JPS63291213A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS63291213A
JPS63291213A JP12402187A JP12402187A JPS63291213A JP S63291213 A JPS63291213 A JP S63291213A JP 12402187 A JP12402187 A JP 12402187A JP 12402187 A JP12402187 A JP 12402187A JP S63291213 A JPS63291213 A JP S63291213A
Authority
JP
Japan
Prior art keywords
coercive force
film
magnetization
magnetic recording
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12402187A
Other languages
Japanese (ja)
Inventor
Takashi Tomie
崇 冨江
Tsuyoshi Watanabe
渡辺 強
Toshiaki Yatabe
俊明 谷田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP12402187A priority Critical patent/JPS63291213A/en
Publication of JPS63291213A publication Critical patent/JPS63291213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high S/N and stable reproduction output by consisting a low coercive force layer of a specific thin 'Permalloy(R)' film. CONSTITUTION:The low coercive force layer consists of the specific thin 'Permalloy(R)' film. Namely, the compsn. contains 78-83wt.% Ni and consists of the balance Fe and <=1.5wt.% impurity elements. The apparent coercive forces measured by an oscillating sample type magnetometer within the film plane is specified to >=4oersted (Oe) and <=15Oe in all the directions within the film plane. The apparent demagnetization curve measured by a VSM within the film plane indicates the demagnetization curve of the shape in which the saturation of magnetization is exhibited at >=60Oe and the magnetization begins to decrease at <=60Oe when the impressed magnetic field is decreased from the saturation state, then the magnetization inverts sharply near the coercive force. In addition, the film thickness is specified to >=0.3mum and <=0.7mum. The characteristics of the two-layered medium are thereby improved.

Description

【発明の詳細な説明】 [利用分野] 本発明は高密度記録できる垂直磁気記録方式に適した磁
気記録媒体及びその製造法に関し、更に詳しくは非磁性
の基板上に、磁性薄膜からなる低保磁力層及び垂直磁気
異方性を有する磁気記録層を順次形成したフレキシブル
ディスクに好適な磁気記録媒体及びその製造法に関する
Detailed Description of the Invention [Field of Application] The present invention relates to a magnetic recording medium suitable for a perpendicular magnetic recording system capable of high-density recording, and a method for manufacturing the same, and more specifically relates to a low-retention magnetic recording medium made of a magnetic thin film on a non-magnetic substrate. The present invention relates to a magnetic recording medium suitable for a flexible disk in which a magnetic layer and a magnetic recording layer having perpendicular magnetic anisotropy are sequentially formed, and a method for manufacturing the same.

[従来技術] 上述の低保磁力層と垂直磁気異方性層とからなる二層膜
の磁気記録媒体は、垂直磁気記録方式において単極型ヘ
ッドによって効率良く記録できる垂直磁気記録媒体とし
て特公昭58−91号公報、特公昭58−10769号
公報等により公知である。この公知の二層膜構成の磁気
記録媒体(以下“′二層膜媒体”という)は具体的には
RF2極スパッタ方で作成され、低保磁力層をNiにッ
ケル) 、 、Fe (鉄)を主成分とするパーマロイ
で、垂直磁化層をC。
[Prior Art] The above-mentioned two-layer magnetic recording medium consisting of a low coercive force layer and a perpendicular magnetic anisotropic layer was developed as a perpendicular magnetic recording medium that can be efficiently recorded by a unipolar head in the perpendicular magnetic recording system. This method is known from Japanese Patent Publication No. 58-91, Japanese Patent Publication No. 58-10769, and the like. This known magnetic recording medium with a two-layer film structure (hereinafter referred to as "two-layer film medium") is specifically produced by RF bipolar sputtering, and the low coercive force layer is made of Ni), Fe (iron). Permalloy whose main component is C. The perpendicular magnetization layer is C.

(コバルト)−Cr(クロム)合金膜で構成したもので
あり、高い記録感度と大なる再生出力を得られる優れた
ものであるが、信号対ノイズ比(S/N〉や再生出力の
安定性(モジュレーション)の面で、より一層の改善が
望まれている。
(Cobalt) - Cr (Chromium) alloy film, and is excellent in that it can obtain high recording sensitivity and large playback output, but it has problems with signal-to-noise ratio (S/N) and stability of playback output. Further improvement is desired in terms of (modulation).

[発明の目的] 本発明は上述の二層膜媒体の特性を改善することを目的
とするもので、低保磁力層を構成するパーマロイ薄膜に
着目し、その特性を改善することによって、ざらに改善
された高いS/N比と安定な再生出力を有する磁気記録
媒体を実現すると共にその安定生産を可能とする製造法
を提供することを目的とするものである。
[Object of the Invention] The present invention aims to improve the characteristics of the above-mentioned two-layer film medium, and by focusing on the permalloy thin film that constitutes the low coercive force layer and improving its characteristics, The object of the present invention is to realize a magnetic recording medium having an improved high S/N ratio and stable reproduction output, and to provide a manufacturing method that enables stable production thereof.

し発明の構成2作用効果] 本発明は、前述の二層膜媒体、すなわち非磁性の基板上
にFe及びNiを主成分とするパーマロイ薄膜からなる
低保磁力層と垂直磁気異方性を有する磁気記録層とを有
する磁気記録媒体において、前記低保磁力層を、結晶粒
度番号が5以上のパーマロイ合金をターゲットとしたス
パッタリング法により安定に得ることができる1 、 
5wt%以上のNoやCuやCrを含有しない実質的に
Niと「eよりなる二成分系のパーマロイ薄膜であって
、かつ該パーマロイ薄膜を特定の膜厚と磁気特性を有す
るものとすることにより前記の目的を達成したものであ
る。
Structure 2 of the Invention: Effects] The present invention provides the above-mentioned two-layer film medium, that is, a low coercive force layer made of a permalloy thin film containing Fe and Ni as main components on a nonmagnetic substrate, and having perpendicular magnetic anisotropy. In a magnetic recording medium having a magnetic recording layer, the low coercive force layer can be stably obtained by a sputtering method using a permalloy alloy having a grain size number of 5 or more as a target.
A two-component permalloy thin film that does not contain 5 wt% or more of No, Cu, or Cr and is essentially composed of Ni and e, and the permalloy thin film has a specific film thickness and magnetic properties. The above objective has been achieved.

すなわち、本発明は非磁性の基板上に、NiおよびFe
を主成分とするパーマロイ薄膜からなる低保磁力層及び
垂直磁気異方性を有する磁気記録層を順次形成してなる
磁気記録媒体において、該低保磁力層が、 ■ 組成が78〜83重量%のNiを含み、残部がFe
及び1.51fi%以下の不純元素より成ること(ただ
し膜中のAr(アルゴン)は除いて開綿する)、 ■ 膜面内でVSM  (振動試料型磁力計)で測定さ
れるみかけの保持力が、膜面内のすべての方向において
4エルステッド(Oe)以上、15Oe以下であること
、 ■ 膜面内でVSMにより測定されるみかけの飽相遇化
曲線が、6Oee以上で磁化の飽和を示し、かつ飽和状
態より印加磁場を減少していった時に6Oee以下で磁
化が減少を始め、保持力近傍までほぼ直線的に磁化が変
化し、保持力近傍で急峻に磁化反転する形状の減磁曲線
を示すこと、■ 膜厚が0.3μm以上、0.7μm以
下であること、 の全要件を具備したパーマロイ薄膜からなることを特徴
とする磁気記録媒体を第1発明とし、第1発明の磁気記
録媒体の製造法において、前記低保磁力層を、結晶粒度
番号5以上のパーマロイ合金をターゲットとして、Ar
ガス雰囲気中でスパッタづることにより連続的に走行す
る長尺の非磁性基板上に形成することを特徴とする磁気
記録媒体のiI!造法を第2発明とするものである。
That is, the present invention provides Ni and Fe on a nonmagnetic substrate.
In a magnetic recording medium formed by sequentially forming a low coercive force layer made of a permalloy thin film containing as a main component and a magnetic recording layer having perpendicular magnetic anisotropy, the low coercive force layer has a composition of 78 to 83% by weight. of Ni, the balance is Fe
and 1.51 fi% or less of impurity elements (however, Ar (argon) in the film is removed before opening), ■ Apparent holding force measured in the film plane using a VSM (vibrating sample magnetometer). is 4 Oe or more and 15 Oe or less in all directions within the film plane; ■ The apparent saturation curve measured by VSM within the film plane shows magnetization saturation at 6 Oee or above; And when the applied magnetic field is reduced from the saturated state, the magnetization starts to decrease below 6 Oee, the magnetization changes almost linearly until near the coercive force, and the demagnetization curve has a shape where the magnetization sharply reverses near the coercive force. The first invention is a magnetic recording medium characterized by being made of a permalloy thin film that satisfies all of the following requirements: (1) The film thickness is 0.3 μm or more and 0.7 μm or less; In the method for manufacturing the medium, the low coercive force layer is made of Ar with a permalloy alloy having a grain size number of 5 or more as a target.
iI! of a magnetic recording medium characterized in that it is formed on a continuously running long non-magnetic substrate by sputtering in a gas atmosphere. The manufacturing method is the second invention.

上述の本発明は以下のようにしてなされたものでおる。The present invention described above was accomplished as follows.

本発明者らは、詳細は後述するが、第5図に示した巻取
式の対向ターゲット式の連続スパッタ装置によりポリエ
ステルフィルム上に二層膜媒体を形成し、打抜いてフレ
キシブルディスクとする研究過程において、該二層膜媒
体を構成する低保磁力層に2つの重大な問題があること
を見い出した。
Although the details will be described later, the present inventors conducted research in which a two-layer film medium was formed on a polyester film using a winding facing target type continuous sputtering device shown in Fig. 5, and the film was punched out into a flexible disk. During the process, it was discovered that the low coercive force layer constituting the two-layer film medium had two serious problems.

づなわら、その1つは該低保磁力層の保磁力の制御に関
するものであり、1つは該低保磁ノ[の面内磁気異方性
の制御に関するものである。従来、保磁力は小さい程再
生出力が大きくなると信じられてぎた。実際に、5重量
%程のHoを含有覆るN。
One of them is related to the control of the coercive force of the low coercive force layer, and the other is related to the control of the in-plane magnetic anisotropy of the low coercive force layer. Conventionally, it has been believed that the smaller the coercive force, the greater the reproduction output. In fact, N contains about 5% by weight of Ho.

パーマロイ薄膜を用いた時には第2図に示した様な飽和
磁化曲線を有するものも得られ、この様な時は保磁力が
小さい程再生出力が大きい。第2図は0.51tmのH
oパーマロイ薄膜(No 5wt%、Ni79W【%、
 Fe 16wt%)で、実線は長尺フィルムの長手方
向(連続スパッタ時の走行方向。以下MDと称1゜)に
測定したもので、点線はMDの直角な方向(rt」方向
。以下TDと称す。)に測定したものであり、保磁力は
1〜2Oeである。第2図より判断されるようにこの)
Noパーマロイ薄膜は面内磁気異方性が小さい。このよ
うな低保磁力層を有する二層膜媒体のフレキシブルディ
スクでは、JIS−C−6290に規定されている再生
出力のモジレーションは数%以下と良好である。しかし
ながらこのような低保磁力層は安定生産という観点より
は必ずしもすぐれたものとは言えないことが本発明者ら
の研究により明らかにされた。特に、ポリエチレンテレ
フタレート(PET>やポリエチレンナフタレート(P
EN)の30μm〜120μmのフィルムか好ましい代
表例であるポリエステルフィルム等を支持体とするフレ
キシブルディスクの用途を目的に、該フィルムを連続に
走行させながらNoパーマロイ薄膜を形成プる場合は、
第2図に示されるような面内等方向な磁気特性を有する
薄膜は得難く、第3図に示lような面内磁気異方性の大
きい薄膜となることが多い。
When a permalloy thin film is used, a saturation magnetization curve as shown in FIG. 2 can be obtained, and in such a case, the smaller the coercive force, the larger the reproduction output. Figure 2 shows H of 0.51tm.
o Permalloy thin film (No 5wt%, Ni79W [%,
The solid line is measured in the longitudinal direction of the long film (running direction during continuous sputtering, hereinafter referred to as MD (1°)), and the dotted line is the direction perpendicular to MD (rt) direction; hereinafter referred to as TD. ), and the coercive force is 1 to 2 Oe. (as judged from Figure 2)
The No permalloy thin film has small in-plane magnetic anisotropy. In a flexible disk which is a double-layered film medium having such a low coercive force layer, the modulation of the reproduction output specified in JIS-C-6290 is good at a few percent or less. However, research by the present inventors has revealed that such a low coercive force layer is not necessarily superior from the viewpoint of stable production. In particular, polyethylene terephthalate (PET) and polyethylene naphthalate (PET)
When forming a No. Permalloy thin film while continuously running the film for the purpose of a flexible disk using a 30 μm to 120 μm film (EN) or a polyester film, which is a preferred representative example, as a support,
It is difficult to obtain a thin film with in-plane isotropic magnetic properties as shown in FIG. 2, and a thin film with large in-plane magnetic anisotropy as shown in FIG. 3 is often obtained.

このような面内磁気異方性の大きな低保磁力層を有する
二層膜媒体では磁気ヘッドが該低保磁力層の磁化容易軸
方向に通過する時は再生出力が小さく、磁化困難軸方向
に通過する時は再生出力が゛大きくなることにより、フ
レキシブルディスクではヘッドが一周する間に再生出力
の変動(モジュレーション)が大きくなり、システムの
限界が再生出力の極小値で規制され、きわめて不都合で
あることは良く知られている。
In such a two-layer film medium having a low coercive force layer with large in-plane magnetic anisotropy, the reproduction output is small when the magnetic head passes in the direction of the easy axis of magnetization of the low coercive force layer, and the reproduction output is small when the magnetic head passes in the direction of the axis of easy magnetization of the low coercive force layer. As the playback output increases when the disk passes, the fluctuation (modulation) of the playback output becomes large during one rotation of the head on a flexible disk, and the system limit is regulated by the minimum value of the playback output, which is extremely inconvenient. This is well known.

本発明者らにより、この面内磁気異方性の原因は、No
パーマロイ薄膜が対向ターゲット空間で形成されること
による磁場中誘導異方性の効果と該薄膜の内部応力と支
持体より受ける外部応ノJにょる逆磁歪効果にあること
が判明し、そして、この逆磁歪効果により発生する異方
性の大きさがポリエステルフィルム等の可撓性フィルム
の連続スパッタでは制御し難いことが判明した。これに
対し、Hoパーマロイ薄膜の保磁力が第1図や第4図に
例示した形状を示し、かつ約5〜1Oee程度と大ぎい
場合は再生出力のモジュレーションは良好になる。しか
しながらNoパーマロイ薄膜においては、このように保
磁力を安定に大きくすることは困難であった。この理由
は明確でないが、)toパーマロイ合金(バルク)はス
ーパーマロイと称される様に本来低保磁力かつ高透磁率
を目的に開発されたものであることより理解されるかも
しれない。また、特に対向ターゲットスパッタ法(特開
昭57−158380号公報等参照)は良好な軟磁性膜
が得られ易いことが知られているが、このことが保磁力
を大きくするのに逆に不都合となっている可能性もある
。さらに、第4図に示した様な形状を有する場合は再生
出力の低下が著しい。
The inventors have determined that the cause of this in-plane magnetic anisotropy is No.
It has been found that this is due to the effect of anisotropy induced in the magnetic field due to the permalloy thin film being formed in the opposing target space, and the inverse magnetostriction effect due to the internal stress of the thin film and the external response received from the support. It has been found that the magnitude of anisotropy caused by the inverse magnetostrictive effect is difficult to control by continuous sputtering of flexible films such as polyester films. On the other hand, if the coercive force of the Ho permalloy thin film has the shape illustrated in FIGS. 1 and 4 and is large, about 5 to 1 Oee, the modulation of the reproduction output will be good. However, it has been difficult to stably increase the coercive force in the No permalloy thin film. Although the reason for this is not clear, it may be understood from the fact that the permalloy alloy (bulk) was originally developed for the purpose of having low coercive force and high magnetic permeability, as is called supermalloy. In addition, although it is known that a good soft magnetic film can be easily obtained using the facing target sputtering method (see Japanese Patent Application Laid-Open No. 158380/1983), this is a disadvantage in increasing the coercive force. There is a possibility that it is. Furthermore, when the shape is as shown in FIG. 4, the reproduction output is significantly reduced.

以上に述べた様に、公知の通り1〜2oe以下の低い保
磁力を有する低保磁力層を有する二層膜媒体では、再生
出力は良好な場合もあるが、磁気異方性の制御に難点が
あることが判明し、5〜1Oe0程度の保磁力のものは
、その保磁力の制御が困難なことか判明した。ここにお
いて、二律背反する問題が提起され、本発明者らはかか
る状況にもとづき、再生出力を低下さぜずに、ノイズと
モジュレーションを小さくすべく、鋭意研究した結果本
発明の到達した。
As mentioned above, as is well known, double-layer media having a low coercive force layer with a low coercive force of 1 to 2 oe or less may provide good reproduction output, but have difficulty controlling magnetic anisotropy. It was found that it is difficult to control the coercive force of a material with a coercive force of about 5 to 1 Oe0. Here, a contradictory problem was raised, and based on this situation, the present inventors conducted intensive research in order to reduce noise and modulation without reducing the reproduction output, and as a result, the present invention was achieved.

以下、本発明を詳細に述べる。The present invention will be described in detail below.

本発明の低保磁力層は、78〜83重ω%のNiを含む
、NiとFeの合計が98.5重量%以上の合金薄膜で
ある。かかる組成において、たとえ対向ターゲット式ス
パッタにおいても、安定に、後述の製造法により4〜1
5Oe程度の保磁力が得易いことが判明した。不純元素
、特に)io、Cu、Cr等が1.5wt%以ト混合さ
れたものは保磁力が安定に大きくならないので不都合で
ある。Niの含有量が78〜83東量%の範囲をはずれ
ると、磁歪が大きくなることにより磁気ヘッドか接触し
た時の応力で磁気特性が変化し再生出力が不安定となる
、また連続スパッタ製膜時に発生し易い膜応力による逆
磁歪効果により面内磁気異方性が大ぎくなることにより
保磁力の安定制御が困難となってくる、また磁化曲線が
後述する様な好ましい形状を示さなくなってくる、とい
う不都合が生じる。
The low coercive force layer of the present invention is an alloy thin film containing 78 to 83 wt % Ni and the total amount of Ni and Fe being 98.5 wt % or more. With such a composition, even in facing target sputtering, the production method described below can stably produce 4 to 1
It was found that it is easy to obtain a coercive force of about 5 Oe. A material containing impurity elements (especially) io, Cu, Cr, etc. in an amount of 1.5 wt% or more is disadvantageous because the coercive force cannot be stably increased. If the Ni content is out of the range of 78 to 83%, the magnetostriction increases and the stress when the magnetic head comes into contact changes the magnetic properties, making the reproduction output unstable, and continuous sputtering film formation. The in-plane magnetic anisotropy becomes large due to the inverse magnetostrictive effect caused by the film stress that sometimes occurs, making it difficult to stably control the coercive force, and the magnetization curve no longer exhibits a desirable shape as described below. , this inconvenience occurs.

ここにおいて、低保磁力層の保磁力は、約0.05μm
−0,5μmの膜厚を有し、かつ飽和磁化が約150〜
1Oe0 emu/ccの磁気記録層が形成されティる
二層膜の状態のままVSM (振動試料型磁力訓〉にお
いて、記録層の残留磁化が大きく変化しない測定磁場(
例えば膜面内に±2OeOe以下)において測定される
みかけの保磁力をいう。このようにみかけの保磁力を採
用するのは、低保磁力層は磁気記録層が形成された二層
膜媒体として記録・再生に供せられるのであり、二層膜
のまま測定して得られる磁化曲線の方がより記録・再生
特性との相関が深いと思われるからである。なお、みか
けの保磁ツノ及びみかけの磁化曲線と、二層膜媒体より
記録層を除去して得られる低保磁力層のみの保磁力、磁
化曲線とは、保磁力が4〜15Oe程度のものでは、そ
の保磁力に数Oe程度以下の差しかなく、その磁化曲線
の形状はほとんど変化しない。
Here, the coercive force of the low coercive force layer is approximately 0.05 μm
-Has a film thickness of 0.5 μm and has a saturation magnetization of approximately 150~
In VSM (vibrating sample magnetic force training), a magnetic recording layer of 1 Oe0 emu/cc is formed as a two-layer film, and the measurement magnetic field (
For example, it refers to the apparent coercive force measured within the film plane (±2 OeOe or less). The reason why the apparent coercive force is used in this way is that the low coercive force layer is used for recording and reproduction as a two-layer film medium with a magnetic recording layer formed thereon, so the apparent coercive force can be measured as it is as a two-layer film. This is because the magnetization curve seems to have a deeper correlation with recording/reproducing characteristics. Note that the apparent coercive horn and apparent magnetization curve, and the coercive force and magnetization curve of only the low coercive force layer obtained by removing the recording layer from a two-layer film medium, are those with a coercive force of about 4 to 15 Oe. In this case, there is only a difference of several Oe or less in coercive force, and the shape of the magnetization curve hardly changes.

なお、みかけの保磁力は磁気記録層の飽和磁化や該層の
残留磁化状態により変化することか知られており、みか
けの保磁力を求める時は、二層膜媒体を予め垂直方向に
充分大きな磁場(例えば15koe程度)を加え、該磁
気記録層を略垂直方向の残留磁化状態とりるのが良い。
It is known that the apparent coercive force changes depending on the saturation magnetization of the magnetic recording layer and the remanent magnetization state of the layer, so when determining the apparent coercive force, the two-layer film medium must be vertically moved sufficiently large. It is preferable to apply a magnetic field (for example, about 15 koe) to bring the magnetic recording layer into a state of residual magnetization in a substantially perpendicular direction.

上)小のみかけの保磁力は4エルステッド(Oe)以上
、15Oe以下である必要があ把。4Oeより小さい時
は、後)小の好ましい磁化曲線の形状を示さないので不
都合であり、15Oeより大なる時は再生用ノJの低下
が著しく不都合である。
Above) The small apparent coercive force should be 4 oersteds (Oe) or more and 15 Oe or less. When it is less than 4 Oe, it is inconvenient because it does not exhibit the preferred shape of the magnetization curve, and when it is greater than 15 Oe, it is inconvenient that the reproducing no.

また、低保磁力層の膜厚は0.3μm以上、0.7μm
以下である必要がある。0.3μm以下では再生出力が
小さくまた面内磁気異方性が発生し易く、0.7μm以
上では二層膜媒体が硬くなり、フレキシブルディスクと
した時はヘッドとの接触状態がわるくなり再生出力が安
定しない。
In addition, the film thickness of the low coercive force layer is 0.3 μm or more, 0.7 μm
Must be below. If it is less than 0.3 μm, the reproduction output will be small and in-plane magnetic anisotropy will easily occur, and if it is more than 0.7 μm, the double-layer film medium will become hard, and when used as a flexible disk, the contact condition with the head will deteriorate and the reproduction output will decrease. is not stable.

さらに、本発明の低保磁力層は、第1図に示した様な形
状のみかけの磁化曲線を示づのが特徴となっている。す
なわち、第1図においてllcは保磁力であり、H3は
飽和磁化になる印加磁場であるが、飽和状態より印加磁
場を減少(又は増7Jl )さけた場合その磁化が保磁
力11c近傍まではほぼ一定勾配の直線的に低下(又は
増加)して飽和磁化の40〜80%となり、保磁力tl
c近傍で急峻に磁化反転して略垂直的に低下(又は増加
)する減磁(又は増磁)特性を示し、次いで反転状態に
次第に飽和する磁化曲線を示づことを特徴とし、tls
の値は6Oee以下である必要がおる。保磁力(Hc)
が同じでもIIsが6Oeeより大なる時は再生出力の
低下が著しい。
Furthermore, the low coercive force layer of the present invention is characterized in that it exhibits an apparent magnetization curve shaped as shown in FIG. That is, in Fig. 1, llc is the coercive force, and H3 is the applied magnetic field that results in saturation magnetization. However, if the applied magnetic field is avoided by decreasing (or increasing by 7 Jl) from the saturated state, the magnetization will approximately reach the coercive force of 11c. It decreases (or increases) linearly with a constant slope to 40-80% of the saturation magnetization, and the coercive force tl
Tls
The value of must be 6 Oee or less. Coercive force (Hc)
Even if the values are the same, when IIs is greater than 6 Oee, the reproduction output decreases significantly.

低保磁力層が第1図の形状を示し、tlsが6Oeeよ
り小さく、かつ保磁力が15Oeより、好ましくは1O
e0より、さらに最も好ましくは7Oeより小さく、前
述の構成元素の組成範囲かつ前述の膜厚範囲を有する低
保磁力層は後述の製造法により安定に得られ、かつ第2
図の例示したNoパーマロイ薄膜を有する二層膜媒体と
同等の再生出力を有し、フレキシブルディスクとした時
の再生出力のモジュレーションは、いかなる記録・再生
ヘッド(例えば補助磁極励磁型単磁極ヘッドであるか、
主磁極励磁型ヘッドであるかを問わず任意のヘッド)に
対しても常に5%以下と良好であった。
The low coercive force layer has the shape shown in FIG.
A low coercive force layer smaller than e0, and most preferably smaller than 7 Oe, having the above-mentioned composition range of constituent elements and the above-mentioned film thickness range can be stably obtained by the manufacturing method described below, and the second
The modulation of the playback output when used as a flexible disk, which has the same playback output as the double-layered film medium with the No permalloy thin film illustrated in the figure, is the same as that of any recording/playback head (for example, an auxiliary pole excitation type single-pole head). mosquito,
Even for any head (whether it is a main pole excitation type head), it was always 5% or less, which was good.

上述の効果の理由は明確でないが以下のようにも考えら
れる。第1図のような磁化曲線は回転磁気異方性として
古くより知られているものであり、磁化は完全に面内に
はなく、斜めに立上がっていると解釈されている。磁化
が斜め方向に立上がっていることと、保磁力が15Oe
 、好ましくは1Oe0以下と小さいことが高周波での
磁化反転を有利にし再生出力の向上に寄与している、ま
た、Hsが6Oee以下と小さいことが記録感度の向上
に寄与しているのであろうと思われる。ざらに、この様
な磁化曲線のNiFe薄膜は面内の測定方向によらず常
に同じ形状の磁化極性を示す、すなわち面内で等方の磁
気特性を有するものが広い製膜条件で容易に得られるこ
とが、モジュレーションの低下と安定制御に寄与してい
ると考えられる。
Although the reason for the above-mentioned effect is not clear, it may be considered as follows. The magnetization curve shown in Figure 1 has long been known as rotational magnetic anisotropy, and it is interpreted that the magnetization is not completely in-plane, but rises obliquely. The magnetization rises in an oblique direction and the coercive force is 15 Oe.
, preferably less than 1 Oe0, is advantageous for magnetization reversal at high frequencies and contributes to improving the reproduction output, and it is thought that the small Hs, preferably less than 6 Oee, contributes to improving recording sensitivity. It will be done. Roughly speaking, a NiFe thin film with such a magnetization curve always shows the same shape of magnetization polarity regardless of the in-plane measurement direction, that is, a film with in-plane isotropic magnetic properties can be easily obtained under a wide range of film-forming conditions. This is thought to contribute to the reduction in modulation and stable control.

上記の旧「e合金芯膜よりなる低保磁力層は以下の製造
法により安定に制御性良く得ることが可能となった。
The low coercive force layer made of the old "e" alloy core film mentioned above can now be obtained stably and with good controllability by the following manufacturing method.

NiFe薄膜は)loパーマロイやCu)toパーマロ
イ薄膜に比べ、スパッタ製膜では、保磁力が大きくなる
ことは前記した通りであるが、その値はポリエステルフ
ィルム等の比較的耐熱性の良くない有機高分子フィルム
の連続スパッタにおいては2Oe0以上が普通であった
。これに対し、保磁力を下げるには基板に−150ボル
ト程度のバイアス電圧を印加し、適度のArイオンの衝
撃下で製膜する、及び/又は基板温度を2Oe〜3Oe
℃以上にする等の方法が公知であるが、連続スパッタに
おいては設備的にバイアス電圧を印加することは困難で
あり、たとえ出来たとしてもArイオンの衝撃は塞板温
度の上昇をもたらすのでポリエステルフィルムには適用
し難い。また同様の理由で基板温度を2Oe〜3Oe°
Cに覆ることはざらに不都合である。
As mentioned above, the NiFe thin film has a larger coercive force when formed by sputtering than the )lo permalloy and Cu)to permalloy thin films, but the value is lower than that of organic polymers with relatively poor heat resistance such as polyester films. In continuous sputtering of molecular films, 2Oe0 or more was common. On the other hand, to lower the coercive force, apply a bias voltage of about -150 volts to the substrate, form a film under moderate Ar ion bombardment, and/or lower the substrate temperature by 2 Oe to 3 Oe.
℃ or higher, but in continuous sputtering, it is difficult to apply a bias voltage due to the equipment, and even if it were possible, the bombardment of Ar ions would cause an increase in the temperature of the plug, so polyester Difficult to apply to film. Also, for the same reason, the substrate temperature should be adjusted to 2Oe~3Oe°.
It is extremely inconvenient to cover it with C.

かかる状況下において本発明者らは、結晶粒度番号が5
以上の細い結晶粒を有するNiFe合金ターゲットを用
いる時にNiFe合金薄膜の保磁力が低下することを児
い出御だ。
Under such circumstances, the present inventors determined that the grain size number was 5.
When using a NiFe alloy target having fine crystal grains as described above, it is expected that the coercive force of the NiFe alloy thin film will decrease.

ここに言う結晶粒度番号は、JIS GO551−19
77に規定される鋼の結晶粒度試験方法に準じて測定し
たものとする。すなわら、表面研磨したターゲラ1−(
NiFe合金)、又はそのテストピースを用意し、その
表面を、濃塩酸と濃硝酸の2対1(重量比〉の混合溶液
にさらに塩化第二銅を10重量%稈度混合した溶液を脱
脂綿につけて結晶粒がII!察される程度にこすりつづ
ける。かくして出現する結晶粒模様を上記JISに規定
の判定方法に従いその表1の粒度番号で表示したもので
ある。ターゲットの結晶粒が細い程、そのターゲットを
スパッタして得られるNiFe合金薄膜の保磁力が小さ
くなる理由は今のところ明らかでない。Noパーマロイ
などのように、スパッタ率のことなる元素が組み合わさ
れている時は、結晶粒が細い程、膜中の構成元素が均一
に混じり合うことにより軟磁気特性が向上することは十
分に考えられるが、スパッタ率にほとんど差のないNi
Fe合金において、かかる効果が見い出されたのは驚く
べきことである。
The grain size number mentioned here is JIS GO551-19.
It shall be measured in accordance with the steel grain size test method specified in 77. In other words, Targera 1-(
Prepare a NiFe alloy (NiFe alloy) or a test piece thereof, and dip its surface on absorbent cotton with a solution of a 2:1 (weight ratio) mixed solution of concentrated hydrochloric acid and concentrated nitric acid, and a mixture of 10% by weight of cupric chloride. Continue rubbing until the crystal grains can be detected. The crystal grain pattern that appears in this way is indicated by the grain size number in Table 1 according to the judgment method specified in the JIS above. The thinner the target crystal grains are, the It is currently unclear why the coercive force of the NiFe alloy thin film obtained by sputtering this target becomes smaller.When elements with different sputtering rates are combined, such as No permalloy, the crystal grains become thinner. Although it is quite conceivable that the soft magnetic properties are improved by uniformly mixing the constituent elements in the film, Ni
It is surprising that such an effect was found in Fe alloys.

結晶粒度番号が5以上のNiFe合金ターゲットを用い
れば、そのターゲットをスパッタしてj7られるNiF
e合金′a膜の保磁力が小ざくなることを上述したが、
さらに狭い保磁力範囲に制御づるにはスパッタ時に導入
するアルゴンガス圧力を調節するのが良い。一般にA「
ガス圧が小さい程パーマロイ薄膜の保磁力は小さくなる
。本発明においては、約3.OPa以下0.2Pa以上
のArガス圧範囲が、目的とする保磁力に合わせて用い
られる。特に、低保磁力層を構成づるNiFe合金薄膜
が、0.3〜1.2重量%の範囲のマンガン()In)
をその構成元素として含有する11.1は、選択できる
Arガス圧の許容幅が高酊ガス圧となり、スパッタ成型
を低電圧で安定に維持できるので好ましい。
If a NiFe alloy target with a grain size number of 5 or more is used, the target can be sputtered to produce NiF
Although it was mentioned above that the coercive force of the e-alloy 'a film becomes small,
In order to control the coercive force within a narrower range, it is preferable to adjust the argon gas pressure introduced during sputtering. Generally A
The lower the gas pressure, the lower the coercive force of the permalloy thin film. In the present invention, about 3. An Ar gas pressure range of OPa or less and 0.2 Pa or more is used depending on the desired coercive force. In particular, the NiFe alloy thin film constituting the low coercive force layer contains manganese()In) in the range of 0.3 to 1.2% by weight.
11.1, which contains 11.1 as its constituent element, is preferable because the allowable range of Ar gas pressure that can be selected is a high gas pressure, and sputter molding can be maintained stably at a low voltage.

第6図はスパッタ時のガス圧に対して、得られた0、5
μm膜厚のNiFe合金薄膜の保磁力を示したものであ
り、図のaはNi 80wt%とFe 19.9wt%
を含有する高純度の結晶粒度番号6の旧Fe合金ターゲ
ットよりjqられたものであり、図のbはNi 79.
5゜Fe 19.8. Mn O,5(各wt′%、残
部はSi等の通常の不純元素)の組成の結晶粒度番号6
のNlFeHn合金ターゲットより得られたものである
Figure 6 shows the obtained values of 0 and 5 for the gas pressure during sputtering.
This shows the coercive force of a NiFe alloy thin film with a thickness of μm, and a in the figure shows Ni 80wt% and Fe 19.9wt%.
It was made from an old Fe alloy target with a high purity grain size number 6 containing Ni 79.
5°Fe 19.8. Crystal grain size number 6 with a composition of Mn O, 5 (each wt'%, the remainder being ordinary impurity elements such as Si)
This was obtained from the NlFeHn alloy target.

)In添加のNiFe合金薄膜(第6図のb)の方が、
より高いArガス圧で低い保磁力のものが得られ都合が
良いことが理解される。Hnの添加(6)は0.3wt
%以下では保磁力の低下に効果がなく、1.2wt%以
上では得られる保磁力の再現性が悪くなる。Hnが・1
.2wt%以上と多い場合は、N t Fe薄膜の多結
晶の粒界に)Inが析出し易くなり、その析出量が不安
定なことが保磁力の再現性を劣化させていると思われる
が理由は定かでない。
) In-added NiFe alloy thin film (b in Figure 6) has a higher
It is understood that it is advantageous to obtain a lower coercive force with a higher Ar gas pressure. Addition of Hn (6) is 0.3wt
% or less, there is no effect in reducing the coercive force, and if it is 1.2 wt% or more, the reproducibility of the obtained coercive force deteriorates. Hn is 1
.. When the amount is 2 wt% or more, In is likely to precipitate at the polycrystalline grain boundaries of the N t Fe thin film, and the unstable amount of In is thought to deteriorate the reproducibility of coercive force. The reason is unclear.

かかるターゲット用のパーマロイ合金の粒度はターゲッ
ト製造時の条件、熱処理の温度と時間。
The grain size of permalloy alloys for such targets depends on the conditions during target manufacture, heat treatment temperature and time.

鍛造比、あるいは少催の添加物たとえばイオウ。Forging ratio, or additives such as sulfur.

マンガンなどによって制御できる。It can be controlled by manganese, etc.

−八本発明における垂直磁気異方性を有する磁気記録層
は、特に限定されず、膜面に略垂直な方向に磁化容易軸
を有し、特公昭58−91号公報等で公知の磁気特性を
有する磁性膜が適用できる。従って、特公昭58−10
764号公報等で公知のCo−Cr合金膜、膜面に垂直
配向したバリウムフェライト塗膜等種々の磁性膜が適用
でき、Co−Cr合金膜にW(タングステン)、Ta(
タンタル)等の第3成分を添加したものでもよい。
-8 The magnetic recording layer having perpendicular magnetic anisotropy in the present invention is not particularly limited, has an axis of easy magnetization in a direction substantially perpendicular to the film surface, and has magnetic properties known from Japanese Patent Publication No. 58-91, etc. A magnetic film having the following can be applied. Therefore,
Various magnetic films can be applied, such as the Co-Cr alloy film known in Publication No. 764, and the barium ferrite coating film oriented perpendicular to the film surface.
A third component such as tantalum) may also be added.

更に、基板と低保磁力層と磁気記録層とは直接接する必
要はなく、接着層等をその間に介在さけても良い。
Further, the substrate, the low coercive force layer, and the magnetic recording layer do not need to be in direct contact with each other, and an adhesive layer or the like may be interposed therebetween.

本発明の基板は有機高分子、ガラス、A1合金等の非磁
性材であればよいが、特にフレキシブルディスクを目的
とり−る時は連続生産が可能な可撓性を有する有機高分
子フィルムが好ましく使用される。さらに、良好な機械
的特性と良好な表面性のものが得られ、かつ廉価である
ポリエチレンテレフタレート又はポリエチレンナフタレ
ートのフィルムにおいて本発明は最も好ましく適用され
る。
The substrate of the present invention may be any non-magnetic material such as organic polymer, glass, A1 alloy, etc., but especially when a flexible disk is intended, an organic polymer film having flexibility that allows continuous production is preferable. used. Furthermore, the present invention is most preferably applied to films made of polyethylene terephthalate or polyethylene naphthalate, which have good mechanical properties and good surface properties and are inexpensive.

本発明の磁気記録媒体は、フレキシブルディスクを目的
としたものであり、通常は30〜120μmのフィルム
の両面に低保磁力層と磁気記録層が同構成で形成される
。なお、この場合の低保磁力層の磁気特性は片面ずつ別
々に測定される。
The magnetic recording medium of the present invention is intended for use as a flexible disk, and usually has a low coercive force layer and a magnetic recording layer of the same composition formed on both sides of a 30-120 μm film. Note that the magnetic properties of the low coercive force layer in this case are measured separately for each side.

更に、基板の片面にのみ二層膜が形成された媒体であっ
ても、フレキシブルディスクとして使用できるものであ
ればかまわない。
Furthermore, even if the medium has a two-layer film formed only on one side of the substrate, it does not matter as long as it can be used as a flexible disk.

なあ、本発明の磁気記録媒体の製造法においては、特に
対向ターゲット式スパッタ法により低保磁力層を形成す
ると広範囲の条件で安定した生産かできる。
In the method for manufacturing the magnetic recording medium of the present invention, stable production can be achieved under a wide range of conditions, particularly if the low coercive force layer is formed by facing target sputtering.

ここで、対向ターゲット式スパッタ法とは、特開昭57
−158380月公報等で公知のもので、対向した一絹
のターゲット間にプラズマ(電子)捕捉のための磁界を
形成して、ターゲットの側方に配置された基板上に膜形
成するスパッタ法を言う。
Here, the facing target sputtering method is
- A sputtering method known from the 158380 publication, etc., in which a magnetic field for capturing plasma (electrons) is formed between two facing targets, and a film is formed on a substrate placed on the side of the target. To tell.

ところで、前述の垂直磁気異方性層も同じく対向ターゲ
ット式スパッタ法で作成すると、共に低湿膜形成が可能
で耐熱性の低いポリエステルフィルム等が基板として利
用できる上、両層を1つの真空槽内で連続して作成でき
、製造コストを大巾に低減できる。
By the way, if the above-mentioned perpendicular magnetic anisotropy layer is also created by the facing target sputtering method, it is possible to form a low-humidity film, a polyester film with low heat resistance can be used as a substrate, and both layers can be formed in one vacuum chamber. It can be produced continuously, greatly reducing manufacturing costs.

以下、上述の本発明の詳細を実施例に基いて説明づる。Hereinafter, the details of the above-mentioned present invention will be explained based on examples.

第5図は本発明の実施に用いた対向ターゲット式スパッ
タ装置の構成図でおる。
FIG. 5 is a block diagram of a facing target type sputtering apparatus used in carrying out the present invention.

図から明らかな通り、本装置は前述の特開昭57−15
8380号公報で公知の対向ターゲット式スパッタ装置
と基本的に同じ構成となっている。
As is clear from the figure, this device is based on the aforementioned Japanese Unexamined Patent Publication No. 57-15
It has basically the same configuration as the facing target type sputtering apparatus known in Japanese Patent No. 8380.

りなわら、図において10は真空槽、 20は真空槽1
0を排気する真空ポンプ等からなる排気系、 30は真
空槽10内に所定のガスを導入して真空槽10内の圧力
を10−1〜10−4 Torr程度の所定のガス圧力
に設定づるガス導入系でおる。
In the figure, 10 is the vacuum chamber, and 20 is the vacuum chamber 1.
30 is an exhaust system consisting of a vacuum pump or the like that evacuates 0, and 30 introduces a predetermined gas into the vacuum chamber 10 and sets the pressure inside the vacuum chamber 10 to a predetermined gas pressure of about 10-1 to 10-4 Torr. Gas introduction system.

そして、真空槽10内には、図示の如く真空槽10の側
板11.12に絶縁部材13.14を介して固着された
ターゲットホルダー15.16により1対のターゲット
TI、T2が、そのスパッタされる面T1s、’2sを
空間を隔てて平行に対面するように配設しである。そし
て、ターゲットホルダー15.16内は、冷却パイプ1
51.161を介して冷却水が循環し、ターゲットT1
.T2.永久磁石152.162が冷却される。
In the vacuum chamber 10, a pair of targets TI and T2 are sputtered by a target holder 15.16 fixed to the side plate 11.12 of the vacuum chamber 10 via an insulating member 13.14 as shown in the figure. The surfaces T1s and '2s are arranged so as to face each other in parallel across a space. Inside the target holder 15 and 16 is a cooling pipe 1.
Cooling water circulates through 51.161 and targets T1
.. T2. Permanent magnets 152, 162 are cooled.

磁石152.162はターゲットT1.T2を介してN
極。
Magnets 152, 162 are connected to target T1. N via T2
very.

S極が対向するように設けてあり、従って磁界はターゲ
ットT+、Tzに垂直な方向に、かつターゲット間に形
成される。なお、17.18は絶縁部材13゜14及び
ターゲットホルダー15.16をスパッタリング時のプ
ラズマ粒子から保護するためとターゲット表面以外の部
分の異常放電を防止するためのシールドである。
The south poles are arranged to face each other, so that a magnetic field is formed in a direction perpendicular to the targets T+ and Tz and between the targets. Incidentally, 17 and 18 are shields for protecting the insulating members 13 and 14 and the target holders 15 and 16 from plasma particles during sputtering and for preventing abnormal discharge on parts other than the target surface.

また、磁性薄膜が形成される基板40を保持する基板保
持手段41は、真空槽10内のターゲットT+。
Further, the substrate holding means 41 that holds the substrate 40 on which the magnetic thin film is formed is a target T+ in the vacuum chamber 10 .

T2の側方に設けである。基板保持手段41は、図示省
略した支持ブラケットによりそれぞれ回転自在かつ互い
に軸平行に支持された繰り出しロール41a、支持ロー
ル41b2巻取ロール41Cの3個のロールかうなり、
基板40をターゲットT1.Tz間の空間に対向するよ
うにスパッタ面T13.T2Sに対して略直角方向に支
持するように配置しである。従って基板40は基板保持
手段旧によりスパッタ面’1s、’2sに対して直角方
向に連続的に移動可能で必る。なお、支持ロール41b
はその表面温度が調節可能となっている。なお、42は
基板の1」方向(TD>の膜厚分布を均一にするための
マスクである。
It is provided on the side of T2. The substrate holding means 41 includes three rolls, a feed roll 41a, a support roll 41b, and a take-up roll 41C, which are supported rotatably and parallel to each other by support brackets (not shown).
The substrate 40 is set as a target T1. Sputtered surface T13. facing the space between Tz. It is arranged so as to be supported in a direction substantially perpendicular to T2S. Therefore, the substrate 40 must be continuously movable in the direction perpendicular to the sputtering surfaces '1s and '2s by the substrate holding means. Note that the support roll 41b
Its surface temperature can be adjusted. Note that 42 is a mask for making uniform the film thickness distribution in the 1'' direction (TD>) of the substrate.

一方、スパッタ電力を供給する直流電源からなる電力供
給手段50はプラス側をアースに、マイナス側をターゲ
ットr+、T2に夫々接続する。従って電力供給手段5
0からのスパッタ電力は、アースをアノードとし、ター
ゲットTI、T2をカソードとして、アノード、カソー
ド間に供給される。
On the other hand, a power supply means 50 consisting of a DC power source for supplying sputtering power has its positive side connected to the ground and its negative side connected to targets r+ and T2, respectively. Therefore, the power supply means 5
Sputtering power from 0 is supplied between the anode and the cathode with the ground as the anode and the targets TI and T2 as the cathodes.

なお、プレスパッタ時基板40を保護プるため、基板4
0とターゲットT+、T2との間に出入するシャッター
(図示省略)が設けである。
Note that in order to protect the substrate 40 during pre-sputtering,
A shutter (not shown) is provided between the targets T+ and T2.

以上の通り、前述の特開昭57−158380号公報の
ものと基本的には同じ構成であり、公知の通り高速低温
スパッタが可能となる。すなわち、ターゲットT+、T
z間の空間に、磁界の作用によりスパッタガスイオン、
スパッタにより放出されたγ電子等が束縛され高密度プ
ラズマが形成される。従って、ターゲラl”T1.T2
のスパッタが促進されて前記空間より析出量が増大し、
基板40上への堆積速度が増し高速スパッタが出来る上
、基板40がターゲラl”TI、T2の側方にあるので
低温スパッタも出来る。
As described above, the structure is basically the same as that of the above-mentioned Japanese Patent Application Laid-Open No. 57-158380, and high-speed low-temperature sputtering is possible as is known. That is, targets T+, T
In the space between z, sputter gas ions,
γ electrons etc. emitted by sputtering are bound to form high-density plasma. Therefore, Targera l"T1.T2
sputtering is promoted and the amount of precipitation increases from the space,
The deposition rate on the substrate 40 is increased and high-speed sputtering is possible, and since the substrate 40 is on the side of the target layer 1''TI, T2, low-temperature sputtering is also possible.

なお、本発明における対向ターゲット式スパッタ法は、
前述の装置のものに限定されるものでなく、前述の通り
一苅の対面させたターゲットの側方に基板を配し、ター
ゲット間に垂直方向の磁界を印加してスパッタし、基板
上に膜を形成するスパッタ法を言う。従って、磁界発生
手段も永久磁石でなく、電磁石を用いても良い。また、
磁界もターゲット間の空間にγ電子等を閉じ込めるもの
であれば良く、従ってターゲット全面でなく、ターゲッ
ト周囲にのみ発生させた場合も含む。
Note that the facing target sputtering method in the present invention is as follows:
The device is not limited to the one described above, and as described above, a substrate is placed on the side of a pair of facing targets, and a perpendicular magnetic field is applied between the targets to perform sputtering to form a film on the substrate. This refers to the sputtering method that forms . Therefore, the magnetic field generating means may also be an electromagnet instead of a permanent magnet. Also,
The magnetic field may be one that confines γ electrons and the like in the space between the targets, and therefore includes the case where it is generated not over the entire surface of the target but only around the target.

次に上)ホの対向ターゲット式スパッタ装置により実施
した本発明に係わる垂直磁気記録媒体の実施例を説明す
る。
Next, an example of a perpendicular magnetic recording medium according to the present invention, which was implemented using the facing target type sputtering apparatus shown in (a) above, will be described.

媒体の磁気特性は振動試料型磁力計(VSM)で測定し
て求めた。
The magnetic properties of the medium were determined by measurement using a vibrating sample magnetometer (VSM).

二層膜媒体の記録・再生特性は前述の特公昭58−91
号公報等で公知のものと同様な補助!a極励磁型の垂直
型磁気ヘッドを用いて評価した。
The recording/reproducing characteristics of the double-layer film media were described in the above-mentioned Japanese Patent Publication No. 58-91.
Assistance similar to that publicly known in the No. 1 publication, etc.! Evaluation was performed using an a-pole excitation type vertical magnetic head.

膜厚及び組成については、蛍光X線装置を用いて予め較
正した曲線から求めた。
The film thickness and composition were determined from a curve calibrated in advance using a fluorescent X-ray device.

実施例 下記条件により粒度番号6のパーマロイターゲットを用
い低保磁力層形成時のArガス圧を0.5Pa(パスカ
ル)とし1.基板上にパーマロイからなる低保磁力層を
作成したのちCo−Crからなる垂直磁気異方性層を第
5図のスパッタ装置を用いて順次形成して50mの長さ
の二層膜媒体を作成した。
Example A permalloy target with particle size number 6 was used under the following conditions, and the Ar gas pressure during formation of the low coercive force layer was set to 0.5 Pa (Pascal).1. After creating a low coercive force layer made of permalloy on a substrate, a perpendicular magnetic anisotropy layer made of Co-Cr was sequentially formed using the sputtering apparatus shown in Fig. 5 to create a 50 m long two-layer film medium. did.

A、装置条件 A−1,低保磁力層 a、ターゲットTI、T2材:共に粒度番号61組成N
 i −80wt%、 Fe−19,9wt%のパーマ
ロイb、基板40 : 50μm厚のポリエヂレンテレ
フタレ−1〜(P E T >フィルム C,ターゲットT+、T2間隔: 120mmd、ター
ゲット表面の磁界:1Oe〜2Oeガウスe、ターゲッ
トTI、T2形状: 1Oemm L X 150mmWX 12mmtの矩
形f、基板40とターゲットT1.T2端部の距離:0
mm A−2,Go−Cr垂直磁気異方性層 a、ターゲットr+、Tz材:共にCo−80wt%、
 Cr−20wt%の合金 C,ターグツl”T+、Tz間隔: 160mmd、タ
ーゲット表面の磁界:1Oe〜2Oeガウスe、ターゲ
ットTI、T2形状: 1Oemm L x150mmwx12mmtの矩形[
、基板40とターゲットT1.T2端部の距離=0mm B、操作手順 A−1,A−2の条件のもとて順次次の如く行った。
A, device conditions A-1, low coercive force layer a, target TI, T2 material: particle size number 61 composition N
i-80wt%, Fe-19.9wt% Permalloy B, Substrate 40: 50μm thick polyethylene terephthalate-1~(PET>Film C, target T+, T2 spacing: 120mmd, magnetic field on target surface: 1Oe~2Oe Gauss e, target TI, T2 shape: 1Oemm L x 150mmWX 12mmt rectangle f, distance between substrate 40 and target T1.T2 end: 0
mm A-2, Go-Cr perpendicular magnetic anisotropy layer a, target r+, Tz material: both Co-80wt%,
Cr-20wt% alloy C, Targutsu l"T+, Tz spacing: 160mmd, magnetic field on target surface: 1Oe~2Oe Gauss e, target TI, T2 shape: 1Oemm L x 150mmw x 12mmt rectangle [
, substrate 40 and target T1. Distance of T2 end = 0 mm B, operating procedure The following steps were carried out under the conditions of A-1 and A-2.

a、!3板を設置後、真空槽10内を到達真空度が1X
 10’ 101丁以下まで排気する。
a,! After installing the three plates, the degree of vacuum achieved in the vacuum chamber 10 is 1X.
10' Evacuate to 101 guns or less.

b、Ar(アルゴン)ガスを所定の圧力まで導入し、3
〜5分間のプレスパツタを行い、シャッターを開き、基
板40を図示の通りターグツ1〜T+。
b. Introduce Ar (argon) gas to a predetermined pressure, 3
After performing press sputtering for ~5 minutes, open the shutter, and press the substrate 40 as shown in the figure.

T2の対向方向に移送しつつ膜形成を行った。なお、A
−1の場合スパッタ時の酸ガス圧は0.5Paとした。
Film formation was performed while transferring in the opposite direction of T2. In addition, A
-1, the acid gas pressure during sputtering was 0.5 Pa.

またA−2の場合も、0.5Paとした。Also in the case of A-2, the pressure was set to 0.5 Pa.

C1スパッタ時投入電力はA−1,A−2ともに31り
Δで行い、フィルム走り速度を調節して、0.5μm厚
さのパーマロイ薄膜と0.2μmのCoCr層4膜を積
層形成した。
The power input during C1 sputtering was 31 Δ for both A-1 and A-2, and the film running speed was adjusted to form a laminate of a 0.5 μm thick permalloy thin film and 4 0.2 μm CoCr layers.

d、 基板温度はA−1,A−2はそれぞれ90°C,
130℃で行った。
d. The substrate temperature is 90°C for A-1 and A-2, respectively.
The temperature was 130°C.

C9実施結果 基板フィルムの片面に二層膜を形成した50mの長さの
媒体より、長さ方向に4ケ所、すなわらスパッタ開始よ
り10m、 20m、 30m、 40mの所よりフレ
キシブルディスク形状を打法いた。ディスクをジャケッ
トに入れて、カールを押え込みながら、′41h助磁極
励磁型の垂直ヘッドで再生出力と一周期のモジュレーシ
ョンを測定した。測定は潤滑剤を塗布し半径30mmの
所で30Orpmの回転速度で、30kBPIの記録密
度相当の周波数で実施した。表−1に、後述の比較例に
お【プる結果とともに、適当なアンプ利得後の再生出力
の最大値と最小値と、モジュレーションを示した。
Results of C9 A flexible disk shape was struck from four locations in the length direction, that is, 10 m, 20 m, 30 m, and 40 m from the start of sputtering, from a 50 m long medium with a two-layer film formed on one side of the substrate film. There was a law. The disc was placed in a jacket, and while the curl was pressed down, the reproduction output and one-cycle modulation were measured using a '41h auxiliary pole excitation type vertical head. The measurement was carried out at a rotation speed of 30 Orpm at a radius of 30 mm after applying a lubricant, and at a frequency corresponding to a recording density of 30 kBPI. Table 1 shows the maximum and minimum values of the reproduced output after appropriate amplifier gain, and the modulation, along with the results of the comparative example described below.

Noパーマロイ薄膜のみかけの保磁力は、4試料ともに
測定方向によらず7.0±0.5Oeであり、そのみか
けの磁化曲線はすべて第1図に示した形状でめった。C
oCr合金薄膜の保磁力は、二層膜よりCoCr層のみ
を取り出しVSMで評価し、垂直方向で65Oee、面
内方向で41Oeeであった。なお、C。
The apparent coercive force of the No permalloy thin film was 7.0±0.5 Oe regardless of the measurement direction for all four samples, and all of the apparent magnetization curves were in the shape shown in FIG. C
The coercive force of the oCr alloy thin film was evaluated by VSM by taking out only the CoCr layer from the two-layer film, and found that it was 65 Oee in the vertical direction and 41 Oee in the in-plane direction. In addition, C.

Cr層に面内の磁気異方性は見られなかった。No in-plane magnetic anisotropy was observed in the Cr layer.

又、基板にヤング率、熱収縮率を変えた種々の機械的、
熱的特性が異なるPETフィルムを用い、同じように製
膜したが、全てほぼ同じ特性の媒体が安定に生産できた
In addition, various mechanical,
PET films with different thermal properties were used to form films in the same manner, but all media with almost the same properties could be stably produced.

比較例 実施例におけるパーマロイターゲット組成(八−1−a
)を)to 5wt%、 Nr 79.6wt%、 F
e 15.3Wt、%とじた結晶粒度番号4のMOペパ
ーロイターゲットを用いた以外は、すべて同様の条件下
で50m長さの二層膜媒体を作製し、同様に評価した。
Comparative Example Permalloy target composition in Example (8-1-a
) to 5wt%, Nr 79.6wt%, F
e A 50 m long two-layer film medium was prepared and evaluated in the same manner under all the same conditions except that a 15.3 Wt, % grain size MO pepperloy target was used.

ト10パーマロイ薄膜のみかけの保磁力は、4試料とも
、すべて1.0〜2.4Oeの範囲でおったが、そのみ
かけの磁化曲線の形状は、表−1に記載の通り、4試料
間すなわち長さ方向に変化が見られた。
The apparent coercivity of the Permalloy thin film was in the range of 1.0 to 2.4 Oe for all four samples, but the shape of the apparent magnetization curve was different between the four samples as shown in Table 1. In other words, changes were observed in the length direction.

この理由はスパッタの進行とともに真空(a内の温度が
上昇すること、及び/又はフィルム送行に必要なフィル
ム張力の経時変化、及び/又は真空槽内のスパッタ時の
Arガス以外の不純ガスレベルの経時的な変動1等が考
えられ、このようなわずかな変化は制御不能であった。
The reason for this is that the temperature inside the vacuum (a) increases as sputtering progresses, and/or the film tension required for film feeding changes over time, and/or the level of impurity gases other than Ar gas during sputtering in the vacuum chamber increases. Fluctuations over time such as 1 mag. were considered, and such slight changes were uncontrollable.

CoCr合金A9膜の特]牛は実施例と同じでおった。Characteristics of CoCr alloy A9 membrane] The cows were the same as in the example.

なお、基板に実施例と同様種々の機械的、熱的特性が異
なるPETフィルムを用い、上述と同じように製膜した
ところ、Noパーマロイ薄膜の面内磁気異方性は種々の
変化を示し、その都度フィルム張力等の微調整を必要と
し、それでも長尺の媒体では長さ方向に磁気特性が変動
し、安定連続生産が難しいことがわかった。
In addition, when films were formed in the same manner as described above using PET films with different mechanical and thermal properties as in the example as the substrate, the in-plane magnetic anisotropy of the No permalloy thin film showed various changes, Fine adjustment of the film tension, etc. is required each time, and even then, with long media, the magnetic properties fluctuate in the length direction, making stable continuous production difficult.

表−1 (*)第2図と第3図の中間的な形状、すなわち、中程
度の面内磁気異方性を示した。゛ 表−1より理解される如く、本発明の低保磁力層を有す
る二層膜媒体は、すぐれた製膜安定性と、再生出力値を
有し、モジュレーションは極めて小さい。かかる低保磁
力層は、本発明の結晶粒度5以上の実質的にNiFe二
成分系のパーマロイターゲットを用いて好ましく得るこ
とが可能となった。
Table 1 (*) The shape is intermediate between those in Figures 2 and 3, that is, it exhibits moderate in-plane magnetic anisotropy. As can be understood from Table 1, the two-layer film medium having a low coercive force layer of the present invention has excellent film formation stability and reproduction output value, and has extremely small modulation. Such a low coercive force layer can be preferably obtained using the substantially NiFe binary permalloy target having a grain size of 5 or more according to the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の好ましい磁化曲線の形状を示したもの
、第2図、第3図、第4図はいずれもHOパーマロイ薄
膜の磁化曲線の形状を示したものであり、実線はM D
方向に測定、点線はTD力方向測定したものである。 第5図は本発明の実施に用いた巻取式の連続対向ターゲ
ット式スパッタ装置の説明図、第6図はスパッタ時のA
rガス圧と得られたN i FeN膜の保磁力との関係
を示すグラフで、図のaはNiFe、 bは)Inを0
.5wt%含有するNiFeに関するものである。 TI、T2:ターゲット、10:真空槽、20:排気系
。 30:ガス導入系、40:基板、50ニスバッタ電源第
+1躬
FIG. 1 shows the shape of the preferred magnetization curve of the present invention, and FIGS. 2, 3, and 4 all show the shape of the magnetization curve of the HO permalloy thin film, and the solid line is M D
The dotted line is measured in the TD force direction. Fig. 5 is an explanatory diagram of a winding type continuous facing target type sputtering apparatus used in the implementation of the present invention, and Fig. 6 is an illustration of A during sputtering.
This is a graph showing the relationship between the r gas pressure and the coercive force of the obtained NiFeN film.
.. This relates to NiFe containing 5 wt%. TI, T2: target, 10: vacuum chamber, 20: exhaust system. 30: Gas introduction system, 40: Substrate, 50 Varnish butter power supply No. +1

Claims (1)

【特許請求の範囲】 1)非磁性の基板上に、NiおよびFeを主成分とする
パーマロイ薄膜からなる低保磁力層及び垂直磁気異方性
を有する磁気記録層を順次形成してなる磁気記録媒体に
おいて、該低保磁力層が、下記の諸項を具備したパーマ
ロイ薄膜からなることを特徴とする磁気記録媒体。 (1)組成が78〜83重量%のNiを含み、残部がF
e及び1.5重量%以下の不純元素より成ること(ただ
し膜中のAr(アルゴン)は除いて計算する)。 (2)膜面内でVSM(振動試料型磁力計)で測定され
るみかけの保持力が、膜面内のすべての方向において4
エルステッド(Oe)以上、15Oe以下であること。 (3)膜面内でVSMにより測定されるみかけの飽和磁
化曲線が、60Oe以上で磁化の飽和を示し、かつ飽和
状態より印加磁場を減少していった時に60Oe以下で
磁化が減少を始め、保持力近傍までほぼ直線的に磁化が
変化し、保持力近傍で急峻に磁化反転する形状の減磁曲
線を示すこと。 (4)膜厚が0.3μm以上、0.7μm以下であるこ
と。 2)前記不純元素として少なくとも0.3重量%以上、
1.2重量%以下のMnを含有する特許請求の範囲第1
)項記載の磁気記録媒体。 3)前記非磁性の基板が可撓性を有する有機高分子フィ
ルムである特許請求の範囲第1)項、もしくは第2)項
記載の磁気記録媒体。 4)非磁性の基板上に、 (1)組成が78〜83重量%のNiを含み、残部がF
e及び1.5重量%以下の不純元素より成ること(ただ
し膜中のAr(アルゴン)は除いて計算する)。 (2)膜面内でVSM(振動試料型磁力計)で測定され
るみかけの保持力が、膜面内のすべての方向において4
Oe以上、12Oe以下であること。 (3)膜面内でVSMにより測定されるみかけの飽和磁
化曲線が、60Oe以上で磁化の飽和を示し、かつ飽和
状態より印加磁場を減少していった時に60Oe以下で
磁化が減少を始め、保持力近傍までほぼ直線的に磁化が
変化し、保持力近傍で急峻に磁化反転する形状の減磁曲
線を示すこと。 (4)膜厚が0.3μm以上、0.7μm以下であるこ
と。 の全要件を具備したパーマロイ薄膜からなる低保磁力層
及び垂直磁気異方性を有する磁気記録層を順次形成して
なる磁気記録媒体の製造法において、前記低保磁力層を
、結晶粒度番号5以上のパーマロイ合金をターゲットと
して、Arガス雰囲気中でスパッタすることにより連続
的に走行する長尺の非磁性基板上に形成することを特徴
とする磁気記録媒体の製造法。 5)前記スパッタ法が対向ターゲット式スパッタ法であ
る特許請求の範囲第4)項記載の磁気記録媒体の製造法
[Claims] 1) Magnetic recording in which a low coercive force layer made of a permalloy thin film containing Ni and Fe as main components and a magnetic recording layer having perpendicular magnetic anisotropy are sequentially formed on a nonmagnetic substrate. 1. A magnetic recording medium, wherein the low coercive force layer is made of a permalloy thin film having the following features. (1) The composition contains 78 to 83% by weight of Ni, and the balance is F.
and 1.5% by weight or less of impurity elements (however, calculations exclude Ar (argon) in the film). (2) The apparent coercive force measured by a VSM (vibrating sample magnetometer) within the membrane plane is 4 in all directions within the membrane plane.
Must be Oersted (Oe) or more and 15 Oe or less. (3) The apparent saturation magnetization curve measured by VSM in the film plane shows saturation of magnetization above 60 Oe, and when the applied magnetic field is reduced from the saturated state, the magnetization begins to decrease below 60 Oe. Showing a demagnetization curve in which the magnetization changes almost linearly up to the vicinity of the coercive force, and the magnetization reverses sharply near the coercive force. (4) The film thickness is 0.3 μm or more and 0.7 μm or less. 2) at least 0.3% by weight or more as the impurity element;
Claim 1 containing 1.2% by weight or less of Mn
) The magnetic recording medium described in item 2. 3) The magnetic recording medium according to claim 1) or 2), wherein the nonmagnetic substrate is a flexible organic polymer film. 4) On a non-magnetic substrate, (1) the composition contains 78 to 83% by weight of Ni, the balance being F;
and 1.5% by weight or less of impurity elements (however, calculations exclude Ar (argon) in the film). (2) The apparent coercive force measured by a VSM (vibrating sample magnetometer) within the membrane plane is 4 in all directions within the membrane plane.
Must be Oe or more and 12 Oe or less. (3) The apparent saturation magnetization curve measured by VSM in the film plane shows saturation of magnetization above 60 Oe, and when the applied magnetic field is reduced from the saturated state, the magnetization begins to decrease below 60 Oe. Showing a demagnetization curve in which the magnetization changes almost linearly up to the vicinity of the coercive force, and the magnetization reverses sharply near the coercive force. (4) The film thickness is 0.3 μm or more and 0.7 μm or less. In the method for manufacturing a magnetic recording medium, the low coercive force layer is formed by sequentially forming a low coercive force layer made of a permalloy thin film and a magnetic recording layer having perpendicular magnetic anisotropy, which satisfies all the requirements of A method for producing a magnetic recording medium, which comprises forming the medium on a continuously running elongated non-magnetic substrate by sputtering the above permalloy alloy as a target in an Ar gas atmosphere. 5) The method for manufacturing a magnetic recording medium according to claim 4, wherein the sputtering method is a facing target sputtering method.
JP12402187A 1987-05-22 1987-05-22 Magnetic recording medium and its production Pending JPS63291213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12402187A JPS63291213A (en) 1987-05-22 1987-05-22 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12402187A JPS63291213A (en) 1987-05-22 1987-05-22 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS63291213A true JPS63291213A (en) 1988-11-29

Family

ID=14875067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12402187A Pending JPS63291213A (en) 1987-05-22 1987-05-22 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS63291213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475974B1 (en) 2000-09-01 2002-11-05 Dow Corning Corporation Mechanical microemulsions of blended silicones
CN100352076C (en) * 2004-11-16 2007-11-28 北京科技大学 Method for preparing aeolotropic magneto resistor permalloy thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475974B1 (en) 2000-09-01 2002-11-05 Dow Corning Corporation Mechanical microemulsions of blended silicones
CN100352076C (en) * 2004-11-16 2007-11-28 北京科技大学 Method for preparing aeolotropic magneto resistor permalloy thin film

Similar Documents

Publication Publication Date Title
US5403457A (en) Method for making soft magnetic film
JPS6134723A (en) Magnetic recording medium and its manufacture
JPS6129127B2 (en)
US4990361A (en) Method for producing magnetic recording medium
JPS63291213A (en) Magnetic recording medium and its production
JP2579184B2 (en) Magnetic recording media
JP3167808B2 (en) Soft magnetic thin film
JPS63291212A (en) Magnetic recording medium
JP3121933B2 (en) Soft magnetic thin film
JPS6363969B2 (en)
JP2758602B2 (en) Magnetic recording medium and method of manufacturing the same
JP3388955B2 (en) Manufacturing method of magnetic recording medium
JPS6151814A (en) Permalloy thin film and vertical magnetic recording medium
JPH0652569B2 (en) Method of manufacturing magnetic recording medium
JPS59193528A (en) Magnetic recording medium and its production
JPS6015818A (en) Magnetic recording medium
JPS61207006A (en) Permalloy thin film and vertical magnetic recording medium
JPH03112114A (en) Manufacture of magnetic film and alloy target used therefor
JPS5948822A (en) Vertical magnetic recording medium and its production
JP2001237136A (en) Fe-N SOFT MAGNETIC THIN-FILM AND METHOD OF FORMING THE SAME
JPS63164049A (en) Magneto-optical recording medium and its production
JPH0263249B2 (en)
JPS6233321A (en) Vertical magnetic recording medium
JPH03119519A (en) Production of perpendicular magnetic recording medium
JPS63255813A (en) Perpendicular magnetic recording medium