JPH01109505A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH01109505A
JPH01109505A JP26796087A JP26796087A JPH01109505A JP H01109505 A JPH01109505 A JP H01109505A JP 26796087 A JP26796087 A JP 26796087A JP 26796087 A JP26796087 A JP 26796087A JP H01109505 A JPH01109505 A JP H01109505A
Authority
JP
Japan
Prior art keywords
ferrite
intermediate layer
soft magnetic
sendust
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26796087A
Other languages
Japanese (ja)
Inventor
Masanao Mimura
三村 正直
Shingoro Fukuoka
新五郎 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26796087A priority Critical patent/JPH01109505A/en
Publication of JPH01109505A publication Critical patent/JPH01109505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive

Landscapes

  • Magnetic Heads (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To prevent the separation of a 'Sendust(R)' film at the high temperature heating process and to improve a soft magnetic characteristic by providing an intermediate layer composed of a special material on an Mn-Zn ferrite and forming the thin film of the soft magnetic material on it. CONSTITUTION:The chip with an area 10X10mm and thickness 2mm is segmented from a monocrystal Mn-Zn ferrite so that the direction vertical to the surface can become (110) and the one side surface is mirror-finished. After the mirror finished surface is sputter-etched by an RF magnetron sputter, (Fe1-aNia)1-bTib (provided that 0.4<=a<=0.7 and 0<=b<=0.2) is covered as the intermediate layer and next, the 'Sendust(R)' is covered. This is thermal- processed at 600 deg.C in a vacuum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMn−Znフェライト上に軟磁気材料、例えば
Fe−/1−Si系合金(センダスト)の薄膜を形成し
た磁気ヘッドに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic head in which a thin film of a soft magnetic material, such as Fe-/1-Si alloy (Sendust) is formed on Mn-Zn ferrite. .

〔従来の技術および発明が解決すべき問題点〕磁気記録
の高密度化のために、媒体は高抗磁力化、高磁束密度化
の方向に准み、それに対応して磁気ヘッド材料としても
、高磁束密度、よりソフトな磁性材料が望まれている。
[Prior art and problems to be solved by the invention] In order to increase the density of magnetic recording, media are trending toward higher coercive force and higher magnetic flux density, and in response, magnetic head materials are Higher magnetic flux density and softer magnetic materials are desired.

またヘッド材は狭トラツク、狭ギャップ化の加工が行な
われ、その高精度の薄膜形成技術が重要である。
In addition, the head material is processed to have narrow tracks and gaps, and highly accurate thin film formation technology is important.

そこで近年高抗磁ツノ媒体対応の磁気ヘッドとしてフェ
ライトのキャップつき合わせ面に飽和磁束密度の高く、
軟磁気特性の良いアモルフン・スヤセンダストが実用化
され始めている。またこれ等の磁気ヘッドは数百mの温
度で熱処理や加工されるため、その熱的安定性が問題と
なる。
Therefore, in recent years, magnetic heads compatible with high-resistance horn media have been developed using ferrite caps with high saturation magnetic flux density on the mating surface of the cap.
Amorphun suyasen dust with good soft magnetic properties is beginning to be put into practical use. Furthermore, since these magnetic heads are heat-treated and processed at temperatures of several hundred meters, their thermal stability becomes a problem.

アモルファスは結晶化温度をすぎると、軟磁気特性が悪
くなるため、熱的に安定なセンダストが実用的である。
When amorphous material exceeds its crystallization temperature, its soft magnetic properties deteriorate, so sendust, which is thermally stable, is practical.

しかしフェライトと比較してセンダストは熱膨張が大き
く、加エエ稈に大きな歪が発生して軟磁気特性の劣化や
フェライトからの剥離などが発生する。
However, compared to ferrite, sendust has a larger thermal expansion, which causes large strain in the processed culm, resulting in deterioration of soft magnetic properties and separation from the ferrite.

これを解決するため、フェライトとセンダストの間に中
間層を設けることが行なわれている。
To solve this problem, an intermediate layer is provided between the ferrite and sendust.

この中間層はフェライトとの熱膨張差があまりなく、セ
ラミックスとしてのフェライトへの接合力に富むものが
望ましい。またこの中間層が非磁性層である場合はスペ
ーシングによる記録再生特性に問題が起る。したがって
この中間層も軟磁性材料であることが望ましい。
It is desirable that this intermediate layer has little difference in thermal expansion from the ferrite and has strong bonding strength to the ferrite as a ceramic. Furthermore, if this intermediate layer is a nonmagnetic layer, problems arise in recording and reproducing characteristics due to spacing. Therefore, it is desirable that this intermediate layer also be made of a soft magnetic material.

部分的な解決策としてCrやパーマロイを中間層として
いる。しかしCrは熱膨張差による応力を緩和するが、
crは手強磁性体であるし、パーマロイは軟磁性材料で
スペーシングはなくなるが、熱応力を緩和することはで
きない。
A partial solution is to use Cr or permalloy as an intermediate layer. However, although Cr alleviates the stress caused by the difference in thermal expansion,
Cr is a ferromagnetic material, and permalloy is a soft magnetic material that eliminates spacing, but cannot alleviate thermal stress.

(問題点を解決するための手段) 本発明はこれに鑑み種々検討の結果、フェライトと軟磁
性金属材料との接合に適し、フェライトとの熱膨張の差
が少なく、フェライトとの接合力に富み、軟磁気特性を
有する中間層を設けた磁気ヘッドを開発したものである
(Means for Solving the Problems) In view of this, as a result of various studies, the present invention is suitable for bonding ferrite and soft magnetic metal materials, has a small difference in thermal expansion with ferrite, and has high bonding strength with ferrite. , developed a magnetic head with an intermediate layer having soft magnetic properties.

即ち本発明は、Mn−Znフェライト上に軟磁気材料の
薄膜を形成した磁気ヘッドにおいて、Mn−Znフェラ
イト上に(Fe1−aNia )1−b T ib、但
し0.4≦a≦0.7、O≦b≦0.2(原子比)から
なる中間層を設け、その上に軟磁気材料の薄膜を形成し
たことを特徴とするもので、軟磁気材料としてはFe−
Al−Si系合金(センダスト)を用いることが望まし
い。
That is, the present invention provides a magnetic head in which a thin film of a soft magnetic material is formed on Mn-Zn ferrite, and (Fe1-aNia)1-bTib, where 0.4≦a≦0.7. , O≦b≦0.2 (atomic ratio), and a thin film of a soft magnetic material is formed on the intermediate layer, and the soft magnetic material is Fe-
It is desirable to use an Al-Si alloy (sendust).

〔作 用〕[For production]

本発明において中間層を(Fe1−a Nia)1−bTib、但し0.4≦a≦0.7、O≦
b≦0.2(原子比)としたのは、次の理由によるもの
である。
In the present invention, the intermediate layer is (Fe1-a Nia)1-bTib, provided that 0.4≦a≦0.7, O≦
The reason why b≦0.2 (atomic ratio) is set is as follows.

熱膨張の小さい合金としてインバーが知られており、こ
の合金はFe64N 136(at%)付近の組成であ
る。また軟磁性材料としては、パーマロイが知られてお
り、この合金はFe−Ni系でF e 78.s N 
i 21.5 (at%)付近の組成である。そこでこ
れ等の中間組成、例えばFe4ONiso(at%)付
近では線熱膨張係数は3×10−6程度と低く、初造磁
率は3000程度と比較的に高い。そこで合金組成を(
Fe1−aNia)、但し0.4≦a≦0.1(原子比
)とすることにより、軟磁性材料で熱膨張係数をフェラ
イトとの接合に適した値とすることができる。
Invar is known as an alloy with low thermal expansion, and this alloy has a composition near Fe64N136 (at%). Permalloy is also known as a soft magnetic material, and this alloy is Fe-Ni based and has Fe 78. s N
The composition is around i 21.5 (at%). Therefore, in these intermediate compositions, for example around Fe4ONiso (at%), the coefficient of linear thermal expansion is as low as about 3 x 10-6, and the initial magnetic coercivity is relatively high as about 3000. Therefore, the alloy composition (
Fe1-aNia), where 0.4≦a≦0.1 (atomic ratio), the soft magnetic material can have a thermal expansion coefficient suitable for bonding with ferrite.

しかしNi量を増加すると、疑似出力は強くなるが、磁
気特性が多少低下するばかりが、熱膨張差による応力増
加により剥離しゃすくなる。
However, when the amount of Ni is increased, the pseudo output becomes stronger, but the magnetic properties are slightly degraded, and the stress increases due to the difference in thermal expansion, making it more likely to peel off.

Tiの添加は、メタライズにおける活性化金属法として
知られているようにフェライトとの接合力を強化するも
のである。しかしてTiは非磁性金属なので、磁気特性
を劣化させない程度に添加することが重要であり、(F
e>−aNia)1−bTib、但しO≦b≦0.2(
原子比)とする。即らTi量を増加させると接合力は強
くなるが磁気特性が劣化する。
Addition of Ti strengthens the bonding force with ferrite, as is known as the activated metal method in metallization. However, since Ti is a nonmagnetic metal, it is important to add it to an extent that does not deteriorate the magnetic properties.
e>-aNia)1-bTib, where O≦b≦0.2(
atomic ratio). That is, when the amount of Ti is increased, the bonding force becomes stronger, but the magnetic properties deteriorate.

(実施例) 単結晶Mn−Znフェライトより面積10x 10m1
厚ざ2mのチップを面に垂直な方向が(110)になる
用に切出し、その一方の面を鏡面仕上げした。このチッ
プについて、RFマグネトロンスパッタにより、先ず鏡
面仕上げした面をスパッターエッチした後、中間層とし
て(Fe j−a N ia )  t−b T ib
 、但し0.4≦a≦0.7、Q≦b≦0.2(原子比
)を0.1μmの厚さに被覆し、次にセンダスト(Fe
−Aj!−Si合金)を20μmの厚さに被覆した。
(Example) Area 10x 10m1 from single crystal Mn-Zn ferrite
A chip with a thickness of 2 m was cut so that the direction perpendicular to the surface was (110), and one surface was mirror-finished. For this chip, first the mirror-finished surface was sputter-etched using RF magnetron sputtering, and then an intermediate layer (Fe ja-a N ia ) t-b T ib
However, 0.4≦a≦0.7, Q≦b≦0.2 (atomic ratio) was coated to a thickness of 0.1 μm, and then sentust (Fe
-Aj! -Si alloy) was coated to a thickness of 20 μm.

尚この被覆工程はクリーンなチャンバー内で行なった。Note that this coating step was performed in a clean chamber.

またセンダストとしては3 i 10.1゜Aj!6.
3 、 Fe残部(wt%)のいわゆる標準センダスト
を用いた。
Also, for Sendust, it is 3 i 10.1゜Aj! 6.
3. So-called standard sendust with Fe balance (wt%) was used.

これ等を真空中600℃で熱処理した後、ダイジングソ
ーによる加工実験を行なった。この実験から、上記範囲
の中間層を用いたものは接合力が強く、磁気特性が優れ
ている。これに対し上記範囲よりTi量を増加させた中
間層を用いたものは、接合力が向上するも、磁気特性が
劣化し、上記範囲よりNilを増加させた中間層を用い
たものは疑似出力を多少低下するも、熱膨張差による応
力が増大し、剥離しやすくなった。
After heat treating these in vacuum at 600° C., processing experiments using a dicing saw were conducted. From this experiment, it was found that the bonding force using the intermediate layer in the above range was strong and the magnetic properties were excellent. On the other hand, those using an intermediate layer with an increased amount of Ti than the above range improve the bonding strength, but the magnetic properties deteriorate, and those using an intermediate layer with an increased Ni content above the above range produce a pseudo output. Although it decreased somewhat, the stress due to the difference in thermal expansion increased, making it easier to peel off.

尚本実験で特に望ましい組成は(Fe65Ni4s)s
Tis  (at%)付近テアリ、例エバFe54.8
. N i 44.8.  Tio、s  (at%)
の中間層を0.1μmの厚さに被覆したものは熱処理後
の保磁力(Ha)0.360e、飽和磁束密度(B i
 ) 10200 Gとなる。また熱処理後のダイシン
グソーによる加工に十分たえ、5MH2における初透磁
率は900程度であった。
The particularly desirable composition in this experiment is (Fe65Ni4s)s
Tis (at%) near Tiari, e.g. Eva Fe54.8
.. N i 44.8. Tio,s (at%)
The one coated with an intermediate layer with a thickness of 0.1 μm has a coercive force (Ha) of 0.360e and a saturation magnetic flux density (B i
) 10200G. Further, after sufficient processing with a dicing saw after heat treatment, the initial magnetic permeability at 5MH2 was about 900.

比較のためFe54N 136(at%)のインバー組
成の中間層を用いたところ中間層の熱膨張が非常に低い
ため、剥離やフェライトにひびが生じた。また(Fe4
oN 1oo)yoT 130(at%)の中間層を用
いたものは、Ti量が多いため接合力が強すぎ、フェラ
イトとliの反応が進み、非磁性層によるものと思われ
る疑似出力が増大した。
For comparison, when an intermediate layer having an invar composition of Fe54N 136 (at%) was used, peeling and cracking of the ferrite occurred because the thermal expansion of the intermediate layer was very low. Also (Fe4
oN 1oo) yoT In the case of using an intermediate layer of 130 (at%), the bonding force was too strong due to the large amount of Ti, the reaction between ferrite and lithium progressed, and the pseudo output increased, which is thought to be due to the nonmagnetic layer. .

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、600℃での高温加熱工程
においてもセンダスト膜の剥離を起すことなく、軟磁気
特性もよい磁気ヘッドを提供することができるもので、
工業上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to provide a magnetic head that does not cause peeling of the sendust film even in a high temperature heating process at 600° C. and has good soft magnetic properties.
This has a remarkable industrial effect.

Claims (2)

【特許請求の範囲】[Claims] (1)Mn−Znフェライト上に軟磁気材料の薄膜を形
成した磁気ヘッドにおいて、Mn−Znフェライト上に
(Fe_1_−_aNi_a)_1_−_bTi_b、
但し0.4≦a≦0.7、0≦b≦0.2(原子比)か
らなる中間層を設け、その上に軟磁気材料の薄膜を形成
したことを特徴とする磁気ヘッド。
(1) In a magnetic head in which a thin film of soft magnetic material is formed on Mn-Zn ferrite, (Fe_1_-_aNi_a)_1_-_bTi_b,
A magnetic head characterized in that an intermediate layer having atomic ratios of 0.4≦a≦0.7 and 0≦b≦0.2 is provided, and a thin film of a soft magnetic material is formed thereon.
(2)軟磁気材料としてFe−Al−Si系合金(セン
ダスト)を用いる特許請求の範囲第1項記載の磁気ヘッ
ド。
(2) A magnetic head according to claim 1, in which a Fe-Al-Si alloy (sendust) is used as the soft magnetic material.
JP26796087A 1987-10-23 1987-10-23 Magnetic head Pending JPH01109505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26796087A JPH01109505A (en) 1987-10-23 1987-10-23 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26796087A JPH01109505A (en) 1987-10-23 1987-10-23 Magnetic head

Publications (1)

Publication Number Publication Date
JPH01109505A true JPH01109505A (en) 1989-04-26

Family

ID=17451985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26796087A Pending JPH01109505A (en) 1987-10-23 1987-10-23 Magnetic head

Country Status (1)

Country Link
JP (1) JPH01109505A (en)

Similar Documents

Publication Publication Date Title
JPH061729B2 (en) Magnetic film and magnetic head using the same
JPS59193235A (en) Co-nb-zr type amorphous magnetic alloy and magnetic head using the same
CA1261177A (en) Amorphous soft magnetic thin film
JPS6129105A (en) Magnetic alloy thin film
JPH01109505A (en) Magnetic head
JPS58100412A (en) Manufacture of soft magnetic material
JPS61188908A (en) Amorphous soft magnetic film
JPS58118015A (en) Magnetic head
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPH01132109A (en) Ferromagnetic thin film and magnetic head employing same
JPS62183101A (en) Ferromagnetic thin film
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JPH04214831A (en) Soft magnetic film
JPS62104111A (en) Soft magnetic thin film
JPS6215805A (en) Magnetic head
JPS6265309A (en) Material for softly magnetized thin film
JPS63112809A (en) Magnetic head
JPH0485716A (en) Thin magnetic film for magnetic head
JPH0546922A (en) Soft magnetic alloy and magnetic head using the same
JPS6240710A (en) Magnetically soft thin film
JPS62195105A (en) Ferromagnetic thin film
JPS61234508A (en) Soft magnetic thin film
JPS63173215A (en) Magnetic head
JPH0789527B2 (en) Crystalline soft magnetic thin film