JPH0321967B2 - - Google Patents

Info

Publication number
JPH0321967B2
JPH0321967B2 JP58066917A JP6691783A JPH0321967B2 JP H0321967 B2 JPH0321967 B2 JP H0321967B2 JP 58066917 A JP58066917 A JP 58066917A JP 6691783 A JP6691783 A JP 6691783A JP H0321967 B2 JPH0321967 B2 JP H0321967B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetization
coercive force
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58066917A
Other languages
Japanese (ja)
Other versions
JPS59193529A (en
Inventor
Sadao Kadokura
Kazuhiko Pponjo
Kyoshi Muriki
Masuhiro Kamei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP6691783A priority Critical patent/JPS59193529A/en
Publication of JPS59193529A publication Critical patent/JPS59193529A/en
Publication of JPH0321967B2 publication Critical patent/JPH0321967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[利用分野] 本発明は、非磁性の基板上に磁性薄膜からなる
低保磁力層と膜面に垂直方向の磁化容易軸を有す
る垂直磁化層からなる磁気記録層とを有する磁気
記録媒体の改良と改良された磁気記録媒体の製造
法に関する。 [従来技術] 上述の低保磁力層と垂直磁化層とからなる二層
膜の磁気記録媒体は、垂直磁気記録方式において
単極型ヘツドによつて効率良く記録できる垂直磁
気記録媒体として特公昭58−91号公報、特公昭58
−10764公報等に提案されている。この提案され
た二層膜構成の磁気記録媒体(以下“二層膜媒
体”という)は、具体的にはRF2極スパツタ法で
作成され、低保磁力層をパーマロイで垂直磁化層
をCo(コパルト)−Cr(クロム)合金膜で構成した
ものであり、高い記録感度と大なる再生出力を得
られる優れたものであるが、記録感度面、再生出
力面等でより一層の改善が望まれている。 [発明の目的] 本発明は上述の二層膜媒体の特性を改善するこ
とを目的とするもので低保磁力層、特にNi(ニツ
ケル)、Fe(鉄)を主成分とするパーマロイ薄膜
からなる低保磁力層の特性と垂直磁化層の組合せ
によつて、さらに改善された高い記録感度と大な
る再生出力及び広い面積に亙つて均質な特性を有
する磁気記録媒体及びその製造法を提供するもの
である。 [発明の構成、作用効果] 本発明の磁気記録媒体は、前述の二層膜媒体、
すなわち非磁性の基板上にパーマロイ等の軟磁性
材の磁性薄膜からなる低保磁力層と膜面に垂直方
向の磁化容易軸を有する磁気記録層を有する磁気
記録媒体において、前記低保磁力層が積層された
複数の磁性薄膜からなり、各磁性薄膜はその磁化
困難軸の方向が全体として面内の記録・再生特性
が一様になるような互いに異なる方向になるよう
に積層されていることを特徴とするものである。 上述の本発明は、以下のようにしてなされたも
のである。二層膜媒体の低保磁力層の保磁力は小
さい程記録感度等の面で有利と思われ、そこで
5Oe(エルステツド)以下の小さな保磁力のパー
マロイの薄膜とした磁気記録媒体でデイスクを作
成し評価したところ、その再生出力のエンベロー
プが変化して、安定な再生という点からは、結局
その最低点に制約され、再生出力はあまり向上し
ない問題に遭遇し、種々検討の結果、その原因が
低保磁力層を構成するパーマロイ薄膜の面内磁気
異方性にあることを見出しなされたものである。 すなわち、パーマロイ薄膜を低保磁力層とした
上述の磁気記録媒体は、パーマロイ薄膜の磁化困
難軸の方向に走行させて記録・再生した時の方が
磁化容易軸の方向の時に比べて、再生出力が大き
く、特に高密度記録の高周波領域で良好な特性を
示すことを見出しなされたもので、従つて、上記
構成により低保磁力層全体としての面内磁気異方
性は減少するので、再生出力の最低点が上昇しエ
ンベロープも面内で一様となり安定する。その結
果記録密度が高く、記録再生特性が面内で一様な
デイスク方式に適した磁気記録媒体が得られる。 なお、面内磁気異方性とは膜面に平行な面内で
の磁気異方性のことである。 上述の点から本発明は、その低保磁力層を構成
する薄膜が、上述の5Oe以下という保磁力の小さ
いパーマロイ(Mo(モリブデン)、Cu(銅)等の
第3成分を含んで良い)の如く、保磁力の小さい
領域で面内磁気異方性を示す軟磁性材の場合に大
きな効果を奏する。また、磁化困難軸方向の保磁
力が磁化容易軸方向の保磁力より小さい薄膜が効
果的である。また薄膜の透磁率については大きい
ものが記録感度・再生出力面から好ましく用いら
れる。なお、各薄膜は同じ軟磁性材からなるもの
が製造面から好ましいが、異なつた軟磁性材の薄
膜を組合せて低保磁力層としても良いことは上述
の点から明らかである。 また、磁気記録層としては実施例のCo−Cr合
金膜らなる垂直磁化層は勿論、W(タングステン)
Ta(タンタル)等の第3元素を添加したCo−Cr
合金、その他公知等の垂直磁化層に適用できるこ
とは本発明の趣旨から明らかである。また、各層
間に接着層等形成したものにも適用できることは
同様に明らかである。 ところで、上述の磁気記録媒体の低保磁力層
は、次記する本発明の第2発明より単に低保磁力
層の各薄膜形成時の基板移送方向を規制するのみ
で製造することができる。すなわち、第2発明
は、前記各薄膜を対向ターゲツト式スパツタ法に
より基板をターゲツトの対向方向と形成する前記
薄膜の磁化困難軸方向が直交する方向に移送しつ
つ膜形成することを特徴とするものである。 この第2発明は、対向ターゲツト式スパツタ法
で膜形成した場合、ターゲツトの対向方向と直交
する方向に磁化困難軸が形成されることを見出し
なされたものである。 なお、上述の対向ターゲツト式スパツタ法は、
特開昭57−158380号公報等で公知のスパツタ法
で、一対の対向配置されたターゲツトの側方に基
板を配し、ターゲツト間に垂直方向にプラズマ捕
促用の磁界を印加してスパツタし、基板上に膜を
形成するスパツタ法を云う。以下、上述の本発明
の詳細を実施例に基いて説明する。 第1図は本発明の実施に用いた対向ターゲツト
式スパツタ装置の構造図である。 図から明らかな通り、本装置は前述の特開昭57
−158380号公報で公知の対向ターゲツト式スパツ
タ装置と基本的に同じ構成となつている。 すなわち、図において10は真空槽、20は真
空槽10を排気する真空ポンプ等からなる排気
系、30は真空槽10内に所定のガスを導入して
真空容器10内の圧力を10-1〜10-4Torr程度の
所定のガス圧力に設定するガス導入系である。 そして、真空槽10内には、図示の如く真空槽
10の側板11,12に絶縁部材13,14を介
して固着されたターゲツトホルダー15,16に
より1対のターゲツトT1,T2が、そのスパツタ
される面T1S,T2Sを空間を隔てて平行に対面す
るように配設してある。そして、ターゲツトT1
T2とそれに対応するターゲツトホルダー15,
16は、冷水パイプ151,161を介して冷却
水によりターゲツトT1,T2、永久磁石152,
162が冷却される。磁石152,162はター
ゲツトT1,T2を介してN極、S極が対向するよ
うに設けてあり、従つて磁界はターゲツトT1
T2に垂直な方向に、かつターゲツト間のみに形
成される。なお、17,18は絶縁部材13,1
4及びターゲツトホルダー15,16をスパツタ
リング時のプラズマ粒子から保護するためとター
ゲツト表面以外の部分の異常放電を防止するため
のシールドである。 また、磁性薄膜が形成される基板40を保持す
る基板保持手段41は、真空槽10内のターゲツ
トT1,T2の側方に設けてある。基板保持手段4
1は、図示省略した支持ブラケツトにより夫々回
転自在かつ互いに軸平行に支持された繰り出しロ
ール41a、支持ロール41b、巻取ロール41
cの3個のロールからなり、基板40をターゲツ
トT1,T2間の空間に対面するようにスパツタ面
T1S,T2Sに対して略直角方向に保持するように
配置してある。従つて基板40は巻取りロール4
1cによりスパツタ面T1S,T2Sに対して直角方
向に移動可能である。なお、支持ロール41bは
その表面温度が調節可能となつている。 一方、スパツタ電力を供給する直流電源からな
る電力供給手段50はプラス側をアースに、マイ
ナス側をターゲツトT1,T2に夫々接続する。従
つて電力供給手段50からのスパツタ電力は、ア
ースをアノードとし、ターゲツトT1,T2をカソ
ードとして、アノード、カソード間に供給され
る。 なお、プレスパツタ時基板40を保護するた
め、基板40とターゲツトT1,T2との間に出入
するシヤツター(図示省略)が設けてある。 以上の通り、前述の特開昭57−158380号公報の
ものと基本的には同じ構成であり、公知の通り高
速低温スパツタが可能となる。すなわち、ターゲ
ツトT1,T2間の空間に、磁界の作用によりスパ
ツタガスイオン、スパツタにより放出されたγ電
子等が束縛され高密度プラズマが形成される。従
つて、ターゲツトT1,T2のスパツタが促進され
て前記空間より析出量が増大し、基板40上への
堆積速度が増し高度スパツタが出来る上、基板4
0がターゲツトT1,T2の側方にあるので低温ス
パツタも出来る。 なお、本発明の対向ターゲツト式スパツタ法
は、前述の装置のものに限定されるものでなく、
前述の通り一対の対面させたターゲツトの側方に
基板を配し、ターゲツト間に垂直方向の磁界を印
加してスパツタし、基板上に膜を形成するスパツ
タ法を云う。従つて、磁界発生手段も永久磁石で
なく、電磁石を用いても良い。また、磁界もター
ゲツト間の空間にγ電子等を閉じ込めるものであ
れば良く、従つてターゲツト全面でなく、ターゲ
ツト周囲のみに発生させた場合も含む。なお、第
1図で基板40の走行方向(MD)は、ターゲツ
トT1,T2の対向方向すなわち永久磁石152,
162からなる磁界発生装置により生ずる磁束φ
の方向とほぼ同じ方向になる。 第2図のものは基板保持手段41のみが第1図
と異なる実施例であり、磁束φの方向すなわちタ
ーゲツトT1,T2の対向方向と基板40の走行方
向(MD)とがほぼ直交するように基板保持手段
41は構成されている。従つて、基板40の幅方
向をTDと呼ぶと磁束φと幅方向TDとはほぼ平
行の関係となる。 次に上述の対向ターゲツト式スパルタ装置によ
り実施した本発明に係わる垂直磁気記録媒体の実
施例を説明する。 なお、得られた合金膜の結晶構造は理学電機製
計数X線回析装置を用いて同定し、垂直配向性は
六方最密構造かつ(002)面ピークのロツキング
カーブを前記X線回析装置で求め、その半値幅△
θ50で評価した。 膜厚及び組成については、理学電機製螢光X線
装置を用いて予め較正した曲線から求めた。 媒体の磁気特性は振動試料型磁力計(東英工業
K.K.)で測定して求めた。 二層膜媒体の記録・再生特性は、前述の特公昭
58−91号公報等で公知のものと同様な垂直型磁気
ヘツドを用いて評価した。 実施例 1 下記条件により基板上にパーマロイからなる低
保磁力層を作成したのち、Co−Crからなる垂直
磁化層を順次形成して二層膜媒体を作成した。 A 装置条件 A−1 低保磁力層 a ターゲツトT1,T2材:T1,T2共Mo−
4Wt%、Ni−78Wt%、Fe−18Wt%のパ
ーマロイ b 基板40:50μm厚のポリエチレンテレ
フタレート(PET)フイルム c ターゲツトT1,T2間隔:120mm d ターゲツト表面の磁界:100〜200ガウス e ターゲツトT1,T2形状:100mmL×150
mmW×12mmtの矩形 f 基板40とターゲツトT1,T2端部の距
離:20mm A−2 Co−Cr垂直磁化層 a ターゲツト材:T1,T2共にCo−80Wt
%、Cr−20Wt%の合金ターゲツト c ターゲツトT1,T2間隔:160mm d ターゲツト表面の磁界:100〜200ガウス e ターゲツトT1,T2形状:100mmL×150
mmW×12mmtの矩形 f 基板40とターゲツトT1,T2端部の距
離:20mm B 操作手順 A−1、A−2の条件のもとで順次次の如く行
なつた。 a 基板を設置後、真空槽10内を到達真空度
が1×10-6Torr以下まで排気する。 b Ar(アルゴン)ガスを所定の圧力まで導入
し、3〜5分間のプレスパツタを行ない、シ
ヤツターを開き、基板40を図示の通りター
ゲツトT1,T2の対向方向に移送しつつ膜形
成を行なつた。なお、スパツタ時のArガス
圧は4×10-3Torrとした。 c スパツタ時投入電力はA−1、A−2とも
に3KWで行なつた。 C 実施結果 第3図に低保磁力層の特徴的な磁化特性を示
す。基板の走行方向(MD方向)と基板の幅方
向(TD方向)それぞれの磁化特性が異なり、
面内で磁気異方性が生じており、MD方向は磁
化容易軸、TD方向は磁化困難軸であつた。ま
た、表−1にその代表特性を示す。なお、第3
図でHは印加磁界の強さを示し、Bは低保磁力
層の磁化を示す。
[Field of Application] The present invention is an improvement of a magnetic recording medium having a low coercive force layer made of a magnetic thin film on a nonmagnetic substrate and a magnetic recording layer made of a perpendicular magnetic layer having an axis of easy magnetization perpendicular to the film surface. and an improved method for manufacturing magnetic recording media. [Prior Art] The above-mentioned two-layer magnetic recording medium consisting of a low coercive force layer and a perpendicular magnetization layer was developed as a perpendicular magnetic recording medium that can be efficiently recorded by a unipolar head in the perpendicular magnetic recording system. −91 Publication, Special Publication 1987
-Proposed in Publication No. 10764, etc. This proposed magnetic recording medium with a two-layer film structure (hereinafter referred to as a "dual-layer film medium") is specifically created by the RF bipolar sputtering method, with the low coercive force layer made of permalloy and the perpendicular magnetization layer made of Co (copal). )-Cr (chromium) alloy film, and is excellent in that it can obtain high recording sensitivity and large playback output, but further improvements are desired in terms of recording sensitivity, playback output, etc. There is. [Object of the invention] The present invention aims to improve the characteristics of the above-mentioned two-layer film medium, and is made of a low coercive force layer, particularly a permalloy thin film containing Ni (nickel) and Fe (iron) as main components. To provide a magnetic recording medium having further improved high recording sensitivity, large reproduction output, and uniform characteristics over a wide area by combining the characteristics of a low coercive force layer and a perpendicular magnetization layer, and a method for manufacturing the same. It is. [Structure, operation and effect of the invention] The magnetic recording medium of the present invention includes the above-mentioned two-layer film medium,
That is, in a magnetic recording medium having a low coercive force layer made of a magnetic thin film of a soft magnetic material such as permalloy on a nonmagnetic substrate, and a magnetic recording layer having an axis of easy magnetization perpendicular to the film surface, the low coercive force layer is It consists of a plurality of laminated magnetic thin films, and each magnetic thin film is laminated so that the directions of its hard magnetization axes are different from each other so that the overall in-plane recording/reproducing characteristics are uniform. This is a characteristic feature. The above-mentioned present invention was made as follows. It is thought that the smaller the coercive force of the low coercive force layer of a two-layer film medium, the more advantageous it is in terms of recording sensitivity, etc.
When we created and evaluated a disk using a magnetic recording medium made of permalloy thin film with a small coercive force of 5 Oe (Oersted) or less, the envelope of its playback output changed, and in terms of stable playback, it ended up reaching its lowest point. After various studies, it was discovered that the cause of the problem was the in-plane magnetic anisotropy of the permalloy thin film constituting the low coercive force layer. In other words, the above-mentioned magnetic recording medium with a permalloy thin film as a low coercive force layer has a higher reproduction output when recording and reproducing by running the permalloy thin film in the direction of the axis of hard magnetization than when running in the direction of the axis of easy magnetization. It was discovered that this structure has a large value and exhibits good characteristics, especially in the high frequency range of high-density recording. Therefore, with the above structure, the in-plane magnetic anisotropy of the low coercive force layer as a whole is reduced, so the reproduction output is The lowest point of increases and the envelope becomes uniform within the plane and becomes stable. As a result, a magnetic recording medium suitable for a disk system with high recording density and uniform recording and reproducing characteristics in the plane can be obtained. Note that in-plane magnetic anisotropy refers to magnetic anisotropy in a plane parallel to the film surface. In view of the above, the present invention provides that the thin film constituting the low coercive force layer is made of permalloy (which may contain a third component such as Mo (molybdenum), Cu (copper), etc.) having a low coercive force of 5 Oe or less. This is particularly effective in the case of soft magnetic materials that exhibit in-plane magnetic anisotropy in a region of low coercive force. Further, a thin film whose coercive force in the direction of the hard axis of magnetization is smaller than the coercive force in the direction of the easy axis is effective. Furthermore, a thin film with a high magnetic permeability is preferably used from the viewpoint of recording sensitivity and reproduction output. Although it is preferable from the manufacturing point of view that each thin film be made of the same soft magnetic material, it is clear from the above points that thin films made of different soft magnetic materials may be combined to form a low coercive force layer. In addition, as a magnetic recording layer, of course the perpendicular magnetic layer made of the Co-Cr alloy film of the embodiment, but also the perpendicular magnetization layer made of W (tungsten).
Co-Cr added with a third element such as Ta (tantalum)
It is clear from the spirit of the present invention that the present invention can be applied to alloys and other known perpendicular magnetization layers. It is also obvious that the present invention can also be applied to a structure in which an adhesive layer or the like is formed between each layer. By the way, the low coercive force layer of the above-mentioned magnetic recording medium can be manufactured by simply regulating the substrate transport direction when forming each thin film of the low coercive force layer according to the second aspect of the present invention described below. That is, the second invention is characterized in that each of the thin films is formed by a facing target sputtering method while the substrate is being transferred in a direction that is perpendicular to the direction of the difficult magnetization axis of the thin film to be formed. It is. The second invention is based on the discovery that when a film is formed by facing target sputtering, an axis of difficult magnetization is formed in a direction perpendicular to the facing direction of the targets. In addition, the above-mentioned facing target sputtering method is
According to the sputtering method known in Japanese Patent Application Laid-open No. 57-158380, etc., a substrate is placed on the side of a pair of targets arranged facing each other, and a magnetic field for plasma trapping is applied vertically between the targets to perform sputtering. , refers to the sputtering method for forming a film on a substrate. Hereinafter, the details of the above-mentioned present invention will be explained based on examples. FIG. 1 is a structural diagram of a facing target sputtering apparatus used in the practice of the present invention. As is clear from the figure, this device was developed in the above-mentioned JP
It has basically the same structure as the opposed target sputtering device known in Japanese Patent No. 158380. That is, in the figure, 10 is a vacuum chamber, 20 is an evacuation system consisting of a vacuum pump etc. for evacuating the vacuum chamber 10, and 30 is a system for introducing a predetermined gas into the vacuum chamber 10 to raise the pressure inside the vacuum chamber 10 to 10 -1 ~ This is a gas introduction system that is set to a predetermined gas pressure of approximately 10 -4 Torr. In the vacuum chamber 10, a pair of targets T 1 and T 2 are held by target holders 15 and 16 fixed to the side plates 11 and 12 of the vacuum chamber 10 via insulating members 13 and 14 as shown in the figure. The surfaces T 1S and T 2S to be sputtered are arranged so as to face each other in parallel with a space in between. And target T 1 ,
T 2 and its corresponding target holder 15,
16, targets T 1 , T 2 , permanent magnets 152 ,
162 is cooled. The magnets 152 and 162 are disposed so that their north and south poles face each other with the targets T 1 and T 2 in between, so that the magnetic field is directed towards the targets T 1 and T 2 .
Formed only in the direction perpendicular to T 2 and between targets. Note that 17 and 18 are insulating members 13 and 1
4 and target holders 15 and 16 from plasma particles during sputtering, and to prevent abnormal discharge in areas other than the target surface. Further, a substrate holding means 41 for holding a substrate 40 on which a magnetic thin film is formed is provided in the vacuum chamber 10 on the side of the targets T 1 and T 2 . Substrate holding means 4
Reference numeral 1 denotes a feed roll 41a, a support roll 41b, and a take-up roll 41, which are supported rotatably and parallel to each other by support brackets (not shown).
It consists of three rolls of c, and the sputtering surface is placed so that the substrate 40 faces the space between targets T1 and T2 .
It is arranged so as to be held in a direction substantially perpendicular to T 1S and T 2S . Therefore, the substrate 40 is the winding roll 4
1c, it is movable in a direction perpendicular to the sputtering surfaces T 1S and T 2S . Note that the surface temperature of the support roll 41b can be adjusted. On the other hand, a power supply means 50 consisting of a DC power source for supplying sputtering power has its positive side connected to the ground and its negative side connected to the targets T 1 and T 2 , respectively. Therefore, the sputter power from the power supply means 50 is supplied between the anode and the cathode, with the ground as the anode and the targets T 1 and T 2 as the cathodes. In order to protect the substrate 40 during press sputtering, a shutter (not shown) is provided between the substrate 40 and the targets T 1 and T 2 to move in and out. As mentioned above, the structure is basically the same as that of the above-mentioned Japanese Patent Application Laid-open No. 57-158380, and as is known, high-speed low-temperature sputtering is possible. That is, in the space between the targets T 1 and T 2 , sputter gas ions, γ electrons emitted by the sputter, etc. are bound by the action of the magnetic field, and a high-density plasma is formed. Therefore, sputtering of the targets T 1 and T 2 is promoted, the amount of deposition increases from the space, the deposition rate on the substrate 40 increases, high sputtering occurs, and the substrate 40
0 is on the side of the targets T 1 and T 2 , low-temperature sputtering is also possible. Note that the opposed target sputtering method of the present invention is not limited to the above-mentioned apparatus;
As mentioned above, this is a sputtering method in which a substrate is placed on the sides of a pair of targets facing each other, and a perpendicular magnetic field is applied between the targets to perform sputtering to form a film on the substrate. Therefore, the magnetic field generating means may also be an electromagnet instead of a permanent magnet. Further, the magnetic field may be of any type as long as it confines γ electrons etc. in the space between the targets, and therefore it also includes the case where it is generated not over the entire surface of the target but only around the target. In FIG. 1, the traveling direction (MD) of the substrate 40 is the direction in which the targets T 1 and T 2 face each other, that is, the direction in which the permanent magnets 152 and
The magnetic flux φ generated by the magnetic field generator consisting of 162
It will be in almost the same direction as . The embodiment shown in FIG. 2 is different from that shown in FIG. 1 only in the substrate holding means 41, and the direction of the magnetic flux φ, that is, the opposing direction of the targets T 1 and T 2 and the traveling direction (MD) of the substrate 40 are almost perpendicular to each other. The substrate holding means 41 is configured as follows. Therefore, if the width direction of the substrate 40 is referred to as TD, the magnetic flux φ and the width direction TD are approximately parallel to each other. Next, an embodiment of a perpendicular magnetic recording medium according to the present invention implemented using the above-mentioned facing target type spartan device will be described. The crystal structure of the obtained alloy film was identified using a counting X-ray diffraction device manufactured by Rigaku Corporation, and the vertical orientation was determined by the hexagonal close-packed structure and the rocking curve of the (002) plane peak using the X-ray diffraction method described above. Obtained using the device, its half width △
Evaluation was performed at θ 50 . The film thickness and composition were determined from a curve calibrated in advance using a fluorescent X-ray device manufactured by Rigaku Denki. The magnetic properties of the medium are measured using a vibrating sample magnetometer (Toei Kogyo).
KK). The recording and playback characteristics of double-layer film media were
The evaluation was carried out using a vertical magnetic head similar to the one known in Japanese Patent Application No. 58-91. Example 1 After forming a low coercive force layer made of permalloy on a substrate under the following conditions, a perpendicular magnetization layer made of Co--Cr was sequentially formed to prepare a two-layer film medium. A Apparatus conditions A-1 Low coercive force layer a Target T 1 and T 2 materials: Both T 1 and T 2 are Mo-
Permalloy of 4Wt%, Ni-78Wt%, Fe-18Wt% b Substrate 40: 50 μm thick polyethylene terephthalate (PET) film c Target T 1 , T 2 spacing: 120 mm d Magnetic field on target surface: 100 to 200 Gauss e Target T 1 , T2 shape: 100mmL×150
Rectangular shape of mmW×12mmt f Distance between substrate 40 and ends of targets T1 and T2 : 20mm A-2 Co-Cr perpendicular magnetization layer a Target material: Both T1 and T2 are Co-80Wt
%, Cr-20Wt% alloy target c Target T 1 , T 2 spacing: 160 mm d Target surface magnetic field: 100 to 200 Gauss e Target T 1 , T 2 shape: 100 mm L x 150
Rectangular shape f of mmW x 12 mmt Distance between substrate 40 and ends of targets T 1 and T 2 : 20 mm B Operation procedure The following operations were carried out under the conditions of A-1 and A-2. a After installing the substrate, evacuate the inside of the vacuum chamber 10 until the ultimate vacuum level is 1×10 -6 Torr or less. b Introduce Ar (argon) gas to a predetermined pressure, perform press sputtering for 3 to 5 minutes, open the shutter, and perform film formation while transferring the substrate 40 in the opposite direction of the targets T 1 and T 2 as shown in the figure. Summer. Note that the Ar gas pressure during sputtering was 4×10 −3 Torr. c The power input during sputtering was 3KW for both A-1 and A-2. C. Results Figure 3 shows the characteristic magnetization characteristics of the low coercive force layer. The magnetization characteristics in the board running direction (MD direction) and the board width direction (TD direction) are different.
Magnetic anisotropy occurred in the plane, with the MD direction being the axis of easy magnetization and the TD direction being the axis of difficult magnetization. Further, Table 1 shows its representative characteristics. In addition, the third
In the figure, H indicates the strength of the applied magnetic field, and B indicates the magnetization of the low coercive force layer.

【表】 表−1でHCE、HCHは磁化容易軸、磁化困
難軸方向のそれぞれの保磁力である。 表−1の特性を有する低保磁力層上にA−2
の条件で形成されたCo−Cr層からなる垂直磁
化層の特性を表−2に示す。
[Table] In Table 1, HCE and HCH are the coercive forces in the directions of the easy axis of magnetization and the axis of hard magnetization, respectively. A-2 on the low coercive force layer having the characteristics shown in Table-1.
Table 2 shows the characteristics of the perpendicular magnetization layer consisting of a Co-Cr layer formed under these conditions.

【表】【table】

【表】 表−2において保磁力の垂直とは媒体膜面と
垂直方向の保磁力を、水平とは媒体膜面と平行
方向の保磁力を示す。なお、保磁力の測定は二
層膜媒体の低保磁力層を分離して行つた。半値
幅△θ50は、二層膜媒体のまま測定した。 D 電磁変換特性 表−1、2の特性を有する二層膜媒体につい
て、第4図に示すように、MD方向、TD方向
に長方形のサンプルを切り出して、それぞれの
電磁変換特性を評価した。 表−3、及び第5図に測定結果を示す。第5
図において横軸は記録密度Dとして、1インチ
当りの磁束反転数(FRPI)を、縦軸は再生出
力電圧Epを示す。 なお、電磁変換特性は記録時にはテープ走行
を4.75cm/秒、再生時には9.5cm/秒で行なつ
た。
[Table] In Table 2, vertical coercive force refers to the coercive force perpendicular to the medium film surface, and horizontal refers to the coercive force parallel to the medium film surface. Note that the coercive force was measured by separating the low coercive force layer of the two-layer film medium. The half-width Δθ 50 was measured as is in the double-layered film medium. D Electromagnetic Conversion Characteristics As shown in FIG. 4, rectangular samples were cut out in the MD direction and the TD direction for the two-layer film media having the characteristics shown in Tables 1 and 2, and the electromagnetic conversion characteristics of each were evaluated. The measurement results are shown in Table 3 and Figure 5. Fifth
In the figure, the horizontal axis shows the number of magnetic flux reversals per inch (FRPI) as the recording density D, and the vertical axis shows the reproduction output voltage Ep. The electromagnetic conversion characteristics were determined by running the tape at 4.75 cm/sec during recording and at 9.5 cm/sec during playback.

【表】 表−3に示す如く、低保磁力層の磁化困難軸
方向に記録・再生することにより、磁化容易軸
方向の場合と比較して、再生出力が1.3〜1.5倍
と大きくなつていることが判つた。 また、第6図は第3図に示す切り出し方向θ
を変えたサンプルの50KFRPI及び100KFRPI
の再生出力を示したもので、同図よりMD方向
に対し約60度以上の角度であればTD方向と同
等の再生出力が得られることがわかる。 実施例 2 第2図に示したスパツタ装置で実施例1の条件
A−1に準じて低保磁力層を形成した。 得られた低保磁力層は基板40の走行方向
(MD方向)が磁化困難軸、基板40の幅方向
(TD方向)が磁化容易軸であつた。 次いで、実施例1と同様上記低保磁力層を形成
した後に、第1図に示したスパツタ装置で実施例
1の条件A−2でCo−Cr層を形成した。 実施例1と同様にして電磁変換特性を評価した
ところ、磁化困難軸方向に記録・再生する方が磁
化容易軸方向にした場合に比較して再生出力Ep
は大きく、実施例1と同様に改善が顕著であつ
た。 なお、低保磁力層の特性は表−4に示すように
HCE/HCV>1であつた。
[Table] As shown in Table 3, by recording and reproducing in the direction of the hard axis of magnetization of the low coercive force layer, the reproduction output is 1.3 to 1.5 times larger than that in the direction of the easy axis of magnetization. It turned out that. In addition, FIG. 6 shows the cutting direction θ shown in FIG.
50KFRPI and 100KFRPI of samples that changed
The figure shows the reproduction output equivalent to that in the TD direction if the angle is approximately 60 degrees or more with respect to the MD direction. Example 2 A low coercive force layer was formed using the sputtering apparatus shown in FIG. 2 under conditions A-1 of Example 1. In the obtained low coercive force layer, the traveling direction (MD direction) of the substrate 40 was the axis of hard magnetization, and the width direction (TD direction) of the substrate 40 was the axis of easy magnetization. Next, after forming the low coercive force layer in the same manner as in Example 1, a Co--Cr layer was formed using the sputtering apparatus shown in FIG. 1 under the conditions A-2 of Example 1. When the electromagnetic conversion characteristics were evaluated in the same manner as in Example 1, it was found that the reproduction output Ep was better when recording and reproducing in the direction of the axis of hard magnetization than when recording and reproducing in the direction of the axis of easy magnetization.
was large, and as in Example 1, the improvement was remarkable. The characteristics of the low coercive force layer are shown in Table 4.
HCE/HCV>1.

【表】 実施例 3 低保磁力層としてまず第1図に示したスパツタ
装置を用いて実施例1のパーマロイ層を形成した
後、第2図に示したスパツタ装置によりその上に
同じパーマロイ層を実施例2に順じて形成し、各
層の磁化困難軸が直交した2層の低保磁力層とし
た。次いで第1図に示したスパツタ装置により実
施例1に順じてCo−Cr層よりなる垂直磁化層を
形成した。 かくして、得た媒体についてMD方向及びTD
方向それぞれの電磁変換特性を評価したところ、
ほぼMD及びTDの方向性ない一様な再生出力Ep
を得た。又、再生出力Epは、実施例1に示した
MD、TD方向の再生出力Epの中間値であつた。
従つて、磁気異方性をを有する薄膜をその磁化困
難軸が互いに異なる適当な方向になるように積層
することにより、全体として、記録・再生の異方
性を減ずることができることがわかる。又、積層
した場合の再生出力Epが中間値であることから、
各層は加算的寄与をなすと考えられる。よつて、
積層する場合の各層の磁化困難軸の方向は、第6
図の切り出し方向θと再生出力の関係を参考に、
記録・再生の一様になるように選定すれば良いこ
とがわかる。
[Table] Example 3 As a low coercive force layer, the permalloy layer of Example 1 was first formed using the sputtering device shown in FIG. 1, and then the same permalloy layer was formed thereon using the sputtering device shown in FIG. A two-layer low coercive force layer was formed in accordance with Example 2, with the hard magnetization axes of each layer perpendicular to each other. Next, a perpendicular magnetization layer made of a Co--Cr layer was formed using the sputtering apparatus shown in FIG. 1 in accordance with Example 1. Thus, MD direction and TD for the obtained medium
After evaluating the electromagnetic conversion characteristics in each direction, we found that
Uniform playback output with almost no directionality of MD and TD Ep
I got it. In addition, the playback output Ep is as shown in Example 1.
It was the intermediate value of the reproduction output Ep in the MD and TD directions.
Therefore, it can be seen that by stacking thin films having magnetic anisotropy so that their hard axes of magnetization are in different appropriate directions, it is possible to reduce the anisotropy in recording and reproducing as a whole. In addition, since the playback output Ep when stacked is an intermediate value,
Each layer is considered to make an additive contribution. Afterwards,
When stacking, the direction of the hard axis of magnetization of each layer is determined by the sixth
Referring to the relationship between the cutting direction θ and the playback output in the figure,
It can be seen that the selection should be made so that recording and playback are uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施に用いた対向タ
ーゲツト式スパツタ装置の説明図、第3図は磁気
特性の説明図、第4図はサンプル切り出しの説明
図、第5図は実施例1の電磁変換特性の測定結果
を示すグラフ、第6図はサンプル切り出し方向と
再生出力の関係を示すグラフである。 T1,T2:ターゲツト、10:真空槽、20:
排気系、30:ガス導入系、40:基板、50:
スパツタ電源。
Figures 1 and 2 are explanatory diagrams of the facing target sputtering device used in the implementation of the present invention, Figure 3 is an explanatory diagram of magnetic characteristics, Figure 4 is an explanatory diagram of sample cutting, and Figure 5 is an example of an embodiment. FIG. 6 is a graph showing the measurement results of the electromagnetic conversion characteristics of No. 1, and FIG. 6 is a graph showing the relationship between the sample cutting direction and the reproduction output. T 1 , T 2 : Target, 10: Vacuum chamber, 20:
Exhaust system, 30: Gas introduction system, 40: Substrate, 50:
Spatuta power supply.

Claims (1)

【特許請求の範囲】 1 非磁性の基板上に磁性薄膜からなる低保磁力
層と膜面に垂直方向の磁化容易軸を有する磁気記
録層を有する磁気記録媒体において、前記低保磁
力層が積層された複数の磁性薄膜からなり、各磁
性薄膜はその磁化困難軸の方向が全体として面内
の記録・再生特性が一様になるような互いに異な
る方向になるように積層されていることを特徴と
する磁気記録媒体。 2 前記低保磁力層が各磁性薄膜の磁化困難軸が
互いに直交するように積層された二層膜である特
許請求の範囲第1項記載の磁気記録媒体。 3 前記各磁性薄膜の磁化困難軸方向の保磁力が
磁化容易軸方向の保磁力より小さい特許請求の範
囲第1項若しくは第2項記載の磁気記録媒体。 4 非磁性の基板上にその磁化困難軸の方向が全
体として面内異方性を減ずるような互いに異なる
方向に積層された複数の磁性薄膜からなる低保磁
力層と膜面に垂直方向の磁化容易軸を有する磁気
記録層を有する磁気記録媒体の製造法において、
前記低磁力層の各磁性薄膜を対向ターゲツト式ス
パツタ法により前記基板をターゲツトの対向方向
と形成する磁性薄膜の磁化困難軸方向とが直交す
る方向に移送しつつ膜形成することを特徴とする
磁気記録媒体の製造法。 5 前記低保磁力層が各磁性薄膜の磁化困難軸が
互いに直交するように積層された2層膜からな
り、その一層をターゲツトの対向方向と同方向に
基板を移送して形成し、他の層をターゲツトの対
向方向と直交する方向に基板を移送して形成する
特許請求の範囲第4項記載磁気記録媒体の製造
法。
[Scope of Claims] 1. A magnetic recording medium having a low coercive force layer made of a magnetic thin film on a nonmagnetic substrate and a magnetic recording layer having an axis of easy magnetization perpendicular to the film surface, wherein the low coercive force layer is laminated. It consists of a plurality of magnetic thin films, and each magnetic thin film is laminated so that the direction of its hard axis of magnetization is different from each other so that the in-plane recording/reproducing characteristics are uniform as a whole. magnetic recording media. 2. The magnetic recording medium according to claim 1, wherein the low coercive force layer is a two-layer film laminated such that the hard magnetization axes of the magnetic thin films are orthogonal to each other. 3. The magnetic recording medium according to claim 1 or 2, wherein the coercive force of each of the magnetic thin films in the direction of the hard axis of magnetization is smaller than the coercive force in the direction of the easy axis of magnetization. 4 A low coercive force layer consisting of multiple magnetic thin films laminated in different directions on a non-magnetic substrate so that the direction of the hard axis of magnetization reduces the in-plane anisotropy as a whole, and magnetization perpendicular to the film plane. In a method for manufacturing a magnetic recording medium having a magnetic recording layer having an easy axis,
A magnetism characterized in that each magnetic thin film of the low magnetic force layer is formed by a facing target sputtering method while moving the substrate in a direction perpendicular to a direction in which the opposing direction of the target and the axis of difficult magnetization of the magnetic thin film to be formed are perpendicular. Method of manufacturing recording media. 5. The low coercive force layer is composed of two layers stacked such that the hard magnetization axes of the magnetic thin films are orthogonal to each other, one layer of which is formed by transferring the substrate in the same direction as the target, and the other layer is formed by transferring the substrate in the same direction as the target. 5. The method of manufacturing a magnetic recording medium according to claim 4, wherein the layer is formed by transporting the substrate in a direction perpendicular to the direction in which the target faces.
JP6691783A 1983-04-18 1983-04-18 Magnetic recording medium and its production Granted JPS59193529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6691783A JPS59193529A (en) 1983-04-18 1983-04-18 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6691783A JPS59193529A (en) 1983-04-18 1983-04-18 Magnetic recording medium and its production

Publications (2)

Publication Number Publication Date
JPS59193529A JPS59193529A (en) 1984-11-02
JPH0321967B2 true JPH0321967B2 (en) 1991-03-25

Family

ID=13329802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6691783A Granted JPS59193529A (en) 1983-04-18 1983-04-18 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS59193529A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558690A (en) * 1978-06-13 1980-01-22 Cii Magnetic data carrier for vertical recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558690A (en) * 1978-06-13 1980-01-22 Cii Magnetic data carrier for vertical recording

Also Published As

Publication number Publication date
JPS59193529A (en) 1984-11-02

Similar Documents

Publication Publication Date Title
EP0093838B1 (en) Perpendicular magnetic recording medium and method for producing the same
JPS6256575B2 (en)
US5403457A (en) Method for making soft magnetic film
JPH0542052B2 (en)
JPH0321967B2 (en)
JPH0357539B2 (en)
JPS60182711A (en) Method and apparatus for forming magnetic thin-film
JPH0370889B2 (en)
JPH0430731B2 (en)
JPH0263249B2 (en)
JPS6363969B2 (en)
JPS6367328B2 (en)
JPS6233321A (en) Vertical magnetic recording medium
JPH0727822B2 (en) Fe-Co magnetic multilayer film and magnetic head
JPS59147422A (en) Formation of magnetic layer
JPS6235605A (en) Magnetically soft thin film
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPH0652569B2 (en) Method of manufacturing magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JPS63291213A (en) Magnetic recording medium and its production
JPH04285153A (en) Multi-layer magnetic film and its formation
JPH0320813B2 (en)
JPH03116526A (en) Production of magnetic recording medium
JPH0356667A (en) Formation of thin film
JP2006059453A (en) Manufacturing method of perpendicular magnetic recording medium