼすとともに熱膨
張係数の低下に極めて有効である。高透磁率を得
るためにはSi量は2%以上が必要であり(表−1
No.9参照)、熱膨張係数を140×10-7/℃以下にす
るためにはCr量との関係上8%以下にする必要
がある(表−1No.10参照)。 140×10-7/℃以下の熱膨張係数を有する軟磁
性薄膜用材料が上記により得ることができるの
で、種々の基板材料を選択することが可能とな
り、また基板と薄膜の密着性も一層よくなる。 また、本発明の軟磁性薄膜を製造する方法は特
に規定しないが、スパツタ法、蒸着法、メツキ法
等により任意に選択できる。 〔実施例〕 以下、本発明をスパツタ法を用いた実施例によ
り詳しく説明する。 外径10mm、内径6mm、厚さ0.5mmの結晶化ガラ
ス基板(熱膨張係数135×10-7/℃)を用いて、
この上にスパツタ法により表−1に示した種種の
熱膨張係数を有するFe−Si−Cr系合金を厚さ3μ
m被着した。これらのスパツタ膜を分析した結
果、主成分であるFe,Si,Cr元素の他に3ppm以
下のS,5ppm以下のCが検出された。また、ス
パツタ膜の組織観察により第2相の析出は認めら
れなかつた。膜形成後、非酸化性雰囲気中で400
〜600℃の膜組成に応じた温度で熱処理を行つた
後、5MHzにおける実効透磁率を測定した。なお
必要に応じて磁界中熱処理あるいは磁界中冷却を
行つた。この結果を表−1に示す。
[Industrial Field of Application] The present invention relates to Fe-Si-- used in thin-film magnetic elements, such as thin-film magnetic heads and thin-film magnetic sensors.
The present invention relates to a soft magnetic thin film made of a Cr-based alloy, particularly a soft magnetic thin film with a small coefficient of thermal expansion and excellent magnetic properties. [Prior art] In recent years, in the field of magnetic applications, magnetic cores have tended to be smaller, have higher frequencies, and have higher densities.In particular, in the field of magnetic recording, with the increase in recording density, narrower tracks, shorter wavelengths,
Magnetic materials used in high frequency bands are required. For example, fixed head digital audio,
Fields such as PCM and perpendicular magnetic recording are moving toward narrower tracks, shorter wavelengths, and higher frequency bands. Although thin plates and ribbons of soft magnetic materials are being used to reduce the size and increase the frequency of magnetic elements, it cannot be said that the materials are yet fully compatible with this. Therefore, soft magnetic thin films manufactured by sputtering, vapor deposition, plating, etc. are attracting attention. Although this thin film is inferior in terms of coercive force and permeability in the low frequency range, it is significantly superior in the high frequency range due to its advantageous shape. That is, the thin film can significantly reduce the eddy current loss characteristic of metal materials with low electrical resistance, and therefore can suppress the decrease in magnetic permeability in the high frequency band. Generally, a thin film is a main component of a thin film magnetic element, and among them, a soft magnetic thin film determines the performance of the magnetic element. This includes Ni-Fe alloy,
Fe-Si alloy, Fe-Si-Al alloy, and even Co
- Amorphous magnetic thin films such as Zr-based alloys are being prototyped and studied. [Problems to be Solved by the Invention] By the way, each of the above-mentioned soft magnetic thin films has advantages and disadvantages, and research reports to date have not necessarily yielded satisfactory results. Among them, Fe
-Fe such as Si alloy or Fe-Si-Al alloy
Although soft magnetic alloys are expected to be materials with high saturation magnetic flux densities that can be used to increase the coercive force of media, they have the problem of poor magnetic permeability when made into thin films. This is due to the difference in coefficient of thermal expansion between the thin film and the substrate, as will be described later. Furthermore, this magnetic thin film is rarely used on its own; rather, alloy films are formed on substrates made of other magnetic or non-magnetic materials using the various methods described above, and used as components in a wide variety of fields. . Mn--Zn ferrite, crystalline glass, etc. are used as the substrate material. The thermal expansion coefficient of this substrate material is 100 to 120 x 10 -7 /°C, and the largest one is about 140 to 145 x 10 -7 /°C. On the other hand, Fe-9~11% is the most typical alloy composition range among Fe-Si-Al alloys.
The thermal expansion coefficient of Si-5 to 7% Al alloy (% represents weight %, the same applies hereinafter) is approximately 175 × 10 -7 / °C,
It is larger by 30 to 75×10 -7 /°C compared to that of the substrate. (Thermal expansion coefficient here is 40-600
The value is in the temperature range of °C. The following temperature ranges are the same unless otherwise specified. ) In order to minimize the contribution of thermal stress via magnetostriction to magnetic properties, it is better to make the thermal expansion coefficients of the substrate and the magnetic thin film the same or close to each other. Here, if the thermal expansion coefficients of the substrate and the magnetic thin film are different, the following problem occurs. 1. When forming a thin film, the substrate is sometimes heated to 200-400°C for the purpose of improving magnetic permeability. In this case, after film formation, the thin film is cooled together with the substrate, but at this time, strain due to thermal contraction is introduced into the thin film, resulting in a decrease in magnetic permeability. This introduced distortion cannot be easily removed no matter what processing is performed. 2. Even when the substrate is not heated, mechanical strain is introduced during film formation, so heat treatment is performed at a temperature of 400 to 600°C to both release this strain and improve the crystal structure. At this time, if the substrate and the thin film have different coefficients of thermal expansion, thermal stress will be introduced into the thin film during heating or cooling, leading to a decrease in magnetic permeability. 3. Cracks occur in the thin film due to the above-mentioned thermal contraction or thermal stress, and the thin film loses its function as a soft magnetic thin film. Despite the above-mentioned problems, a substrate material with a large coefficient of thermal expansion has not yet been obtained industrially. Moreover, a magnetic thin film of a soft magnetic alloy on an Fe substrate with a small coefficient of thermal expansion has not been proposed. If a soft magnetic thin film capable of solving the above problems can be realized, it will greatly contribute to the practical application of thin film magnetic elements, especially thin film magnetic heads. Therefore, the present invention was made in view of these circumstances, and its main purpose is to provide a material with a small coefficient of thermal expansion.
The object of the present invention is to provide a soft magnetic thin film that adheres well to a substrate, has excellent magnetic permeability, and has improved various properties of the thin film. [Means for solving the problem] Since Al has little to do with the coefficient of thermal expansion in Fe-Si-Al alloys, we have conducted various studies on elements that lower the coefficient of thermal expansion as a third element in place of Al. , found that Cr is extremely effective. The thermal expansion coefficient of iron (Fe) is 140 to 145×
10 -7 /℃, so for Fe-based alloys it is 140×10 -7 /℃
It was thought that it would be difficult to obtain: However, it was found that by limiting the composition to a Fe-Si-Cr alloy, it was possible to create a material with a temperature of 140×10 -7 /°C or less. In other words, in Fe-Si-Cr alloys, the amount of Si is 2~
8%, and the thermal expansion coefficient in the composition range of 8 to 15% Cr content.
140×10 -7 /℃ or less, especially when the Si content is 4 to 6%,
A material with an extremely small thermal expansion coefficient of 130×10 -7 /°C can be obtained in a composition range with a Cr content of 9 to 12%. Si is an element that greatly contributes to magnetic permeability, and Cr
is extremely effective in reducing the coefficient of thermal expansion as well as affecting magnetic permeability and electrical resistance. In order to obtain high magnetic permeability, the amount of Si must be 2% or more (Table 1
(See No. 9), and in order to keep the thermal expansion coefficient below 140 x 10 -7 /°C, it needs to be below 8% in relation to the Cr content (see No. 10 of Table 1). Since a soft magnetic thin film material having a thermal expansion coefficient of 140×10 -7 /°C or less can be obtained as described above, it is possible to select various substrate materials, and the adhesion between the substrate and the thin film is also improved. . Further, the method for manufacturing the soft magnetic thin film of the present invention is not particularly specified, but may be arbitrarily selected from among sputtering methods, vapor deposition methods, plating methods, and the like. [Example] Hereinafter, the present invention will be explained in detail with reference to an example using the sputtering method. Using a crystallized glass substrate with an outer diameter of 10 mm, an inner diameter of 6 mm, and a thickness of 0.5 mm (coefficient of thermal expansion 135 x 10 -7 /℃),
On top of this, Fe-Si-Cr alloys having various coefficients of thermal expansion shown in Table 1 were deposited using the sputtering method to a thickness of 3 μm.
m was deposited. As a result of analyzing these sputtered films, in addition to the main components of Fe, Si, and Cr elements, less than 3 ppm of S and less than 5 ppm of C were detected. In addition, no second phase precipitation was observed by observing the structure of the sputtered film. After film formation, 400 min in non-oxidizing atmosphere
After heat treatment at a temperature of ~600°C depending on the film composition, the effective magnetic permeability at 5MHz was measured. Note that heat treatment in a magnetic field or cooling in a magnetic field was performed as necessary. The results are shown in Table-1.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明による軟磁性薄膜用材料
によれば、基板との密着性に優れしかも透磁率の
高い薄膜が実現される。
As described above, according to the soft magnetic thin film material according to the present invention, a thin film having excellent adhesion to a substrate and high magnetic permeability can be realized.

Claims (1)

【特許請求の範囲】[Claims] 1 Si−Cr−Feからなる軟磁性薄膜用材料にお
いて、重量比でSi2〜8%、Cr8〜15%及び残部
Feからなり、熱膨張係数を140×10-7/℃以下に
したことを特徴とする軟磁性薄膜用材料。
1 In a soft magnetic thin film material consisting of Si-Cr-Fe, the weight ratio is Si2 to 8%, Cr8 to 15%, and the balance
A soft magnetic thin film material made of Fe and characterized by a thermal expansion coefficient of 140×10 -7 /°C or less.
JP20347785A 1985-09-17 1985-09-17 Material for softly magnetized thin film Granted JPS6265309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20347785A JPS6265309A (en) 1985-09-17 1985-09-17 Material for softly magnetized thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20347785A JPS6265309A (en) 1985-09-17 1985-09-17 Material for softly magnetized thin film

Publications (2)

Publication Number Publication Date
JPS6265309A JPS6265309A (en) 1987-03-24
JPH0562803B2 true JPH0562803B2 (en) 1993-09-09

Family

ID=16474792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20347785A Granted JPS6265309A (en) 1985-09-17 1985-09-17 Material for softly magnetized thin film

Country Status (1)

Country Link
JP (1) JPS6265309A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616653A (en) * 1979-07-17 1981-02-17 Tohoku Tokushuko Kk Soft magnetic material having superior workability and machinability
JPS57101652A (en) * 1980-12-17 1982-06-24 Tohoku Metal Ind Ltd Alloy with high magnetic flux density and high magnetic permeability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616653A (en) * 1979-07-17 1981-02-17 Tohoku Tokushuko Kk Soft magnetic material having superior workability and machinability
JPS57101652A (en) * 1980-12-17 1982-06-24 Tohoku Metal Ind Ltd Alloy with high magnetic flux density and high magnetic permeability

Also Published As

Publication number Publication date
JPS6265309A (en) 1987-03-24

Similar Documents

Publication Publication Date Title
JPS6129105A (en) Magnetic alloy thin film
JPH0562803B2 (en)
JPS58100412A (en) Manufacture of soft magnetic material
JPH03265104A (en) Soft magnetic alloy film
JPS6265308A (en) Softly magnetized thin film
JPS60218820A (en) Manufacture of fe-al-si system alloy thin film
JP2675178B2 (en) Soft magnetic alloy film
JP2522284B2 (en) Soft magnetic thin film
KR960004664B1 (en) Soft-magnetic thin film alloy for magnetic head and the manufacturing method thereof
JPS6240710A (en) Magnetically soft thin film
JPS6252907A (en) Magnetically soft thin film
JPS61234510A (en) Soft magnetic thin film
JPS62120461A (en) Material for soft magnetic thin film
JPS62120459A (en) Material for soft magnetic thin film
JPS6278804A (en) Soft magnetic thin film
JPS62120460A (en) Material for soft magnetic thin film
JPS61234509A (en) Soft magnetic thin film
JPS63146417A (en) Soft magnetic thin film
JPS62104107A (en) Soft magnetic thin film
JPS61284546A (en) Amorphous alloy for magnetic head
JPH01109505A (en) Magnetic head
JPH01146312A (en) Soft magnetic thin film
JPS61234507A (en) Soft magnetic thin film
JPS62104111A (en) Soft magnetic thin film
JPS61234508A (en) Soft magnetic thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees