JPH0561797B2 - - Google Patents

Info

Publication number
JPH0561797B2
JPH0561797B2 JP62210476A JP21047687A JPH0561797B2 JP H0561797 B2 JPH0561797 B2 JP H0561797B2 JP 62210476 A JP62210476 A JP 62210476A JP 21047687 A JP21047687 A JP 21047687A JP H0561797 B2 JPH0561797 B2 JP H0561797B2
Authority
JP
Japan
Prior art keywords
copper oxide
substrate
temperature
green sheet
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62210476A
Other languages
Japanese (ja)
Other versions
JPS6453595A (en
Inventor
Minehiro Itagaki
Osamu Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62210476A priority Critical patent/JPS6453595A/en
Publication of JPS6453595A publication Critical patent/JPS6453595A/en
Publication of JPH0561797B2 publication Critical patent/JPH0561797B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はセラミツク多層基板の製造方法に関す
るものである。 従来の技術 近年、導体材料に銅を使用した厚膜多層基板
は、厚膜ペーストが手軽に入手できることや工法
そのものが簡単なため比較的容易に作製ができる
ので、現在多くの方面で実用化されようとしてい
る。しかし、この厚膜印刷法のほとんどの場合
は、導体層および絶縁層の印刷後その都度中性雰
囲気中で焼成を行うので、ペースト中のバインダ
除去が困難となり、絶縁層のプリンタの発生や絶
縁性の劣化につながる。また、設備コストのアツ
プそしてリードタイムが長くなる等の欠点があ
る。そこで上記欠点を解決したのが導体の出発材
料に酸化銅を使用する方法である。これにより大
気中で容易に脱バインダを行うことができ、印刷
後その都度焼成を繰り返す必要がなく、1回の還
元−焼成の連続工程を行うだけでよい。この多層
基板の製造方法は、特願昭59−147833号、特願昭
59−147832号に、そして酸化銅ペーストは、特願
昭60−23846号、特願昭60−140816号にそれぞれ
述べられている。 以下図面を参照しながら、上述した酸化銅を用
いた印刷多層基板の製造方法の一例について説明
する。第4図は酸化銅を用いた印刷多層基板の製
造工程を示すものである。セラミツク焼成基板上
に酸化銅ペーストで配線層を印刷し、乾燥後に前
記セラミツク基板上に厚膜絶縁ペーストを印刷す
ることにより絶縁層を形成する。前記酸化銅ペー
ストと絶縁ペーストを所望の回数だけ積層と印刷
を繰り返し多層化して、次に大気または酸化性雰
囲気中で加熱処理をすることにより脱バインダを
行う。そして還元雰囲気中および中性雰囲気中で
加熱処理をして印刷多層基板を得る。 発明が解決しようとする問題点 しかしながら、上記の方法を含む厚膜印刷法で
の糸くずの混入で配線層間にシヨートが発生して
しまうという問題点がある。前記問題点の解決策
として、絶縁ペーストの印刷を繰り返して絶縁層
の厚みを厚くする方法が取られているが、作業が
煩雑になる上、印刷と乾燥を繰り返すと糸くずの
混入する機会が多くなるので、解決策としては完
全ではない。 また、別の解決策として1度の印刷で厚い膜厚
を得るためにメタルマスクや低メツシユスクリー
ンマスクを用いることも考えられるが、印刷膜の
膜厚むらやポアーが激しく実用的でない。 また、さらに別の解決策として未焼成のグリー
ンシートに配線導体を予め印刷したものを複数枚
積層した後一括焼成して印刷多層基板を得るグリ
ーンシート積層法を用いることにより配線層間の
シヨートを防ぐ方法も提案されている(特願昭59
−147833など)が、この方法では、焼結反応によ
りセラミツク基板自身が十数%収縮するため基板
の反りによる寸法バラツキが非常に大きいため実
用的でない。 上記問題点を解決するために本発明は絶縁層に
膜厚むらやポアーがなく表面平滑でかつ均一な厚
みをもたせることにより配線層間のシヨートが皆
無でしかも基板の反りがなく寸法精度の高いセラ
ミツク多層基板の製造方法を提供するものであ
る。 問題点を解決するための手段 上記問題点を解決するために本発明は、セラミ
ツク焼成基板上に銅の酸化物を主成分とする酸化
銅ペーストで未焼成の配線層を施し、前記セラミ
ツク焼成基板上に前記酸化銅ペーストで配線層を
施した未焼成グリーンシートを50〜80℃の温度か
つ100〜300Kg/cm2の圧力範囲で熱圧着することに
より未焼成絶縁層を形成し、大気または酸化雰囲
気中で、かつグリーンシート中の有機成分を分解
させるに充分な温度で熱処理を行い、しかる後、
還元雰囲気中で前記グリーンシートが焼結する温
度以下で、かつ酸化銅が金属銅に還元される温度
以上で熱処理を行い、さらに銅に対して非酸化性
となる雰囲気で、かつ銅の融点よりも低い温度で
焼成し、焼結絶縁層を得るものである。 作 用 本発明は上述したように、酸化銅ペーストで配
線層を施したセラミツク焼成基板上に、同じく酸
化銅ペーストで配線層を施した未焼成グリーンシ
ートを接着することにより、膜厚むらやポアーが
なく表面平滑でかつ均一な厚みをもつ緻密な絶縁
層を形成するので、従来の厚膜印刷法によるセラ
ミツク多層基板作製の最大の問題点である配線層
間のシヨートの発生をなくすことができるととも
に、グリーンシート積層法におけるベースのグリ
ーンシートのかわりに焼結済みのセラミツク基板
をベースにすることになるため、基板の反りがな
く寸法精度の高い基板が得られる。 また、50〜80℃の温度かつ100〜300Kg/cm2の圧
力範囲において熱および圧力をかけることによ
り、セラミツク焼成基板とグリーンシートを接着
するため、接着層等を必要とせず工数が少なくか
つ簡単な設備によりセラミツク焼成基板とグリー
ンシートとの接着を確実に行うことができる。 実施例 以下本発明の実施例のセラミツク多層基板の製
造方法について図面を参照しながら説明する。第
1図および第3図は本発明の実施例におけるセラ
ミツク多層基板の製造工程図、第2図aは同セラ
ミツク多層基板の分解斜視図、第2図bは同セラ
ミツク多層基板の断面図である。 まず、アルミナ焼成基板1上に酸化銅ペースト
で予め配線層2をスクリーン印刷し、乾燥する。 次に所望の箇所に穴4をあけた厚みの異なる未
焼成グリーンシート3上に前記酸化銅ペーストで
配線層2を印刷で施し乾燥する。 続いて前記アルミナ焼成基板1と未焼成グリー
ンシート3を重ね、50〜80℃の温度かつ100〜300
Kg/cm2の圧力範囲で熱圧着し、セラミツク焼成基
板1と未焼成グリーンシート3を接着した。な
お、未焼成グリーンシート3は、ホウケイ酸ガラ
ス粉末とアルミナ粉から成るガラスセラミツク粉
末を有機バインダと共に混練してスラリーを作
り、前記スラリーをドクターブレード法等によつ
て延伸することによつて得た。 次に接着が完了した基板を空気中で300〜700℃
に加熱し、酸化銅ペーストおよびグリーンシート
中の有機成分を完全に除去し脱バインダを行つ
た。続いて、水素ガスを5〜40%含む窒素ガス雰
囲気中300〜500℃で酸化銅を金属銅に還元した
後、窒素ガス雰囲気中850〜1000℃で金属銅とグ
リーンシートを焼成した。 本実施例で得られた基板の配線層間の絶縁抵抗
を測定したところ、以下の表に示した通り、従来
の厚膜印刷法によるものはシヨートが発生しかつ
その発生率は高かつたが、本発明の方法によれ
ば、シヨートの発生はなく、かつ配線層間の絶縁
抵抗値は1013Ω以上と非常に信頼性の高い値を得
た。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method of manufacturing a ceramic multilayer substrate. Conventional technology In recent years, thick film multilayer boards using copper as the conductor material have been put into practical use in many fields because thick film paste is readily available and the manufacturing method itself is simple, making it relatively easy to manufacture. I am trying to do. However, in most cases of this thick film printing method, the conductive layer and the insulating layer are baked in a neutral atmosphere each time after printing, which makes it difficult to remove the binder from the paste, which may cause printer problems in the insulating layer and insulation. Leads to sexual deterioration. Additionally, there are drawbacks such as increased equipment costs and longer lead times. Therefore, a method of using copper oxide as the starting material of the conductor has solved the above-mentioned drawbacks. As a result, the binder can be easily removed in the atmosphere, and there is no need to repeat firing each time after printing, and it is sufficient to perform only one continuous process of reduction and firing. The manufacturing method of this multilayer board is described in Japanese Patent Application No. 59-147833.
59-147832, and copper oxide pastes are described in Japanese Patent Application No. 60-23846 and Japanese Patent Application No. 60-140816, respectively. An example of a method for manufacturing a printed multilayer board using the above-mentioned copper oxide will be described below with reference to the drawings. FIG. 4 shows the manufacturing process of a printed multilayer board using copper oxide. An insulating layer is formed by printing a wiring layer with a copper oxide paste on a fired ceramic substrate, and after drying, printing a thick film insulating paste on the ceramic substrate. The copper oxide paste and the insulating paste are laminated and printed a desired number of times to form multiple layers, and then the binder is removed by heat treatment in the air or an oxidizing atmosphere. Then, heat treatment is performed in a reducing atmosphere and a neutral atmosphere to obtain a printed multilayer substrate. Problems to be Solved by the Invention However, there is a problem in that shoots are generated between wiring layers due to the inclusion of lint in the thick film printing method including the above method. As a solution to the above problem, a method has been adopted to increase the thickness of the insulating layer by repeatedly printing the insulating paste, but this method is complicated, and repeating printing and drying creates an opportunity for lint to get mixed in. It's not a complete solution because it's a lot. Further, as another solution, it is possible to use a metal mask or a low mesh screen mask in order to obtain a thick film thickness with one printing, but this is impractical because the thickness unevenness and pores of the printed film are severe. Another solution is to prevent shorts between wiring layers by using a green sheet lamination method in which a printed multilayer board is obtained by laminating multiple unfired green sheets with wiring conductors printed in advance and then firing them all at once. A method has also been proposed (patent application 1983)
-147833, etc.) However, in this method, the ceramic substrate itself shrinks by more than 10% due to the sintering reaction, so the dimensional variation due to the warpage of the substrate is very large, so it is not practical. In order to solve the above-mentioned problems, the present invention provides a ceramic material with high dimensional accuracy, which eliminates any shortening between wiring layers, eliminates warping of the substrate, and provides an insulating layer with a smooth surface and uniform thickness without film thickness unevenness or pores. A method for manufacturing a multilayer substrate is provided. Means for Solving the Problems In order to solve the above problems, the present invention provides an unfired wiring layer on a fired ceramic substrate using a copper oxide paste containing copper oxide as a main component. An unfired insulating layer is formed by thermocompression bonding an unfired green sheet on which a wiring layer is applied using the copper oxide paste at a temperature of 50 to 80°C and a pressure range of 100 to 300 kg/ cm2 , and then exposed to air or oxidation. Heat treatment is performed in an atmosphere at a temperature sufficient to decompose the organic components in the green sheet, and then
Heat treatment is performed in a reducing atmosphere at a temperature below the temperature at which the green sheet is sintered and above a temperature at which copper oxide is reduced to metallic copper, and further in an atmosphere that is non-oxidizing to copper and above the melting point of copper. It is also fired at a low temperature to obtain a sintered insulating layer. Function As described above, the present invention is capable of reducing unevenness in film thickness and eliminating pores by bonding an unfired green sheet on which a wiring layer is also formed using copper oxide paste onto a fired ceramic substrate on which a wiring layer is formed using copper oxide paste. Since it forms a dense insulating layer with a smooth surface and uniform thickness, it is possible to eliminate the occurrence of shorts between wiring layers, which is the biggest problem in producing ceramic multilayer substrates using conventional thick film printing methods. Since a sintered ceramic substrate is used as a base instead of a green sheet as a base in the green sheet lamination method, a substrate with high dimensional accuracy without warping can be obtained. In addition, since the fired ceramic substrate and green sheet are bonded by applying heat and pressure at a temperature of 50 to 80℃ and a pressure range of 100 to 300Kg/ cm2 , there is no need for an adhesive layer, and the number of steps is small and simple. With this equipment, it is possible to reliably bond the ceramic fired substrate and the green sheet. Embodiments Hereinafter, a method for manufacturing a ceramic multilayer substrate according to an embodiment of the present invention will be described with reference to the drawings. 1 and 3 are manufacturing process diagrams of a ceramic multilayer substrate according to an embodiment of the present invention, FIG. 2a is an exploded perspective view of the ceramic multilayer substrate, and FIG. 2b is a sectional view of the ceramic multilayer substrate. . First, a wiring layer 2 is screen printed in advance using copper oxide paste on an alumina fired substrate 1 and dried. Next, a wiring layer 2 is printed using the copper oxide paste on unfired green sheets 3 of different thicknesses with holes 4 formed at desired locations and dried. Next, the alumina fired substrate 1 and the unfired green sheet 3 are stacked and heated at a temperature of 50 to 80°C and 100 to 300°C.
The fired ceramic substrate 1 and the unfired green sheet 3 were bonded together by thermocompression bonding in a pressure range of Kg/cm 2 . The unfired green sheet 3 was obtained by kneading glass ceramic powder consisting of borosilicate glass powder and alumina powder with an organic binder to make a slurry, and stretching the slurry by a doctor blade method or the like. . Next, the board that has been bonded is placed in the air at 300 to 700℃.
The copper oxide paste and the organic components in the green sheet were completely removed and the binder was removed. Subsequently, the copper oxide was reduced to metallic copper at 300 to 500°C in a nitrogen gas atmosphere containing 5 to 40% hydrogen gas, and then the metallic copper and green sheet were fired at 850 to 1000°C in a nitrogen gas atmosphere. When the insulation resistance between the wiring layers of the substrate obtained in this example was measured, as shown in the table below, shots were generated in the conventional thick film printing method, and the incidence was high. According to the method of the present invention, no shortening occurred, and the insulation resistance value between wiring layers was obtained to be a highly reliable value of 10 13 Ω or more.

【表】 上記実施例においては、未焼成グリーンシート
を一層だけ圧着したが、第3図に示すように、酸
化銅ペーストで配線層を施した未焼成グリーンシ
ートを所望の枚数積層し熱圧着して多層化した場
合においても、上記実施例と同様の結果が得られ
た。 なお、上記実施例ではドクターブレード法等に
よつて延伸したグリーンシートを用いたが、表面
が平滑な未焼成グリーンシートであればよく、他
の方法で得たものでも構わない。 発明の効果 グリーンシート積層法のベースのグリーンシー
トのかわりに焼結済みのセラミツク基板をベース
にすることにより、厚膜印刷の場合のように絶縁
層に生じていた膜厚むらやポアーなく表面平滑で
かつ均一な厚みの緻密な絶縁層が得られ配線層間
にシヨートが発生して多層基板が破壊されること
がないというグリーンシート積層法の長所を生か
すとともに、グリーンシートがベースの焼結済み
のセラミツク基板に仮固定されるので、焼成によ
りグリーンシートが収縮して基板に反りが発生す
ることがなく、寸法精度の高いセラミツク多層基
板が得られる印刷法によるセラミツク多層基板の
長所をも実現することができる。 さらに、本発明では、酸化銅を銅に還元した後
グリーンシートを焼成するので、酸化銅の還元が
充分行なわれ、導体配線層の導体抵抗が下がり信
号のS/N比(シグナルとノイズの比)が大きく
なり回路としての性能が著しく良くなるととも
に、導体自身の発熱も下がるので回路としての放
熱効果を良くしまた消費電力も減少させることが
できる。 またさらに、本願発明によれば、50〜80℃の温
度かつ100〜300Kg/cm2の圧力範囲において熱およ
び圧力をかけることにより、セラミツク焼成基板
とグリーンシートを接着するため、他の接着法の
ように接着層等を介在する必要がない等工数が少
なく簡単な設備を用いるだけで、セラミツク焼成
基板とグリーンシートとの接着を確実に行うこと
ができ、基板はがれのない信頼性のあるセラミツ
ク多層基板を得ることができる。
[Table] In the above example, only one layer of unfired green sheets was bonded, but as shown in Figure 3, a desired number of unfired green sheets with wiring layers made of copper oxide paste were laminated and thermocompression bonded. Even when multi-layered, the same results as in the above example were obtained. In the above embodiments, a green sheet stretched by a doctor blade method or the like was used, but any unfired green sheet with a smooth surface may be used, and it may be obtained by other methods. Effects of the invention By using a sintered ceramic substrate instead of the green sheet that is the base of the green sheet lamination method, the surface is smooth without film thickness unevenness or pores that occur in the insulating layer as in the case of thick film printing. In addition to taking advantage of the advantages of the green sheet lamination method, in which a dense insulating layer with a uniform thickness is obtained and the multilayer board will not be destroyed due to shoots occurring between wiring layers, we also Since it is temporarily fixed to the ceramic substrate, the green sheet will not shrink during firing and the substrate will not warp, and the advantages of the ceramic multilayer substrate using the printing method can be obtained, such as a ceramic multilayer substrate with high dimensional accuracy. I can do it. Furthermore, in the present invention, since the green sheet is fired after copper oxide is reduced to copper, the copper oxide is sufficiently reduced, and the conductor resistance of the conductor wiring layer is reduced. ) increases, the performance of the circuit is significantly improved, and the heat generated by the conductor itself is also reduced, which improves the heat dissipation effect of the circuit and reduces power consumption. Furthermore, according to the present invention, the fired ceramic substrate and the green sheet are bonded by applying heat and pressure at a temperature of 50 to 80°C and a pressure range of 100 to 300 Kg/cm 2 , which makes it possible to bond the ceramic fired substrate and the green sheet. As shown in the figure, it is possible to reliably bond the fired ceramic substrate and the green sheet by using simple equipment with less man-hours, such as no need for an intervening adhesive layer, etc., and a reliable ceramic multilayer without peeling of the substrate. A substrate can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図はそれぞれ本発明の実施例
におけるセラミツク多層基板の製造工程図、第2
図aは同セラミツク多層基板の分解斜視図、第2
図bは同セラミツク多層基板の断面図、第4図は
従来の印刷多層法を示す製造工程図である。 1……アルミナ焼成基板、2……配線層、3…
…未焼成グリーンシート、4……穴。
FIG. 1 and FIG. 3 are respectively a manufacturing process diagram of a ceramic multilayer substrate according to an embodiment of the present invention, and FIG.
Figure a is an exploded perspective view of the same ceramic multilayer substrate;
Figure b is a sectional view of the same ceramic multilayer substrate, and Figure 4 is a manufacturing process diagram showing the conventional printing multilayer method. 1...Alumina fired substrate, 2...Wiring layer, 3...
...Unfired green sheet, 4...holes.

Claims (1)

【特許請求の範囲】 1 セラミツク焼成基板上に銅の酸化物を主成分
とする酸化銅ペーストで未焼成の配線層を施し、
前記セラミツク焼成基板上に前記酸化銅ペースト
で配線層を施した未焼成グリーンシートを50〜80
℃の温度かつ100〜300Kg/cm2の圧力範囲で熱圧着
することにより未焼成絶縁層を形成し、大気また
は酸化雰囲気中で、かつグリーンシート中の有機
成分を分解させるに充分な温度で熱処理を行い、
しかる後、還元雰囲気中で前記グリーンシートが
焼結する温度以下で、かつ酸化銅が金属銅に還元
される温度以上で熱処理を行い、さらに銅に対し
て非酸化性となる雰囲気で、かつ銅の融点よりも
低い温度で焼成し、焼結絶縁層を得ることを特徴
とするセラミツク多層基板の製造方法。 2 酸化銅ペーストの印刷と未焼成グリーンシー
トの接着を所望の回数繰り返して多層化する特許
請求の範囲第1項記載のセラミツク多層基板の製
造方法。
[Claims] 1. An unfired wiring layer is applied on a fired ceramic substrate using a copper oxide paste containing copper oxide as a main component,
50 to 80 unfired green sheets with a wiring layer formed using the copper oxide paste on the fired ceramic substrate.
A green insulating layer is formed by thermocompression bonding at a temperature of °C and a pressure range of 100 to 300 Kg/ cm2 , and then heat treated in air or an oxidizing atmosphere at a temperature sufficient to decompose the organic components in the green sheet. and
Thereafter, heat treatment is performed in a reducing atmosphere at a temperature below the temperature at which the green sheet is sintered and above a temperature at which the copper oxide is reduced to metallic copper. A method for producing a ceramic multilayer substrate, characterized in that a sintered insulating layer is obtained by firing at a temperature lower than the melting point of the ceramic multilayer substrate. 2. The method of manufacturing a ceramic multilayer substrate according to claim 1, wherein printing of copper oxide paste and adhesion of unfired green sheets are repeated a desired number of times to form a multilayer.
JP62210476A 1987-08-25 1987-08-25 Manufacture of ceramic multlayered board Granted JPS6453595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62210476A JPS6453595A (en) 1987-08-25 1987-08-25 Manufacture of ceramic multlayered board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62210476A JPS6453595A (en) 1987-08-25 1987-08-25 Manufacture of ceramic multlayered board

Publications (2)

Publication Number Publication Date
JPS6453595A JPS6453595A (en) 1989-03-01
JPH0561797B2 true JPH0561797B2 (en) 1993-09-07

Family

ID=16589976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62210476A Granted JPS6453595A (en) 1987-08-25 1987-08-25 Manufacture of ceramic multlayered board

Country Status (1)

Country Link
JP (1) JPS6453595A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220286A (en) 2000-02-02 2001-08-14 Sharp Corp Molecular beam source and molecular beam epitaxial device

Also Published As

Publication number Publication date
JPS6453595A (en) 1989-03-01

Similar Documents

Publication Publication Date Title
JP2785544B2 (en) Method for manufacturing multilayer ceramic substrate
WO2001095681A1 (en) Method for producing ceramic substrate
JP3646587B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
JP2003031948A (en) Method of manufacturing ceramic multilayer board
JPH0561797B2 (en)
JPH0561799B2 (en)
JP2803414B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0561798B2 (en)
JP3100796B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0232595A (en) Manufacture of ceramic multilayer interconnection board
JPH05167253A (en) Manufacture of multilayer ceramic board
JP3316944B2 (en) Method of laminating multilayer ceramic substrate
JPS61292392A (en) Manufacture of ceramic wiring board
JPH08134388A (en) Electrically conductive ink
JP3197147B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05327220A (en) Manufacture of multilayer ceramic base
JPH05267854A (en) Ceramic multilayer circuit board and manufacture thereof
JP3173213B2 (en) Manufacturing method of ceramic multilayer wiring board
JPH02166793A (en) Manufacture of multilayer ceramic circuit board
JPH10294561A (en) Highly de-bindered multilayered wiring board and its manufacture
JPH01321692A (en) Manufacture of ceramic multilayer substrate
JPH05152133A (en) Green sheet for inductance component and inductance component using thereof
JP2001267743A (en) Method of manufacturing ceramic laminated substrate
JPH07202428A (en) Production of multilayer circuit board