JPH0572733B2 - - Google Patents

Info

Publication number
JPH0572733B2
JPH0572733B2 JP59038237A JP3823784A JPH0572733B2 JP H0572733 B2 JPH0572733 B2 JP H0572733B2 JP 59038237 A JP59038237 A JP 59038237A JP 3823784 A JP3823784 A JP 3823784A JP H0572733 B2 JPH0572733 B2 JP H0572733B2
Authority
JP
Japan
Prior art keywords
magnetic field
substrate
thin film
magnetic
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59038237A
Other languages
Japanese (ja)
Other versions
JPS60182711A (en
Inventor
Koji Matsuzawa
Hiromichi Enomoto
Juji Kasanuki
Shozo Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP3823784A priority Critical patent/JPS60182711A/en
Publication of JPS60182711A publication Critical patent/JPS60182711A/en
Publication of JPH0572733B2 publication Critical patent/JPH0572733B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 発明の背景 技術分野 本発明は磁性金属材料を高速でスパツタする磁
性薄膜の形成方法およびその装置に関し、特に高
密度磁気記録媒体の製造に好適な磁性薄膜の形成
方法およびその装置に関する。
BACKGROUND OF THE INVENTION Technical Field The present invention relates to a method and apparatus for forming a magnetic thin film by sputtering a magnetic metal material at high speed, and in particular to a method and apparatus for forming a magnetic thin film suitable for manufacturing high-density magnetic recording media. Regarding the device.

従来技術とその問題点 近年の情報量の増加に伴ない、高密度記録への
要求が高まつている。これに対し、高融点金属や
酸化物等の化合物を始めとするほとんどすべての
物質の薄膜化に利用できる等の利点を有するスパ
ツタ法が注目されている。
Prior art and its problems With the increase in the amount of information in recent years, the demand for high-density recording is increasing. In contrast, the sputtering method is attracting attention because it has the advantage that it can be used to form thin films of almost all substances, including compounds such as high-melting point metals and oxides.

スパツタ法の一つとして、高薄膜形成速度、低
基板温度および低ガス圧領域でのスパツタを可能
にしたマグネトロンスパツタ法が開発されてい
る。しかし、この方法において、非磁性体をター
ゲツトとして用いる場合には高速成膜が可能であ
るが、磁性体をターゲツトに用いる場合、ターゲ
ツト表面に平行な磁界を印加できなくなるため
に、高速成膜が不可能であつた。
As one of the sputtering methods, the magnetron sputtering method has been developed, which enables sputtering at a high thin film formation rate, low substrate temperature, and low gas pressure region. However, in this method, high-speed film formation is possible when a non-magnetic material is used as a target, but when a magnetic material is used as a target, high-speed film formation is not possible because it is no longer possible to apply a magnetic field parallel to the target surface. It was impossible.

これに対し、磁性体をターゲツトに用いてかつ
高速成膜が可能な方法として対向ターゲツト式ス
パツタ法が提案されている(応用物理、第48巻第
6号、P558〜P559、1979年)。この対向ターゲツ
ト式スパツタ法に用いられる装置は第1図に示す
如く構成される。即ち、真空槽10内に一対のタ
ーゲツトTa,Tbをスパツタ面TaS,TbSが空間
を隔てて平行に対面するように配置すると共に、
基板20はターゲツトTa,Tbの側方に設けた基
板ホルダー21によりターゲツトTa,Tbの空間
の側方に該空間に対面するように配置する。そし
て真空槽10の回りに設けたコイル30もしくは
真空槽10内に内蔵された永久磁石31によりス
パツタ面TaS,TbSに垂直な方向のプラズマ収束
磁界Hを発生させるようにしてある。なお、ター
ゲツトTa,Tbはそれぞれ鉄製のターゲツトホル
ダー11a,11bにより保持され、シールド1
2a,12bにより保護されている。
On the other hand, a facing target sputtering method has been proposed as a method that uses a magnetic material as a target and is capable of high-speed film formation (Oyoi Physics, Vol. 48, No. 6, P558-P559, 1979). The apparatus used in this opposed target sputtering method is constructed as shown in FIG. That is, a pair of targets Ta and Tb are arranged in the vacuum chamber 10 so that the sputtering surfaces TaS and TbS face each other in parallel with a space between them, and
The substrate 20 is placed on the side of the space between the targets Ta and Tb so as to face the space by a substrate holder 21 provided on the side of the targets Ta and Tb. A plasma focusing magnetic field H in a direction perpendicular to the sputtering surfaces TaS and TbS is generated by a coil 30 provided around the vacuum chamber 10 or by a permanent magnet 31 built into the vacuum chamber 10. The targets Ta and Tb are held by iron target holders 11a and 11b, respectively, and the shield 1
2a and 12b.

上記装置を用いて薄膜を形成するには、図面に
省略した排気系により排気口40から真空槽10
内を排気した後、図面に省略したガス導入系によ
り導入口50を通してアルゴン等のスパツタガス
を導入し、直流電源からなるスパツタ電源60に
よりシールド12a,12bおよび真空槽10を
陽極(接地)にし、ターゲツトTa,Tbを陰極に
してスパツタ電圧を供給すると共にコイル30ま
たは真空槽10内に内蔵された永久磁石31によ
り前記磁界Hを発生させることによりスパツタが
行なわれ、基板20上にターゲツトTa,Tbに対
応した組成の薄膜が形成される。
To form a thin film using the above apparatus, an exhaust system (not shown in the drawing) is used to connect the exhaust port 40 to the vacuum chamber 10.
After evacuating the inside, a sputter gas such as argon is introduced through the inlet 50 using a gas introduction system not shown in the drawing, and the shields 12a, 12b and the vacuum chamber 10 are made anodes (grounded) by the sputter power supply 60 consisting of a DC power supply, and the target is Sputtering is performed by supplying a sputtering voltage using Ta and Tb as cathodes and generating the magnetic field H using the coil 30 or the permanent magnet 31 built in the vacuum chamber 10. A thin film of corresponding composition is formed.

この時、前述の構成によりスパツタ面TaS,
TbSに垂直なスパツタ収束磁界Hが印加されてい
るので、対向するターゲツトTa,Tb間の空間内
に高エネルギー電子が閉じ込められ、この空間内
のスパツタガスのイオン化が促進されてスパツタ
速度が大きくなり、高速の膜形成が可能となる。
At this time, due to the above configuration, the sputtered surface TaS,
Since a sputter convergence magnetic field H perpendicular to TbS is applied, high-energy electrons are confined in the space between the opposing targets Ta and Tb, and the ionization of the sputter gas in this space is promoted, increasing the sputtering speed. High-speed film formation becomes possible.

また、基板20は従来のスパツタ装置の如くタ
ーゲツトに対向せず、ターゲツトTa,Tbの側方
に配置されているので、基板20への高いエネル
ギーを有するイオンや電子の衝突がほとんどなく
なり、かつ、ターゲツトTa,Tbからの熱輻射も
小さく基板温度の上昇を防ぎ、低温での膜形成を
可能としている。
Further, since the substrate 20 is not opposed to the target as in conventional sputtering equipment, but is placed on the side of the targets Ta and Tb, collisions of high-energy ions and electrons against the substrate 20 are almost eliminated. Thermal radiation from the targets Ta and Tb is also small, preventing increases in substrate temperature and allowing film formation at low temperatures.

しかしながら、前述した如くのスパツタ面
TaS,TbSに垂直なプラズマ収束磁界Hは、ター
ゲツトTa,Tb間の空間に高エネルギー電子を閉
じこめ、膜形成速度を速めると同時に、ターゲツ
トTa,Tbの側方に配置されている基板20の表
面にもターゲツトTa,Tb間方向の磁界Hsを与
えることになる。このことは、パーマロイのよう
な軟磁性体をターゲツトに用いて、基板20上に
形成した磁性薄膜では、その膜面内に磁界印加方
向、即ち、ターゲツトTa,Tb間方向に磁化容易
軸をもつ一軸磁気異方性を有することになる。従
つて、上記方法によりFe−Ni層を下地層として、
その上にCo−Cr層を成膜して垂直磁気記録媒体
として使用した場合、前記下地層の一軸磁気異方
性により周期的な出力変動が発生することがわか
り、実用上の大きな問題となつていた。
However, as mentioned above, the spattered surface
The plasma convergence magnetic field H perpendicular to TaS and TbS confines high-energy electrons in the space between the targets Ta and Tb, speeding up the film formation rate, and at the same time, the surface of the substrate 20 placed on the side of the targets Ta and Tb. A magnetic field Hs in the direction between the targets Ta and Tb is also applied to the target Ta and Tb. This means that a magnetic thin film formed on the substrate 20 using a soft magnetic material such as permalloy as a target has an axis of easy magnetization in the direction of magnetic field application in the film plane, that is, in the direction between targets Ta and Tb. It has uniaxial magnetic anisotropy. Therefore, by the above method, using the Fe-Ni layer as the base layer,
When a Co-Cr layer is formed on top of the Co-Cr layer and used as a perpendicular magnetic recording medium, it has been found that periodic output fluctuations occur due to the uniaxial magnetic anisotropy of the underlayer, which poses a major practical problem. was.

発明の目的 本発明は上記の如き問題点を鑑み為されたもの
で、本発明の第1の目的は、一軸磁気異方性を有
せず出力変動のない磁性薄膜の形成を可能にする
磁性薄膜の形成方法を提供することである。さら
に本発明の第2の目的は、前記磁性薄膜の形成方
法に適する装置を提供することである。
Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and the first object of the present invention is to provide magnetic properties that enable the formation of a magnetic thin film that does not have uniaxial magnetic anisotropy and has no output fluctuation. An object of the present invention is to provide a method for forming a thin film. Furthermore, a second object of the present invention is to provide an apparatus suitable for the method of forming a magnetic thin film.

発明の具体的構成 本発明の第1の目的は、陰極となる一対のター
ゲツトを、そのスパツタ面が空間を隔てて対面す
るように配置し、該スパツタ面に垂直な方向に磁
界を発生する手段により磁界を発生しながら、前
記ターゲツト間の側方に、前記空間に対面するよ
うに配置した基板上にスパツタにより薄膜を形成
するようにした磁性薄膜の形成方法において、前
記磁界発生手段により前記基板上に生じる磁界の
補償手段により、前記基板の磁界を消磁しながら
薄膜を形成するようにしたことを特徴とする磁性
薄膜の形成方法により達成される。
DETAILED DESCRIPTION OF THE INVENTION The first object of the present invention is to provide a means for arranging a pair of targets serving as cathodes so that their sputtered surfaces face each other with a space in between, and generating a magnetic field in a direction perpendicular to the sputtered surfaces. In the method for forming a magnetic thin film, the thin film is formed by sputtering on a substrate disposed laterally between the targets so as to face the space, while generating a magnetic field by the magnetic field generating means. This is achieved by a method for forming a magnetic thin film, characterized in that the thin film is formed while demagnetizing the magnetic field of the substrate by means of compensating for the magnetic field generated above.

また、本発明の第2の目的は、陰極となる一対
のターゲツトを、そのスパツタ面が空間を隔てて
対面するように配置し、該スパツタ面に垂直な方
向に磁界を発生する手段を設け、前記ターゲツト
間の側方に、前記空間に対面するように配置した
基板上にスパツタにより成膜するようにした磁性
薄膜の形成装置において、前記磁界発生手段によ
り前記基板上に生じる磁界の補償手段を設け、該
補償手段により前記基板上の磁界を消磁しながら
薄膜を形成するようにしたことを特徴とする磁性
薄膜の形成装置により達成される。
A second object of the present invention is to arrange a pair of targets serving as cathodes so that their sputtered surfaces face each other across a space, and to provide means for generating a magnetic field in a direction perpendicular to the sputtered surfaces. In an apparatus for forming a magnetic thin film by sputtering on a substrate disposed on a side between the targets so as to face the space, compensation means for a magnetic field generated on the substrate by the magnetic field generation means is provided. This is achieved by a magnetic thin film forming apparatus characterized in that the thin film is formed while the magnetic field on the substrate is demagnetized by the compensation means.

前記本発明の方法および装置において、前記磁
界発生手段により基板上に生じる磁界Hsを消磁
する補償手段としては、前記基板上の磁界Hsを
消す働きを有するものであれば何れも用いること
ができるが、具体的には、前記基板上に生じる磁
界Hsに対して積極的に逆向きの磁界H′を印加し
て消磁する手段、例えば、前記基板近傍に配置
した永久磁石によるもの、前記基板近傍に磁界
を発生するようにした電流によるもの、前記基
板の磁性薄膜形成面の反対側に配置したもう一組
の磁性薄膜形成装置であるものがあり、また、前
記基板上に生じる磁界Hsを吸収する如くして消
磁する手段、例えば、前記ターゲツト空間と前
記基板との間に配置した軟磁性材よりなるもの等
がある。
In the method and apparatus of the present invention, any compensating means for demagnetizing the magnetic field Hs generated on the substrate by the magnetic field generating means can be used as long as it has the function of extinguishing the magnetic field Hs on the substrate. Specifically, means for demagnetizing by actively applying a magnetic field H′ in the opposite direction to the magnetic field Hs generated on the substrate, for example, a means using a permanent magnet placed near the substrate, There are methods that use an electric current to generate a magnetic field, and methods that use another set of magnetic thin film forming devices placed on the opposite side of the magnetic thin film forming surface of the substrate, and that absorb the magnetic field Hs generated on the substrate. There is a means for demagnetizing in this manner, for example, one made of a soft magnetic material disposed between the target space and the substrate.

以下、本発明を図面により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図〜第4図はそれぞれ本発明に係る磁性薄
膜の形成装置の一実施例を示すものである。
FIGS. 2 to 4 each show an embodiment of a magnetic thin film forming apparatus according to the present invention.

第2図は、前記補償手段として、前記基板近傍
に配置した永久磁石を用いた例であり、図中、第
1図と同一番号を付したものは従来装置と同様で
あり説明を省略する。同図において、スパツタ装
置の基本的構造は従来装置と何らか変わりはない
が、基板20の磁性薄膜形成面の反対側に一対の
永久磁石70が、ターゲツトTa,Tb間に印加さ
れるプラズマ収束磁界Hの方向と逆向きで、か
つ、前記基板20での磁界Hsと打ち消し合つて
消磁される如くの磁界H′を有するように配置さ
れている。上記の装置を用いて薄膜を形成するの
は、前記従来装置と同様に行なうことができる。
即ち、図面に省略した排気系により排気口40か
ら真空槽10内を排気した後、図面に省略したガ
ス導入系により導入口50を通してアルゴン等の
スパツタガスを導入し、直流電源からなるスパツ
タ電源60によりシールド12a,12bおよび
真空槽10を陽極(接地)にし、磁性材料からな
るターゲツトTa,Tbを陰極にしてスパツタ電圧
を供給すると共にコイル30または真空槽10内
に内蔵された永久磁石31により前記磁界Hを発
生させることによりスパツタを行なう。この際、
基板20の磁性薄膜形成面の反対側に設けた一対
の永久磁石70の発生する磁界H′により、基板
20上の磁界Hsは相殺され消磁されているので、
基板20上に形成される磁性薄膜層は磁気異方性
を有しないものとなる。なお、前記永久磁石70
は基板20の薄膜形成面の反対側に設けたが、基
板20の薄膜形成面側に設けてもよく、基板20
上の磁界Hsを消磁し、かつ、ターゲツトからの
スパツタ粒子をさえぎらない位置であればどこに
設けてもよい。
FIG. 2 shows an example in which a permanent magnet placed near the substrate is used as the compensating means. In the figure, the same reference numerals as in FIG. In the figure, the basic structure of the sputtering device is the same as the conventional device, but a pair of permanent magnets 70 are placed on the opposite side of the substrate 20 on which the magnetic thin film is formed. It is arranged to have a magnetic field H' opposite to the direction of the magnetic field H and which cancels out the magnetic field Hs at the substrate 20 and is demagnetized. Forming a thin film using the above-mentioned apparatus can be performed in the same manner as the conventional apparatus.
That is, after the inside of the vacuum chamber 10 is evacuated from the exhaust port 40 by an exhaust system not shown in the drawings, a sputter gas such as argon is introduced through the inlet 50 by a gas introduction system not shown in the drawings, and a sputter gas such as argon is introduced by a sputter power source 60 consisting of a DC power source. The shields 12a, 12b and the vacuum chamber 10 are used as anodes (grounded), and the targets Ta and Tb made of magnetic material are used as cathodes to supply sputtering voltage, and the magnetic field is generated by the coil 30 or the permanent magnet 31 built in the vacuum chamber 10. Sputtering is performed by generating H. On this occasion,
Since the magnetic field Hs on the substrate 20 is canceled out and demagnetized by the magnetic field H' generated by the pair of permanent magnets 70 provided on the opposite side of the magnetic thin film forming surface of the substrate 20,
The magnetic thin film layer formed on the substrate 20 has no magnetic anisotropy. Note that the permanent magnet 70
is provided on the opposite side of the thin film forming surface of the substrate 20, but may be provided on the thin film forming surface side of the substrate 20.
It may be provided anywhere as long as it demagnetizes the upper magnetic field Hs and does not block spatter particles from the target.

第3図は、前記補償手段として、第2図で示し
た永久磁石70に代えて磁界H′を発生するよう
にした電流によるもの71を用いた例であり、具
体的には導線等の電気良導線をコイル状にし電流
を適度に調節して流し磁気コイルとして用いても
よいし、電導線を基板20面に平行で磁界Hに垂
直な方向に複数本並べ、各電導線に流す電流を
各々調節して基板20上の磁界Hsを打ち消すよ
うな磁界H′を発生するようにしてもよい。
FIG. 3 shows an example in which a current-generating device 71 that generates a magnetic field H' is used instead of the permanent magnet 70 shown in FIG. 2 as the compensation means. A good conducting wire may be coiled and the current may be adjusted appropriately to flow therethrough and used as a magnetic coil.Alternatively, a plurality of conducting wires may be arranged in a direction parallel to the 20th surface of the substrate and perpendicular to the magnetic field H, and the current flowing through each conducting wire may be Each may be adjusted to generate a magnetic field H' that cancels out the magnetic field Hs on the substrate 20.

第4図は、前記補償手段として、第2図に示し
た永久磁石70に代えて互いにプラズマ収束磁界
Hが逆向きになるように配置したもう1組の磁性
薄膜の形成装置72であり、同図に示す如く、基
板支持体21の両側に基板20を設け同時にそれ
ぞれの基板20上に磁性薄膜を形成することがで
きる。また、本実施例では、磁界Hの発生装置と
して真空槽10内に内蔵された永久磁石31によ
る形式のものに対して特に良好な結果を与えるも
のである。
FIG. 4 shows another set of magnetic thin film forming apparatuses 72, which are arranged as compensation means in place of the permanent magnets 70 shown in FIG. 2 so that the plasma convergence magnetic fields H are in opposite directions. As shown in the figure, the substrates 20 can be provided on both sides of the substrate support 21, and magnetic thin films can be formed on each substrate 20 at the same time. Further, in this embodiment, particularly good results are obtained when the magnetic field H is generated using a permanent magnet 31 built in the vacuum chamber 10.

第5図は参考図で、第2図で示した永久磁石に
代えて軟鉄、ケイ素鋼、パーマロイ等の透磁率の
大きな軟磁性材73をターゲツト空間と基板20
との間でターゲツトからのスパツタ粒子をさえぎ
らない位置に配置するものである。本装置におい
ては、前記第2図〜第4図に示した各装置のよう
に前記補償手段自身に磁界H′の発生機能を有す
るものではないが、ターゲツト間に印加されるプ
ラズマ収束磁界Hを軟磁性材近傍で低減させ、基
板20上の磁界Hsを小さくし、形成する磁性薄
膜の異方性を低減しようとするものである。
FIG. 5 is a reference diagram, and instead of the permanent magnet shown in FIG. 2, a soft magnetic material 73 with high magnetic permeability such as soft iron, silicon steel, permalloy, etc.
The spatter particles are placed between the target and the target so that they do not block the spatter particles from the target. In this device, unlike the devices shown in FIGS. 2 to 4, the compensating means itself does not have the function of generating the magnetic field H', but the plasma focusing magnetic field H applied between the targets is This is intended to reduce the magnetic field Hs on the substrate 20 by reducing it near the soft magnetic material, thereby reducing the anisotropy of the formed magnetic thin film.

以上、本発明を真空槽内に一対のターゲツトを
対向させた装置で説明したが、次に二層膜構造の
薄膜を連続的に形成するに適した装置を第6図に
より説明する。
The present invention has been described above using an apparatus in which a pair of targets are placed facing each other in a vacuum chamber. Next, an apparatus suitable for continuously forming a thin film having a two-layer structure will be explained with reference to FIG.

同図において、真空槽10内には二対のターゲ
ツトTa1,Tb1,Ta2,Tb2とが連設されている。
即ち、真空槽10内の同図左側ターゲツトTa1
ターゲツトホルダー11aにより支持され、該タ
ーゲツトホルダー11aは絶縁スペーサー13a
を介してシールド12aに支持され、さらにシー
ルド12aは真空槽10に固定されている。続く
ターゲツトTa1に対面する如く設けられるターゲ
ツトTb1およびそのターゲツトTb1を背面にして
対称的に設けられるターゲツトTa2は、図に示す
如く、同図中央に設けられたターゲツトホルダー
11bにより支持され、前記と同様に絶縁スペー
サー13bを介してシールド12bに支持され、
真空槽10に固定されている。さらに続くターゲ
ツトTb2は前記ターゲツトTa2に対面する如く設
けられ、前記と同様にターゲツトホルダー11c
により支持され、絶縁スペーサー13cを介して
シールド12cに支持され、真空槽10に固定さ
れている。そして、真空槽10内のターゲツトホ
ルダー11a,11b,11c内に図示の如く内
蔵された永久磁石31a,31b,31cによ
り、ターゲツトTa1,Tb1間に垂直な方向のプラ
ズマ収束磁界HおよびターゲツトTa2,Tb2間に
垂直な方向のプラズマ収束磁界Hをそれぞれ発生
するようにしてある。また、図に省略した移送手
段を有する繰り出しロール22から基板20が移
送され、巻き取りロール23に巻き取られる如く
なつている。さらに、移送される基板20の前記
ターゲツトTa1,Tb1間の空間の側方、即ち、第
1の磁性薄膜が基板20上に形成される場所の基
板20の薄膜形成面の反対側に一対の永久磁石7
0aが、また同様に前記ターゲツトTa2,Tb2
の空間の側方、即ち、第2の磁性薄膜が基板20
上に形成される場所の基板20の薄膜形成面の反
対側にもう一対の永久磁石70bがそれぞれ基板
20上での磁界Hsを打ち消す如くの磁界H′を有
するように配置されている。そして、ターゲツト
Ta1,Tb1にスパツタ電源61が、またターゲツ
トTa2,Tb2にスパツタ電源62がそれぞれ独立
して設けられ、それぞれのシールド12a,12
b,12cおよび真空槽10を陽極(接地)にし
て電力を供給するようにしてある。
In the figure, two pairs of targets Ta 1 , Tb 1 , Ta 2 , and Tb 2 are arranged in series in a vacuum chamber 10 .
That is, the target Ta 1 on the left side of the figure in the vacuum chamber 10 is supported by the target holder 11a, and the target holder 11a is supported by the insulating spacer 13a.
The shield 12a is supported by the shield 12a via the shield 12a, and the shield 12a is further fixed to the vacuum chamber 10. As shown in the figure, a target Tb 1 provided facing the subsequent target Ta 1 and a target Ta 2 provided symmetrically with the target Tb 1 on the back are supported by a target holder 11b provided in the center of the figure. , supported by the shield 12b via the insulating spacer 13b in the same manner as above,
It is fixed to the vacuum chamber 10. A further target Tb 2 is provided so as to face the target Ta 2 , and is attached to the target holder 11c in the same manner as above.
is supported by the shield 12c via an insulating spacer 13c, and is fixed to the vacuum chamber 10. Permanent magnets 31a, 31b, 31c built in the target holders 11a, 11b, 11c in the vacuum chamber 10 as shown in the figure generate a plasma convergence magnetic field H and a target Ta in a direction perpendicular between the targets Ta1 and Tb1 . A plasma convergence magnetic field H in the perpendicular direction is generated between Tb 2 and Tb 2 , respectively. Further, the substrate 20 is transferred from a feed roll 22 having a transfer means not shown in the figure, and is wound onto a take-up roll 23. Further, on the side of the space between the targets Ta 1 and Tb 1 of the substrate 20 to be transferred, that is, on the opposite side of the thin film forming surface of the substrate 20 where the first magnetic thin film is formed on the substrate 20. permanent magnet 7
Similarly, 0a is on the side of the space between the targets Ta 2 and Tb 2 , that is, the second magnetic thin film is on the substrate 20.
Another pair of permanent magnets 70b are arranged on the opposite side of the thin film forming surface of the substrate 20 where the permanent magnets 70b are formed so as to each have a magnetic field H' that cancels the magnetic field Hs on the substrate 20. And the target
A sputter power supply 61 is provided for Ta 1 and Tb 1 , and a sputter power supply 62 is provided for each target Ta 2 and Tb 2 , and the respective shields 12a and 12 are provided independently.
b, 12c and the vacuum chamber 10 are used as anodes (grounded) to supply power.

上記の装置を用いて磁性薄膜を形成するには、
繰り出しロール22から巻き取りロール23に基
板20を移送させさながら、従来装置と同様にス
パツタさせればターゲツトTa1,Tb1,Ta2
Tb2の組成に応じた磁性薄膜が基板20上に連続
的に形成できる。特にターゲツトTa1,Tb1およ
びTa2,Tb2を異なつた材料を用いることにより
二層構造の薄膜が連続的に形成できる。
To form a magnetic thin film using the above device,
When the substrate 20 is transferred from the feed roll 22 to the take-up roll 23 and sputtered as in the conventional device, the targets Ta 1 , Tb 1 , Ta 2 ,
A magnetic thin film depending on the composition of Tb 2 can be continuously formed on the substrate 20. In particular, by using different materials for the targets Ta 1 , Tb 1 and Ta 2 , Tb 2 , a thin film with a two-layer structure can be continuously formed.

第6図において、前記補償手段として永久磁石
70a,70bを用いたが、前述の第3図〜第5
図に示した如く、永久磁石70a,70bに代え
て、磁界を発生するようにした電流によるもの7
1、もう一組の磁性薄膜形成装置72、軟磁性材
を用いるもの73、それぞれを前記補償手段に用
いれば、前記と同様に二層構造薄膜を前述したこ
とを同様に連続的に形成することができる。
In FIG. 6, permanent magnets 70a and 70b are used as the compensating means, but as shown in FIGS.
As shown in the figure, in place of the permanent magnets 70a and 70b, a current generating system 7 that generates a magnetic field is used.
1. If another set of magnetic thin film forming apparatus 72 and one using a soft magnetic material 73 are used as the compensation means, a two-layer structure thin film can be formed continuously in the same manner as described above. I can do it.

以下、本発明をさらに具体的に実施例および比
較例により説明するが、本発明はこれにより限定
されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

比較例 1 第6図に示した装置において、基板20の裏側
に配置した永久磁石70a,70bを設けない
で、以下の条件で行つた。
Comparative Example 1 In the apparatus shown in FIG. 6, the permanent magnets 70a and 70b disposed on the back side of the substrate 20 were not provided, and the test was carried out under the following conditions.

ターゲツトTa1,Tb1材料として250mm×80mm、
厚さ5mmのパーマロイ(Fe−Ni合金、Fe19wt
%、Ni81wt%)を用いて、ターゲツトTa2,Tb2
材料として同形状のCo−Cr合金(Co82wt%、
Cr18wt%)を用い、それぞれのターゲツト間距
離を100mmとし、ターゲツト表面中央部120Oeと
なるようにプラズマ収束磁界Hを印加した。ター
ゲツト端部より30mm位置に厚さ5μmのポリイミ
ド基板20を搬送させながら、Ar圧2mTorr
で、それぞれのターゲツト間に700V、2.0Aの直
流グロー放電をおこし、前記基板20上に第1の
磁性層としてパーマロイ(Fe19wt%、Ni81wt
%)を4000Åの厚さでスパツタし、続いてその上
に連続して第2の磁性層としてCo−Cr合金
(Co82wt%、Cr18wt%)を2000Åの厚さでスパ
ツタし、二層膜構造の磁性薄膜を連続的に形成し
た。
Target Ta 1 , Tb 1 material 250mm x 80mm,
5mm thick permalloy (Fe-Ni alloy, Fe19wt
%, Ni81wt%) to target Ta 2 , Tb 2
Co-Cr alloy (Co82wt%,
The distance between each target was set to 100 mm, and a plasma convergence magnetic field H was applied so that the center area of the target surface was 120 Oe. While transporting a polyimide substrate 20 with a thickness of 5 μm to a position 30 mm from the end of the target, an Ar pressure of 2 mTorr was applied.
A DC glow discharge of 700V and 2.0A is generated between each target, and permalloy (Fe19wt%, Ni81wt%) is formed as a first magnetic layer on the substrate 20.
%) to a thickness of 4000 Å, and then a second magnetic layer of Co-Cr alloy (Co82wt%, Cr18wt%) was sputtered to a thickness of 2000Å to form a two-layer film structure. A magnetic thin film was continuously formed.

得られた磁性薄膜を5.25インチの円形に打ち抜
き、70KBPIで垂直磁気記録し、再生したとこ
ろ、得られた再生エンベロープは図7の如くであ
つた。記録再生時の出力変動は25%であつた。な
お、ターゲツト間中央側方での基板20上での磁
界は20Oeであつた。
The resulting magnetic thin film was punched out into a 5.25-inch circle, perpendicular magnetically recorded at 70 KBPI, and reproduced. The resulting reproduction envelope was as shown in FIG. 7. The output fluctuation during recording and reproduction was 25%. Note that the magnetic field on the substrate 20 at the central side between the targets was 20 Oe.

実施例 1 第6図に示した装置、即ち基板20の裏側に配
置した2対の永久磁石70a,70bによりそれ
ぞれのターゲツト間中央側での基板20上の磁界
Hsと逆向きで20Oeの磁界H′を印加するようにし
て、前記比較例1と同様の条件で二層構造の磁性
薄膜を形成した。
Example 1 The magnetic field on the substrate 20 at the center between the respective targets is generated by the device shown in FIG.
A magnetic thin film with a two-layer structure was formed under the same conditions as in Comparative Example 1, such that a magnetic field H' of 20 Oe was applied in the opposite direction to Hs.

得られた磁性薄膜を比較例1と同様に処理し
た。得られた再生エンベロープは図8の如くであ
つた。
The obtained magnetic thin film was treated in the same manner as in Comparative Example 1. The obtained reproduction envelope was as shown in FIG.

実施例 2 前記実施例1の永久磁石70a,70bの代わ
りに導線を基板20に平行でプラズマ収束磁界H
に垂直な方向に複数本並べ、各銅線に流す電流を
調整し、スパツタ粒子が被着する基板20面上で
全てでほぼ磁界Hsを消磁するようにした以外は
実施例1と同様にして、磁性薄膜を形成し、記録
再生を行つた。得られた再生エンベロープを図9
に示す。記録再生時の出力変動は全くなかつた。
Embodiment 2 In place of the permanent magnets 70a and 70b of Embodiment 1, conductive wires are connected parallel to the substrate 20 and the plasma focusing magnetic field H
The procedure was the same as in Example 1, except that a plurality of copper wires were arranged in a direction perpendicular to , and the current flowing through each copper wire was adjusted so that all of them almost demagnetized the magnetic field Hs on the surface of the substrate 20 on which the sputter particles adhered. , a magnetic thin film was formed and recording/reproduction was performed. The resulting playback envelope is shown in Figure 9.
Shown below. There was no output fluctuation during recording and reproduction.

実施例 3 前記実施例1の永久磁石70a,70bの代わ
りに互いにプラズマ収束磁界Hが逆向きの2組の
対向ターゲツト基板20に対称的に配置して、基
板20上での磁界Hsを消磁するようにした以外
は実施例1と同様にして、磁性薄膜を基板20の
両面形成し、記録再生を行つた。記録再生時の出
力変動は全くなかつた。
Embodiment 3 Instead of the permanent magnets 70a and 70b of Embodiment 1, they are symmetrically arranged on two sets of opposing target substrates 20 whose plasma convergence magnetic fields H are in opposite directions, and the magnetic field Hs on the substrates 20 is demagnetized. A magnetic thin film was formed on both sides of the substrate 20, and recording and reproduction was performed in the same manner as in Example 1, except that the magnetic thin film was changed as shown in FIG. There was no output fluctuation during recording and reproduction.

比較例 2 前記実施例1の永久磁石70a,70bの代わ
りに基板20と各ターゲツトとの間に厚さ6mmの
軟鉄からる軟磁性板73を設けた以外は実施例1
と同様にして磁性薄膜を形成し、記録再生を行つ
た。記録再生時の出力変動は13%であつた。な
お、基板20上で磁界は20Oeから40Oeに減少し
ていた。
Comparative Example 2 Example 1 except that a soft magnetic plate 73 made of soft iron with a thickness of 6 mm was provided between the substrate 20 and each target instead of the permanent magnets 70a and 70b of Example 1.
A magnetic thin film was formed in the same manner as above, and recording and reproduction were performed. The output fluctuation during recording and reproduction was 13%. Note that the magnetic field on the substrate 20 was reduced from 20 Oe to 40 Oe.

発明の効果 以上説明した如く、本発明によれば、出力変動
を大幅に低減または完全になくした磁性薄膜の形
成を可能とし、高密度磁気記録の実用性に大きく
寄与するものである。
Effects of the Invention As explained above, according to the present invention, it is possible to form a magnetic thin film in which output fluctuations are significantly reduced or completely eliminated, thereby greatly contributing to the practicality of high-density magnetic recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式の磁性薄膜形成装置の説明
図、第2図〜第4図および第6図および第8図お
よび第9図は本発明の一実施例を示すもので、第
2図は補償手段として永久磁石を用いた装置の説
明図、第3図は補償手段として電流によるものを
用いた装置の説明図、第4図は補償手段としても
う一組の装置を用いた装置の説明図、第5図は参
考図で軟磁性材を用いた装置の説明図、第6図は
2層膜構造の磁性薄膜を連続的に形成する装置の
説明図、第7図は従来方式で得られた磁性薄膜の
記録再生エンベロープ、第8図は実施例1で得ら
れた磁性薄膜の記録再生エンベロープ、第9図は
実施例2で得られた磁性薄膜の記録再生エンベロ
ープを示す。 10……真空槽、11a,11b,11c……
ターゲツトホルダー、12a,12b,12c…
…シールド、13a,13b,13c……絶縁ス
ペーサー、20……基板、22……繰り出しロー
ル、23……巻き取りロール、Ta,Tb,Ta1
Tb1,Ta2,Tb2……ターゲツト、30……コイ
ル、31……永久磁石、60,61,62……ス
パツタ電源、70,70a,70b,71,72
……補償手段。
FIG. 1 is an explanatory diagram of a conventional magnetic thin film forming apparatus, and FIGS. 2 to 4, 6, 8, and 9 show an embodiment of the present invention. An explanatory diagram of a device using a permanent magnet as a compensation means, FIG. 3 is an explanatory diagram of a device using an electric current as a compensation means, and FIG. 4 is an explanatory diagram of a device using another set of devices as a compensation means. , Fig. 5 is a reference diagram and is an explanatory diagram of an apparatus using a soft magnetic material, Fig. 6 is an explanatory diagram of an apparatus that continuously forms a magnetic thin film with a two-layer film structure, and Fig. 7 is an explanatory diagram of an apparatus that uses a soft magnetic material. FIG. 8 shows the recording/reproducing envelope of the magnetic thin film obtained in Example 1, and FIG. 9 shows the recording/reproducing envelope of the magnetic thin film obtained in Example 2. 10... Vacuum chamber, 11a, 11b, 11c...
Target holder, 12a, 12b, 12c...
...Shield, 13a, 13b, 13c...Insulating spacer, 20...Substrate, 22...Feeding roll, 23...Take-up roll, Ta, Tb, Ta 1 ,
Tb 1 , Ta 2 , Tb 2 ... Target, 30 ... Coil, 31 ... Permanent magnet, 60, 61, 62 ... Sputter power supply, 70, 70a, 70b, 71, 72
...Means of compensation.

Claims (1)

【特許請求の範囲】 1 陰極となる一対のターゲツトを、そのスパツ
タ面が空間を隔てて対面するよう配置し、該スパ
ツタ面に垂直な方向に磁界を発生する手段により
磁界を発生しながら、前記ターゲツト間の側方
に、前記空間に対面するように配置した基板上に
スパツタにより薄膜を形成するようにした磁性薄
膜の形成方法において、前記磁界発生手段により
前記基板上に生じる磁界の補償手段により、前記
基板の磁界を消磁しながら薄膜を形成するように
したことを特徴とする磁性薄膜の形成方法。 2 前記基板上に生じる磁界の補償手段が、前記
基板近傍に配置され、かつ前記スパツタ面に垂直
な方向の磁界と反対の方向の磁界を有するように
配置された永久磁石による手段であることを特徴
とする特許請求の範囲第1項記載の磁性薄膜の形
成方法。 3 前記基板上に生じる磁界の補償手段が、前記
基板近傍に配置され、かつ前記スパツタ面に垂直
な方向の磁界に方向に配置された、各々その電流
を調節しうる複数の電導線からなる手段であるこ
とを特徴とする特許請求の範囲第1項記載の磁性
薄膜の形成方法。 4 前記基板上に生じる磁界の補償手段が、前記
基板の磁性薄膜形成面の反対側に配置され、かつ
前記スパツタ面に垂直な方向の磁界と反対の方向
の、スパツタ面に垂直な方向の磁界を有するよう
に配置された他の一組の対向ターゲツトスパツタ
装置による手段であることを特徴とする特許請求
の範囲第1項記載の磁性薄膜の形成方法。 5 陰極となる一対のターゲツトを、そのスパツ
タ面が空間を隔てて対面するように配置し、該ス
パツタ面に垂直な方向に磁界を発生する手段を設
け、前記ターゲツト間の側方に、前記空間に対面
するように配置した基板上にスパツタにより成膜
するようになした磁性薄膜の形成装置において、
前記磁界発生手段により前記基板上に生じる磁界
の補償手段を設け、該補償手段により前記基板上
の磁界を消磁しながら薄膜を形成するようにした
ことを特徴とする磁性薄膜の形成装置。 6 前記基板上に生じる磁界の補償手段が、前記
基板近傍に配置され、かつ前記スパツタ面に垂直
な方向の磁界と反対の方向の磁界を有するように
配置された永久磁石による手段であることを特徴
とする特許請求の範囲第5項記載の磁性薄膜の形
成装置。 7 前記基板上に生じる磁界の補償手段が、前記
基板近傍に配置され、かつ前記スパツタ面に垂直
な方向の磁界に垂直な方向に配置された、各々そ
の電流を調節しうる複数の電導線からなる手段で
あることを特徴とする特許請求の範囲第5項記載
の磁性薄膜の形成装置。 8 前記基板上に生じる磁界の補償手段が、前記
基板の磁性薄膜形成面の反対側に配置され、かつ
前記スパツタ面に垂直な方向の磁界と反対の方向
の、スパツタ面に垂直な方向の磁界を有するよう
に配置された他の一組の対向ターゲツトスパツタ
装置による手段であることを特徴とする特許請求
の範囲第5項記載の磁性薄膜の形成装置。
[Scope of Claims] 1 A pair of targets serving as cathodes are arranged so that their sputtered surfaces face each other with a space between them, and while generating a magnetic field in a direction perpendicular to the sputtered surfaces, In a method for forming a magnetic thin film in which a thin film is formed by sputtering on a substrate disposed laterally between targets so as to face the space, the magnetic field generating means generates a magnetic field on the substrate by compensating means. . A method for forming a magnetic thin film, characterized in that the thin film is formed while demagnetizing the magnetic field of the substrate. 2. The compensation means for the magnetic field generated on the substrate is a means using a permanent magnet arranged near the substrate and arranged so as to have a magnetic field in a direction opposite to a direction perpendicular to the sputtering surface. A method for forming a magnetic thin film according to claim 1. 3. Compensating means for the magnetic field generated on the substrate comprises a plurality of conductive wires arranged near the substrate and oriented in the direction of the magnetic field perpendicular to the sputtering surface, each of which can adjust its current. A method for forming a magnetic thin film according to claim 1, characterized in that: 4 Compensating means for the magnetic field generated on the substrate is arranged on the opposite side of the magnetic thin film forming surface of the substrate, and generates a magnetic field in a direction perpendicular to the sputtering surface in a direction opposite to the magnetic field in the direction perpendicular to the sputtering surface. A method of forming a magnetic thin film according to claim 1, characterized in that the method is performed by means of another set of facing target sputtering devices arranged so as to have the following characteristics. 5. A pair of targets serving as cathodes are arranged so that their sputtering surfaces face each other with a space between them, and means for generating a magnetic field in a direction perpendicular to the sputtering surfaces is provided, and the space is placed on the side between the targets. In an apparatus for forming a magnetic thin film, the film is formed by sputtering on a substrate placed so as to face the
A magnetic thin film forming apparatus characterized in that a compensating means for the magnetic field generated on the substrate by the magnetic field generating means is provided, and the thin film is formed while demagnetizing the magnetic field on the substrate by the compensating means. 6. The means for compensating the magnetic field generated on the substrate is a means using a permanent magnet arranged near the substrate and arranged so as to have a magnetic field in a direction opposite to a direction perpendicular to the sputtering surface. An apparatus for forming a magnetic thin film according to claim 5. 7. Compensating means for the magnetic field generated on the substrate comprises a plurality of conductive wires arranged near the substrate and arranged in a direction perpendicular to the magnetic field perpendicular to the sputtering surface, each of which can adjust its current. 6. The magnetic thin film forming apparatus according to claim 5, wherein the magnetic thin film forming apparatus is a means for forming a magnetic thin film. 8. Compensating means for the magnetic field generated on the substrate is arranged on the opposite side of the magnetic thin film forming surface of the substrate, and generates a magnetic field in a direction perpendicular to the sputtering surface in a direction opposite to the magnetic field in the direction perpendicular to the sputtering surface. 6. The magnetic thin film forming apparatus according to claim 5, characterized in that the means includes another set of facing target sputtering devices arranged so as to have the following characteristics.
JP3823784A 1984-02-29 1984-02-29 Method and apparatus for forming magnetic thin-film Granted JPS60182711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3823784A JPS60182711A (en) 1984-02-29 1984-02-29 Method and apparatus for forming magnetic thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3823784A JPS60182711A (en) 1984-02-29 1984-02-29 Method and apparatus for forming magnetic thin-film

Publications (2)

Publication Number Publication Date
JPS60182711A JPS60182711A (en) 1985-09-18
JPH0572733B2 true JPH0572733B2 (en) 1993-10-12

Family

ID=12519689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3823784A Granted JPS60182711A (en) 1984-02-29 1984-02-29 Method and apparatus for forming magnetic thin-film

Country Status (1)

Country Link
JP (1) JPS60182711A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232911A (en) * 1986-04-03 1987-10-13 Hitachi Ltd Magnetic film forming device
JP2643149B2 (en) * 1987-06-03 1997-08-20 株式会社ブリヂストン Surface treatment method
JPH0229455U (en) * 1988-08-18 1990-02-26
JP2755776B2 (en) * 1990-04-20 1998-05-25 三菱重工業株式会社 High-speed deposition sputtering equipment
JP5116078B2 (en) * 2006-11-30 2013-01-09 株式会社神戸製鋼所 Opposing target sputtering apparatus and opposing target sputtering method
JP4854569B2 (en) * 2007-04-02 2012-01-18 長州産業株式会社 Mirrortron sputtering equipment
JP5681879B2 (en) * 2012-05-09 2015-03-11 Tdk株式会社 Method and apparatus for manufacturing perpendicular magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778123A (en) * 1980-11-04 1982-05-15 Hitachi Ltd Manufacture of anisotropic thin magnetic film
JPS5855566A (en) * 1981-09-29 1983-04-01 Teijin Ltd Opposite target type sputtering apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778123A (en) * 1980-11-04 1982-05-15 Hitachi Ltd Manufacture of anisotropic thin magnetic film
JPS5855566A (en) * 1981-09-29 1983-04-01 Teijin Ltd Opposite target type sputtering apparatus

Also Published As

Publication number Publication date
JPS60182711A (en) 1985-09-18

Similar Documents

Publication Publication Date Title
US5589039A (en) In-plane parallel bias magnetic field generator for sputter coating magnetic materials onto substrates
EP0093838A2 (en) Perpendicular magnetic recording medium and method for producing the same
JPH0411625B2 (en)
US4842708A (en) Perpendicular magnetic recording medium, method for producing the same, and sputtering device
JPS6134723A (en) Magnetic recording medium and its manufacture
JPH0572733B2 (en)
JP2613294B2 (en) Thin film formation method
JP2595031B2 (en) Manufacturing method of magnetic recording medium
EP0619585A1 (en) FeRhGaSi soft magnetic materials for inductive magnetic heads
JP2689512B2 (en) Magnetic alloy for magnetic head
JP2980266B2 (en) Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film
JPS6151814A (en) Permalloy thin film and vertical magnetic recording medium
JPH0370889B2 (en)
JPH0652569B2 (en) Method of manufacturing magnetic recording medium
JPH0411624B2 (en)
JPH0357539B2 (en)
JPS581832A (en) Vertical magnetized recording medium
JPH0610347B2 (en) Tripolar spatling source
JPH0389505A (en) Manufacture of magnetic alloy
JPS621866A (en) Sputtering device
JPH0263249B2 (en)
JPS63291213A (en) Magnetic recording medium and its production
JPS59193529A (en) Magnetic recording medium and its production
JPH0772344B2 (en) Opposed target type sputtering system
JPH0218734A (en) Production of magneto-optical recording medium