JPH0542052B2 - - Google Patents

Info

Publication number
JPH0542052B2
JPH0542052B2 JP15399684A JP15399684A JPH0542052B2 JP H0542052 B2 JPH0542052 B2 JP H0542052B2 JP 15399684 A JP15399684 A JP 15399684A JP 15399684 A JP15399684 A JP 15399684A JP H0542052 B2 JPH0542052 B2 JP H0542052B2
Authority
JP
Japan
Prior art keywords
coercive force
layer
magnetic recording
low coercive
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15399684A
Other languages
Japanese (ja)
Other versions
JPS6134723A (en
Inventor
Masato Sugyama
Takashi Tomie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP15399684A priority Critical patent/JPS6134723A/en
Publication of JPS6134723A publication Critical patent/JPS6134723A/en
Publication of JPH0542052B2 publication Critical patent/JPH0542052B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[利用分野] 本発明は高密度記録できる垂直磁気記録方式に
適した磁気記録媒体に関し、更に詳しくは非磁性
の基板上に、磁性薄膜からなる低保磁力層及び膜
面に垂直な方向に磁化容易軸を有する垂直磁化層
からなる磁気記録層を順次形成した磁気記録媒体
の改良及び改良された磁気記録媒体の製造法に関
する。 [従来技術] 上述の低保磁力層と垂直磁化層とからなる二層
膜の磁気記録媒体は、垂直磁気記録方式において
単極型ヘツドによつて効率良く記録できる垂直磁
気記録媒体として特公昭58−91号公報、特公昭58
−10769号公報等により公知である。この公知の
二層膜構成の磁気記録媒体(以下“二層膜媒体”
という)は、具体的にはRF2極スパツタ法で作成
され、低保磁力層をNi(ニツケル),Fe(鉄)を主
成分とするパーマロイで、垂直磁化層Co(コバル
ト)−Cr(クロム)合金膜で構成したものであり、
高い記録感度と大なる再生出力を得られる優れた
ものであるが、高周波領域での出力が低下し、よ
り一層の改善が望まれている。 [発明の目的] 本発明は上述の二層膜媒体の特性を改善するこ
とを目的とするもので、低保磁力層を構成するパ
ーマロイ薄膜に着目し、その特性を改善すること
によつて、さらに改善された高い記録感度と大な
る再生出力を有する磁気記録媒体を実現すると共
にその安定生産を可能とする製造法を提供するこ
とを目的とするものである。 [発明の構成、作用効果] 本発明は、前述の二層膜媒体、すなわち非磁性
の基板上にFe及びNiを主成分とするパーマロイ
薄膜からなる低保磁力層と膜面に垂直方向に磁化
容易軸を有する磁気記録層とを有する磁気記録媒
体において、前記低保磁力層のパーマロイ薄膜の
Mn(マンガン)含有量が100ppm(重量%)以上
で6000ppm(重量%)以下であることを特徴とし、
低保磁力層が非常に良好な軟磁気特性を有する磁
気記録媒体を第1発明とするものである。そし
て、第1発明の磁気記録媒体の低保磁力層を安定
して形成できるスパツタリング法により形成する
製造法を第2の発明とするものである。 上述の本発明は以下のようにしてなされたもの
である。 第1図は二層膜媒体の低保磁力層の保磁力と再
生出力の関係を示す測定例を示したもので、同図
から二層膜媒体の低保磁力層の保磁力は小さい程
記録感度、再生出力等の面で有利であることがわ
かる。なお、図の縦軸は、再生出力で図の黒丸の
サンプルの出力を基準として規格した相対値でも
つて示してある。横軸は低保磁力層の保磁力で単
位はエルステツド(Oe)である。 ところで、低保磁力層は通常、パーマロイター
ゲツトを用い、スパツタリング法で形成される。
スパツタリングされた低保磁力層の面内の保磁力
は必ずしも一定でなくスパツタリング条件によつ
て異る。なかでもターゲツト組成、スパツタリン
グ圧力、スパツタリング温度などが面内保磁力に
大きく影響し、一定の低保磁力のパーマロイ膜を
得るためには厳しい条件管理が必要である。ま
た、これらの条件を最適化しても必ずしも面内保
磁力が充分小さい値にならない場合がある。 一般に低保磁力層を形成するパーマロイ層は透
磁率をできるだけ大くするため、透磁率の大きい
組成のパーマロイ合金が使用される。例えば
18wt%Fe−78wt%Ni−4wt%Mo組成のパーマ
ロイ合金がその一例である。さらに面内磁気異方
性を小さくしたり、或は保磁力を小さくしたりす
るために、上述の組成を若干変えて例えば磁歪定
数を変化させるとも行われる。しかしながらター
ゲツトのパーマロイ組成を、とくにNiのwt%を
上述の値から±10%程度変えても必ずしも保磁力
が充分小さくなるとは限らない。 本発明者はかかる状況にもとづき鋭意研究した
結果、従来のパーマロイ合金に100ppm(重量%)
以上のMnを添加することにより低保磁力層とな
るパーマロイ薄膜の保磁力を容易に充分小さい値
に保てること見出し本発明に想到した。なお、
Mn添加量の上限は、該パーマロイ薄膜の保磁力
を充分小さい値に保てる範囲であれば良く、後述
の実施例より明らかなように6000ppm(重量%)
以下であれば充分である。即ち本発明は、Feお
よびNiを主成分とし、第3の添加元素としての
Mo,Cr,Cuなどを含む従来のパーマロイ合金に
その組成比を実質的に変えることなく100ppm(重
量%)以上で6000ppm(重量%)以下のMnを添
加したパーマロイ合金からなる磁性層を低保磁力
層とする磁気記録媒体である。 上述の通り、本発明の低保磁力層となるパーマ
ロイは、Ni及びFを主成分とした従来公知のパ
ーマロイが適用でき、Mo,Cr,Cu等の第三元素
を含んで良いことは云うまでもない。又、その膜
厚は従来公知の範囲の数μm以下で適宜目的に応
じて設計する必要がある。 また、垂直磁化層は、膜面に垂直な方向に磁化
容易軸を有し、特公昭58−91号公報等で公知の磁
気特性を有する磁性膜が適用できる。従つて、特
公昭58−10764号公報等で公知のCo−Cr合金膜、
膜面に垂直配向したバリウムフエライト塗膜等
種々の磁性膜が適用でき、Co−Cr合金膜にW(タ
ングステン),Ta(タンタル)等の第3成分を添
加したものでもよい。 更に、低保磁力層と垂直磁化層とは直接接する
必要はなく、接着層等をその間に介在させても良
く、基板の両側にあつても良い。 一方、第2発明の磁気記録媒体の製造法におい
て、対向ターゲツト式スパツタ法により低保磁力
層を形成すると広範囲の条件で定した生産ができ
る。 ここで、対向ターゲツト式スパツタ法とは、特
開昭57−158380号公報等で公知のもので、対向し
た一組のターゲツト間にプラズマ(電子)補捉の
ための磁界を形成して、ターゲツトの側方に配置
された基板上に膜形成するスパツタ法を云う。 ところで、前述の垂直磁化層も同じ対向ターゲ
ツト式スパツタ法で作成すると、共に低温膜形成
が可能で耐熱性の低いポリエステルフイルム等が
基板として利用できる上、両層を1つの真空槽内
で連続して作成でき、製造コストを大巾に低減で
きる。 以下、上述の本発明の詳細を実施例に基いて説
明する。 第2図は本発明の実施に用いた対向ターゲツト
式スパツタ装置の構成図である。 図から明らかな通り、本装置は前述の特開昭57
−158380号公報で公知の対向ターゲツト式スパツ
タ装置と基本的に同じ構成となつている。 すなわち、図において10は真空槽、20は真
空槽10を排気する真空ポンプ等からななる排気
系、30は真空槽10内に所定のガスを導入して
真空槽10内の圧力を10-1〜10-4Torr程度の所
定のガス圧力に設定するガス導入系である。 そして、真空槽10内には、図示の如く真空槽
10の側板11,12に絶縁部材13,14を介
して固着されたターゲツトホルダー15,16に
より1体のターゲツトT1,T2が、そのスパツタ
される面T1s,T2sを空間を隔てて平行に対面す
るように配設してある。そして、ターゲツトT1
T2とそれに対応するターゲツトホルダー15,
16は、冷却パイプ151,161を介して冷却
水によりターゲツトT1,T2、永久磁石152,
162が冷却される。磁石152,162はター
ゲツトT1,T2を介してN極,S極が対抗するよ
うに設けてあり、従つて磁界はターゲツトT1
T2に垂直な方向に、かつターゲツト間のみに形
成される。なお、17,18は絶縁部材13,1
4及びターゲツトホルダー15,16をスパツタ
リング時のプラズマ粒子から保護するためとター
ゲツト表面以外の部分の異常放電を防止するため
のシールドである。 また、磁性薄膜が形成される基板40を保持す
る基板保持手段41は、真空槽10内のターゲツ
トT1,T2の側方に設けてある。基板保持手段4
1は、図示省略した支持ブラケツトにより夫々回
転自在かつ互いに軸平行に支持された繰り出しロ
ール41a、支持ロール41b、巻取ロール41
cの3個のロールからなり、基板40をターゲツ
トT1,T2間の空間に対面するようににスパツタ
面T1s,T2sに対して略直角方向に保持するよう
に配置してある。従つて基板40は巻取りロール
41cによりスパツタ面T1s,T2sに対して直角
方向に移動可能である。なお、支持ロール41b
はその表面温度が調節可能となつている。 一方、スパツタ電力を供給する直流電源からな
る電力供給手段50はプラス側をアースに、マイ
ナス側をターゲツトT1,T2に夫々接続する。従
つて電力供給手段50からのスパツタ電力は、ア
ースをアノードとし、ターゲツトT1,T2をカソ
ードとして、アノード,カソード間に供給され
る。 なお、プレスパツタ時基板40を保護するた
め、基板40とターゲツトT1,T2との間に出入
するシヤツター(図示省略)が設けてある。 以上の通り、前述の特開昭57−158380号公報の
ものと基本的には同じ構成であり、公知の通り高
速低温スパツタが可能となる。すなわち、ターゲ
ツトT1,T2間の空間に、磁界の作用によりスパ
ツタガスイオン、スパツタにより放出されたγ電
子等が束縛され高密度プラズマが形成される。従
つて、ターゲツトT1,T2のスパツタが促進され
て前記空間より析出量が増大し、基板40上への
堆積速度が増し高速スパツタが出来る上、基板4
0がターゲツトT1,T2の側方にあるので低温ス
パツタも出来る なお、本発明の対向ターゲツト式スパツタ法
は、前述の装置のものに限定されるものでなく、
前述の通り一対の対面させたターゲツトの側方に
基板を配し、ターゲツト間に垂直方向の磁界を印
加してスパツタし、基板上に膜を形成するスパツ
タ法を云う。従つて、磁界発生手段も永久磁石で
なく、電磁石を用いても良い。また、磁界もター
ゲツト間の空間にγ電子等を閉じ等を閉じ込める
ものであれば良く、従つてターゲツト全面でな
く、ターゲツト周囲にのみ発生させた場合も含
む。 次に上述の対向ターゲツト式スパツタ装置によ
り実施した本発明に係わる垂直磁気記録媒体の実
施例を説明する。 媒体の磁気特性は振動試料型磁力計で測定して
求めた。 二層膜媒体の記録・再生特性は前述の特公昭58
−91号公報等で公知のものと同様な補助磁極励磁
型の垂直型磁気ヘツドを用いて評価した。 膜厚及び組成については、螢光X線装置を用い
て予め較正した曲線から求めた。 実施例 1〜4 下記条件により低保磁力層形成時のArガス圧
を4水準(実施例1〜4)に変えて、基板上にパ
ーマロイならなる低保磁力層を作成したのちCo
−Crからなる垂直磁化層を第2図のスパツタ装
置を用いて順次形成して二層膜媒体を作成した。 A 装置条件 A−1 低保磁力層 a ターゲツトT1,T2材:共に0.5wt%のMnを
含有させたMo−4wt%,Ni−78wt%,Fe−
18wt%のパーマロイ b 基板40:50μm厚のポリエチレンテレフタレ
ート(PET)フイルム c ターゲツトT1,T2間隔:120mm d ターゲツト表面の磁界:100〜200ガウス e ターゲツトT1,T2形状:100mmL×150mmw
×12mmtの矩形 f 基板40とターゲツトT1,T2端部の距離:20
mm A−2 Co−Cr垂直磁化層 a ターゲツトT1,T2材:共にCo−80wt%,Cr
−20wt%の合金 c ターゲツトT1,T2間隔:160mm d ターゲツト表面の磁界:100〜200ガウス e ターゲツトT1,T2形状:100mmL×150mmw
×12mmtの矩形 f 基板40とターゲツトT1,T2端部の距離:20
mm B 操作手順 A−1,A−2条件のもとで順次次の如く行な
つた。 a 基板を設置後、真空槽10内を到達真空度が
1×10-6Torr以下まで排気する。 b Ar(アルゴン)ガスを所定の圧力まで導入
し、3〜5分間のプレスパツタを行ない、シヤ
ツターを開き、基板40を図示の通りターゲツ
トT1,T2の対向方向に移送しつつ膜形成を行
なつた。なお、A−1の場合スパツタ時のAr
ガス圧は、0.25〜1Paとした。またA−2の場
合、0.5Paとした。 c スパツタ時投入電力はA−1,A−2ともに
3KWで行なつた。 d 基板温度はA−1,A−2ははそれぞれ90
℃,130℃で行つた。 C 実施結果 第3図に実施例1〜4のスパツタ時のArガス
圧と低保磁力層の保磁力の関係を示す。 実施例1〜4の2層膜媒体について、長方形の
サンプルを切り出して、電磁変換特性を評価し
た。 測定結果を表−1に示す。 なお、電磁変換特性は、記録時にはテープ走行
を4.75cm/秒、再生時には9.5cm/秒で行なつた。
[Field of Application] The present invention relates to a magnetic recording medium suitable for a perpendicular magnetic recording system capable of high-density recording, and more specifically, the present invention relates to a magnetic recording medium suitable for a perpendicular magnetic recording method capable of high-density recording. The present invention relates to an improvement in a magnetic recording medium in which a magnetic recording layer consisting of a perpendicular magnetic layer having an easy axis is sequentially formed, and a method for manufacturing the improved magnetic recording medium. [Prior Art] The above-mentioned two-layer magnetic recording medium consisting of a low coercive force layer and a perpendicular magnetization layer was developed as a perpendicular magnetic recording medium that can be efficiently recorded by a unipolar head in the perpendicular magnetic recording system. −91 Publication, Special Publication 1987
It is publicly known from Publication No.-10769 and the like. This known magnetic recording medium with a two-layer film structure (hereinafter referred to as a "double-layer film medium")
) is specifically created using the RF two-pole sputtering method, with a low coercive force layer made of permalloy mainly composed of Ni (nickel) and Fe (iron), and a perpendicular magnetic layer Co (cobalt) - Cr (chromium). It is composed of an alloy film,
Although this is an excellent device that can obtain high recording sensitivity and large reproduction output, the output in the high frequency region decreases, and further improvement is desired. [Object of the Invention] The present invention aims to improve the characteristics of the above-mentioned two-layer film medium, and by focusing on the permalloy thin film that constitutes the low coercive force layer and improving its characteristics, Another object of the present invention is to realize a magnetic recording medium having improved high recording sensitivity and high reproduction output, and to provide a manufacturing method that enables stable production thereof. [Structure, Effects of the Invention] The present invention provides the above-mentioned two-layer film medium, that is, a low coercive force layer made of a permalloy thin film mainly composed of Fe and Ni on a nonmagnetic substrate, and a film magnetized in a direction perpendicular to the film surface. In a magnetic recording medium having a magnetic recording layer having an easy axis, the permalloy thin film of the low coercive force layer is
Characterized by a Mn (manganese) content of 100ppm (weight%) or more and 6000ppm (weight%) or less,
The first invention provides a magnetic recording medium in which the low coercive force layer has very good soft magnetic properties. A second invention provides a manufacturing method for forming the low coercive force layer of the magnetic recording medium of the first invention by a sputtering method that can stably form the low coercive force layer. The above-mentioned present invention was made as follows. Figure 1 shows a measurement example showing the relationship between the coercive force of the low coercive force layer of a two-layer film medium and the reproduction output.From the figure, it can be seen that the smaller the coercive force of the low coercive force layer of a two-layer film medium, the more recording is possible. It can be seen that this is advantageous in terms of sensitivity, reproduction output, etc. Note that the vertical axis of the figure also shows the relative value of the reproduced output, which is standardized with the output of the sample indicated by the black circle in the figure as a reference. The horizontal axis is the coercive force of the low coercive force layer, and the unit is Oersted (Oe). Incidentally, the low coercive force layer is usually formed by sputtering using a permalloid target.
The in-plane coercive force of the sputtered low coercive force layer is not necessarily constant and varies depending on the sputtering conditions. Among these, the target composition, sputtering pressure, sputtering temperature, etc. greatly affect the in-plane coercive force, and strict condition control is required to obtain a permalloy film with a constant low coercive force. Further, even if these conditions are optimized, the in-plane coercive force may not necessarily be a sufficiently small value. Generally, in order to maximize the magnetic permeability of the permalloy layer forming the low coercive force layer, a permalloy alloy having a composition with a high magnetic permeability is used. for example
One example is a permalloy alloy with a composition of 18wt%Fe-78wt%Ni-4wt%Mo. Furthermore, in order to reduce the in-plane magnetic anisotropy or the coercive force, the above-mentioned composition may be slightly changed to change, for example, the magnetostriction constant. However, even if the permalloy composition of the target, especially the wt% of Ni, is changed by about ±10% from the above-mentioned value, the coercive force does not necessarily become sufficiently small. As a result of intensive research based on this situation, the present inventor found that 100ppm (weight%) of conventional permalloy alloy
The inventors discovered that the coercive force of a permalloy thin film, which becomes a low coercive force layer, can be easily maintained at a sufficiently small value by adding Mn as described above, and the present invention was conceived. In addition,
The upper limit of the amount of Mn added is sufficient as long as the coercive force of the permalloy thin film can be kept at a sufficiently small value, and as is clear from the examples described later, it is 6000 ppm (wt%).
The following is sufficient. That is, the present invention has Fe and Ni as main components, and a third additive element.
A magnetic layer made of a permalloy alloy containing Mn of 100 ppm (wt%) or more and 6000 ppm (wt%) or less is added to a conventional permalloy alloy containing Mo, Cr, Cu, etc. without substantially changing its composition ratio. This is a magnetic recording medium with a magnetic layer. As mentioned above, the permalloy that becomes the low coercive force layer of the present invention can be a conventionally known permalloy whose main components are Ni and F, and it goes without saying that it may also contain a third element such as Mo, Cr, Cu, etc. Nor. Further, the film thickness must be within the conventionally known range of several micrometers or less and must be appropriately designed depending on the purpose. Further, the perpendicular magnetization layer can be a magnetic film having an axis of easy magnetization in a direction perpendicular to the film surface and having magnetic properties known from Japanese Patent Publication No. 1982-91 and the like. Therefore, the Co-Cr alloy film known from Japanese Patent Publication No. 58-10764, etc.
Various magnetic films such as a barium ferrite coating film oriented perpendicularly to the film surface can be applied, and a Co--Cr alloy film to which a third component such as W (tungsten) or Ta (tantalum) is added may also be used. Further, the low coercive force layer and the perpendicular magnetization layer do not need to be in direct contact with each other, and an adhesive layer or the like may be interposed therebetween, or may be provided on both sides of the substrate. On the other hand, in the method for manufacturing a magnetic recording medium according to the second aspect of the invention, if the low coercive force layer is formed by the facing target sputtering method, it is possible to perform production under a wide range of conditions. Here, the facing target sputtering method is a method known from Japanese Patent Application Laid-Open No. 158380/1980, etc., in which a magnetic field for trapping plasma (electrons) is formed between a pair of facing targets. This is a sputtering method in which a film is formed on a substrate placed on the side of the substrate. By the way, if the above-mentioned perpendicular magnetization layer is also formed by the same facing target sputtering method, it is possible to form a film at a low temperature, a polyester film or the like with low heat resistance can be used as a substrate, and both layers can be continuous in one vacuum chamber. It can be made by using the same method, and the manufacturing cost can be greatly reduced. Hereinafter, details of the above-mentioned present invention will be explained based on examples. FIG. 2 is a block diagram of a facing target type sputtering apparatus used in carrying out the present invention. As is clear from the figure, this device was developed in the above-mentioned JP
It has basically the same structure as the facing target sputtering device known in Japanese Patent No. 158380. That is, in the figure, 10 is a vacuum chamber, 20 is an exhaust system consisting of a vacuum pump etc. for evacuating the vacuum chamber 10, and 30 is an exhaust system that introduces a predetermined gas into the vacuum chamber 10 to reduce the pressure inside the vacuum chamber 10 to 10 -1. This is a gas introduction system that is set to a predetermined gas pressure of ~10 -4 Torr. In the vacuum chamber 10, targets T 1 and T 2 are held by target holders 15 and 16 fixed to the side plates 11 and 12 of the vacuum chamber 10 via insulating members 13 and 14 as shown in the figure. The surfaces T 1s and T 2s to be sputtered are arranged so as to face each other in parallel across a space. And target T 1 ,
T 2 and its corresponding target holder 15,
16, targets T 1 , T 2 , permanent magnets 152 ,
162 is cooled. The magnets 152 and 162 are disposed so that their north and south poles are opposed to each other via the targets T 1 and T 2 , so that the magnetic field is directed to the targets T 1 and T 2 .
Formed only in the direction perpendicular to T 2 and between targets. Note that 17 and 18 are insulating members 13 and 1
4 and target holders 15 and 16 from plasma particles during sputtering, and to prevent abnormal discharge in areas other than the target surface. Further, a substrate holding means 41 for holding a substrate 40 on which a magnetic thin film is formed is provided in the vacuum chamber 10 on the side of the targets T 1 and T 2 . Substrate holding means 4
Reference numeral 1 denotes a feed roll 41a, a support roll 41b, and a take-up roll 41, which are supported rotatably and parallel to each other by support brackets (not shown).
It consists of three rolls (c) and is arranged so as to hold the substrate 40 in a direction substantially perpendicular to the sputtering surfaces T 1s and T 2s so as to face the space between the targets T 1 and T 2 . Therefore, the substrate 40 can be moved by the take-up roll 41c in a direction perpendicular to the sputtering surfaces T 1s and T 2s . Note that the support roll 41b
Its surface temperature can be adjusted. On the other hand, a power supply means 50 consisting of a DC power source for supplying sputtering power has its positive side connected to the ground and its negative side connected to the targets T 1 and T 2 , respectively. Therefore, the sputter power from the power supply means 50 is supplied between the anode and the cathode, with the ground as the anode and the targets T 1 and T 2 as the cathodes. In order to protect the substrate 40 during press sputtering, a shutter (not shown) is provided between the substrate 40 and the targets T 1 and T 2 to move in and out. As mentioned above, the structure is basically the same as that of the above-mentioned Japanese Patent Application Laid-open No. 57-158380, and as is known, high-speed low-temperature sputtering is possible. That is, in the space between the targets T 1 and T 2 , sputter gas ions, γ electrons emitted by the sputter, etc. are bound by the action of the magnetic field, and a high-density plasma is formed. Therefore, the sputtering of the targets T 1 and T 2 is promoted, the amount of deposition increases from the space, the deposition rate on the substrate 40 increases, high-speed sputtering is possible, and the substrate 40
0 is on the side of the targets T 1 and T 2 , low-temperature sputtering is also possible. Note that the opposed target sputtering method of the present invention is not limited to the above-mentioned apparatus;
As mentioned above, this is a sputtering method in which a substrate is placed on the sides of a pair of targets facing each other, and a perpendicular magnetic field is applied between the targets to perform sputtering to form a film on the substrate. Therefore, the magnetic field generating means may also be an electromagnet instead of a permanent magnet. Further, the magnetic field may be one that closes and confines γ electrons, etc. in the space between the targets, and therefore it also includes the case where it is generated not over the entire surface of the target but only around the target. Next, an embodiment of a perpendicular magnetic recording medium according to the present invention, which is implemented using the above-mentioned facing target type sputtering apparatus, will be described. The magnetic properties of the medium were determined using a vibrating sample magnetometer. The recording and playback characteristics of the double-layer film media were described in the above-mentioned Special Publication No.
The evaluation was carried out using an auxiliary magnetic pole excitation type vertical magnetic head similar to the one known in Japanese Patent Application No.-91. The film thickness and composition were determined from a curve calibrated in advance using a fluorescent X-ray device. Examples 1 to 4 A low coercive force layer made of permalloy was created on a substrate by changing the Ar gas pressure during formation of the low coercive force layer to four levels (Examples 1 to 4) under the following conditions.
A two-layer film medium was prepared by sequentially forming perpendicular magnetization layers made of -Cr using the sputtering apparatus shown in FIG. A Apparatus conditions A-1 Low coercive force layer a Target T 1 and T 2 materials: Mo-4wt%, Ni-78wt%, Fe- both containing 0.5wt% Mn.
18 wt% permalloy b Substrate 40: 50 μm thick polyethylene terephthalate (PET) film c Target T 1 , T 2 spacing: 120 mm d Target surface magnetic field: 100 to 200 Gauss e Target T 1 , T 2 shape: 100 mm L x 150 mm W
x12mmt rectangle f Distance between substrate 40 and target T1 , T2 ends: 20
mm A-2 Co-Cr perpendicular magnetization layer a Target T1 , T2 material: Both Co-80wt%, Cr
-20wt% alloy c Target T 1 , T 2 spacing: 160 mm d Target surface magnetic field: 100 to 200 Gauss e Target T 1 , T 2 shape: 100 mm L x 150 mm W
x12mmt rectangle f Distance between substrate 40 and target T1 , T2 ends: 20
mm B Operating procedure The following procedures were carried out under conditions A-1 and A-2. a After installing the substrate, evacuate the inside of the vacuum chamber 10 until the ultimate vacuum level is 1×10 -6 Torr or less. b Introduce Ar (argon) gas to a predetermined pressure, perform press sputtering for 3 to 5 minutes, open the shutter, and perform film formation while transferring the substrate 40 in the opposite direction of the targets T 1 and T 2 as shown in the figure. Summer. In addition, in the case of A-1, Ar during sputtering
The gas pressure was 0.25 to 1 Pa. In addition, in the case of A-2, it was set to 0.5Pa. c The power input during sputtering is for both A-1 and A-2.
It was done with 3KW. d The substrate temperature is 90°C for A-1 and A-2, respectively.
℃, conducted at 130℃. C. Results of implementation FIG. 3 shows the relationship between the Ar gas pressure during sputtering and the coercive force of the low coercive force layer in Examples 1 to 4. For the two-layer film media of Examples 1 to 4, rectangular samples were cut out and electromagnetic conversion characteristics were evaluated. The measurement results are shown in Table-1. Regarding the electromagnetic conversion characteristics, the tape ran at 4.75 cm/sec during recording and at 9.5 cm/sec during playback.

【表】【table】

【表】 実施例 5〜9 実施例1〜4において低保磁力層の形成時の基
板温度(B−d)を60℃から130℃まで5水準
(実施例5〜9)変化させてスパツタリングを行
つた。但しこのときスパツタ時のガス圧(B−
b)は0.5Paとした。 得られた実施例5〜9のサンプルについて前述
と同様に低保磁力層の保磁力と再生出力を測定し
た。その結果を表1と第4図に示す。 比較例 1〜9 比較例として実施例1〜9におけるターゲツト
組成(A−1−a)のMn添加量を実質的に0wt
%(検出限度外)にしたパーマロイターゲツトを
用い、実施例1〜9の夫々と同様の膜作成を行つ
た。そして得られたサンプル(比較例1〜9)に
ついて低保磁力層の保磁力と再生出力を測定し
た。その結果を第3図、第4図、表1に示す。 実施例、比較例の比較によりMnを添加した方
がより小さい低保磁力層を形成するとができ、し
たがつてより大きい再生出力を示すことがわか
る。また、実施例では、基板温度、スパツタ圧力
の広範囲に亙つて保磁力が小さい値で安定してお
り、安定生産面で非常に有利であることがわか
る。 実施例10〜13および比較例10 実施例1〜9と同じ装置を用いてMnの添加量
を変えた低保磁力層を形成した。Mnの添加量は
前述の比較例と同じく18Fe−78Ni−4Moの組成
のパーマロイターゲツトを用い、第2図において
ターゲツトT1の上にMnチツプを置き、その数を
変えることにより調節した。Mn添加量は添加量
0(比較例10)を含めて5水準(実施例10〜13)
について、スパツタリング時の圧力を0.4Pa、基
板温度を90℃でスパツタし、低保磁力層を形成し
た。得られた低保磁力層の保磁力の測定結果を表
2に示す。 Mnが100ppm以上含まれているターゲツトに
より作成された実施例10〜13の低保磁力層の保磁
力はMnを含まない比較例10に比べて保磁力が大
巾に小さくなつている。
[Table] Examples 5 to 9 In Examples 1 to 4, sputtering was performed by changing the substrate temperature (B-d) at five levels (Examples 5 to 9) from 60°C to 130°C when forming the low coercive force layer. I went. However, at this time, the gas pressure during sputtering (B-
b) was set to 0.5Pa. The coercive force of the low coercive force layer and the reproduction output of the obtained samples of Examples 5 to 9 were measured in the same manner as described above. The results are shown in Table 1 and Figure 4. Comparative Examples 1 to 9 As a comparative example, the amount of Mn added in the target composition (A-1-a) in Examples 1 to 9 was substantially 0wt.
% (outside the detection limit), membranes were prepared in the same manner as in Examples 1 to 9 using a permalloiter target. The coercive force of the low coercive force layer and the reproduction output of the obtained samples (Comparative Examples 1 to 9) were measured. The results are shown in FIG. 3, FIG. 4, and Table 1. Comparison of Examples and Comparative Examples shows that the addition of Mn makes it possible to form a smaller low coercive force layer, and therefore exhibits a larger reproduction output. Further, in the examples, the coercive force is stable at a small value over a wide range of substrate temperature and sputtering pressure, which is very advantageous in terms of stable production. Examples 10 to 13 and Comparative Example 10 Using the same apparatus as in Examples 1 to 9, low coercive force layers were formed with different amounts of Mn added. The amount of Mn added was adjusted by using a permanent target having a composition of 18Fe-78Ni-4Mo as in the comparative example described above, placing Mn chips on target T1 in FIG. 2, and changing the number of Mn chips. There are 5 levels of Mn addition (Examples 10 to 13) including 0 (Comparative Example 10).
A low coercive force layer was formed by sputtering at a sputtering pressure of 0.4 Pa and a substrate temperature of 90°C. Table 2 shows the measurement results of the coercive force of the obtained low coercive force layer. The coercive force of the low coercive force layers of Examples 10 to 13, which were prepared using targets containing 100 ppm or more of Mn, was significantly smaller than that of Comparative Example 10, which did not contain Mn.

【表】 以上の説明から明らかな通り、本発明の磁気記
録媒体によれば、低保磁力層に100ppm以上で
6000ppm(重量%)以下のMnが含まれていると、
成分のパーマロイ薄膜に比べて大巾に記録再生感
度が向上し、より一層の高密度記録が可能となる
という大きな効果が得られた。
[Table] As is clear from the above explanation, according to the magnetic recording medium of the present invention, the low coercive force layer contains 100 ppm or more.
If it contains less than 6000ppm (weight%) of Mn,
Compared to the component permalloy thin film, the recording and reproducing sensitivity has been greatly improved, making it possible to record at even higher density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に関係する二層膜媒体の
低保磁力層の保磁力と再生出力の関係を示すグラ
フ、第2図は本発明の実施に用いた対向ターゲツ
ト式スパツタ装置の説明図、第3図は実施例およ
び比較例のスパツタ時のArガス圧と保磁力の関
係、第4図は同じく基板温度と保磁力の関係を示
すグラフである。 T1,T2:ターゲツト、10:真空槽、20:
排気系、30:ガス導入系、40:基板、50:
スパツタ電源。
FIG. 1 is a graph showing the relationship between the coercive force of the low coercive force layer of a two-layer film medium related to the implementation of the present invention and the reproduction output, and FIG. 2 is an explanation of the facing target type sputtering apparatus used in the implementation of the present invention. FIG. 3 is a graph showing the relationship between Ar gas pressure and coercive force during sputtering in Examples and Comparative Examples, and FIG. 4 is a graph showing the relationship between substrate temperature and coercive force. T 1 , T 2 : Target, 10: Vacuum chamber, 20:
Exhaust system, 30: Gas introduction system, 40: Substrate, 50:
Spatuta power supply.

Claims (1)

【特許請求の範囲】 1 非磁性の基板上に、NiおよびFeを主成分と
するパーマロイ薄膜からなる低保磁力層及び膜面
に垂直方向に磁化容易軸を有する磁気記録層を順
次形成してなる磁気記録媒体において、前記パー
マロイ薄膜のMn含有量が100ppm(重量%)以上
で6000ppm(重量%)以下であることを特徴とす
る磁気記録媒体。 2 非磁性の基板上に、Mn含有量が100ppm(重
量%)以上で6000ppm(重量%)以下のNiおよび
Feが主成分のパーマロイ薄膜からなる低保磁力
層及び膜面に垂直な方向に磁化容易軸を有する磁
気記録層を順次形成した磁気記録媒体の製造法に
おいて、前記低保磁力層をスパツタリング法によ
り形成することを特徴とする磁気記録媒体の製造
法。 3 前記低保磁力層を対向ターゲツト式スパツタ
法により形成する特許請求の範囲第2項記載の磁
気記録媒体の製造法。 4 前記磁気記録層を対向ターゲツト式スパツタ
法により形成する特許請求の範囲第3項記載の磁
気記録媒体の製造法。
[Claims] 1. A low coercive force layer made of a permalloy thin film containing Ni and Fe as main components and a magnetic recording layer having an axis of easy magnetization perpendicular to the film surface are sequentially formed on a nonmagnetic substrate. 1. A magnetic recording medium characterized in that the permalloy thin film has a Mn content of 100 ppm (wt%) or more and 6000 ppm (wt%) or less. 2. On a non-magnetic substrate, Ni and
In a method for manufacturing a magnetic recording medium in which a low coercive force layer consisting of a permalloy thin film mainly composed of Fe and a magnetic recording layer having an axis of easy magnetization in a direction perpendicular to the film surface are sequentially formed, the low coercive force layer is formed by sputtering. A method for manufacturing a magnetic recording medium, characterized by forming a magnetic recording medium. 3. The method of manufacturing a magnetic recording medium according to claim 2, wherein the low coercive force layer is formed by a facing target sputtering method. 4. The method of manufacturing a magnetic recording medium according to claim 3, wherein the magnetic recording layer is formed by a facing target sputtering method.
JP15399684A 1984-07-26 1984-07-26 Magnetic recording medium and its manufacture Granted JPS6134723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15399684A JPS6134723A (en) 1984-07-26 1984-07-26 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15399684A JPS6134723A (en) 1984-07-26 1984-07-26 Magnetic recording medium and its manufacture

Publications (2)

Publication Number Publication Date
JPS6134723A JPS6134723A (en) 1986-02-19
JPH0542052B2 true JPH0542052B2 (en) 1993-06-25

Family

ID=15574634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15399684A Granted JPS6134723A (en) 1984-07-26 1984-07-26 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS6134723A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637650A (en) 1996-06-14 1997-06-10 Ferro Corporation Brominated polysytrene having improved thermal stability and color and process for the preparation thereof
US6518368B2 (en) 1996-06-14 2003-02-11 Albemarle Corporation Brominated polystyrene having improved thermal stability and color and process for the preparation thereof
US6521714B2 (en) 1996-09-26 2003-02-18 Albemarle Corporation Brominated polystyrenic resins
US5686538A (en) * 1996-09-26 1997-11-11 Albemarle Corporation Process for brominating polystyrenic resins
US6326439B1 (en) 1996-09-26 2001-12-04 Albemarle Corporation Process for brominating polystyrenic resins
US6235844B1 (en) 1996-09-26 2001-05-22 Albemarle Corporation Brominated polystyrenic resins
US6235831B1 (en) 1996-09-26 2001-05-22 Albemarle Corporation Polymer compositions containing brominated polystyrenic resins
US5767203A (en) * 1996-09-26 1998-06-16 Albemarle Corporation Process for brominated styrenic polymers
US6133381A (en) * 1996-09-26 2000-10-17 Albelmarle Corporation Brominated polystyrenic flame retardants
US5677390A (en) * 1996-09-26 1997-10-14 Albemarle Corporation Process for brominating polystyrenic resins
US6232408B1 (en) 1996-09-26 2001-05-15 Albemarle Corporation Brominated polstyrenic resins
DE69701997T2 (en) * 1996-09-26 2000-11-09 Albemarle Corp METHOD FOR BROWNING STYRENE POLYMERS
US6232393B1 (en) 1996-09-26 2001-05-15 Albemarle Corporation Polymers flame retarded with brominated polystyrenic resins

Also Published As

Publication number Publication date
JPS6134723A (en) 1986-02-19

Similar Documents

Publication Publication Date Title
JPH0542052B2 (en)
US4362767A (en) Magnetic thin film and method of making it
US4002546A (en) Method for producing a magnetic recording medium
EP0324854B1 (en) Optomagnetic recording medium and process for its manufacture
JPH0572733B2 (en)
US4588636A (en) Magnetic recording medium
JPS6363969B2 (en)
US4641213A (en) Magnetic head
JPH0430731B2 (en)
JPH0370889B2 (en)
US5411813A (en) Ferhgasi soft magnetic materials for inductive magnetic heads
JPH0357539B2 (en)
JP2710441B2 (en) Soft magnetic laminated film
JPH0263249B2 (en)
JPH0321967B2 (en)
JPH0652569B2 (en) Method of manufacturing magnetic recording medium
JPS63291213A (en) Magnetic recording medium and its production
JPS59157828A (en) Magnetic recording medium
JP3206322B2 (en) Magnetic head and magnetic recording / reproducing device
JPS6235605A (en) Magnetically soft thin film
JPH04285153A (en) Multi-layer magnetic film and its formation
JPS6066309A (en) Magnetic head
JPH02199027A (en) Magnetic alloy
JPS63291212A (en) Magnetic recording medium
JPH0320813B2 (en)