JPS621866A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS621866A
JPS621866A JP14035885A JP14035885A JPS621866A JP S621866 A JPS621866 A JP S621866A JP 14035885 A JP14035885 A JP 14035885A JP 14035885 A JP14035885 A JP 14035885A JP S621866 A JPS621866 A JP S621866A
Authority
JP
Japan
Prior art keywords
target
substrate
film
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14035885A
Other languages
Japanese (ja)
Inventor
Yoichi Oshita
陽一 大下
Yukio Nakagawa
中川 由岐夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14035885A priority Critical patent/JPS621866A/en
Publication of JPS621866A publication Critical patent/JPS621866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To thoroughly increase the film thickness in step part to uniformly grow a crystal by disposing a main target electrode to face a substrate and disposing auxiliary target electrodes in the positions where the electrodes face the step part. CONSTITUTION:The main target electrode 7 is disposed in the position where the electrode substantially faces the flat part of the substrate 10 surface and the auxiliary target electrodes 8, 8' are disposed in the positions where the electrodes substantially face the step part in a vacuum vessel 6. The film is formed by the electrode 7 and thereafter the film formation by the electrodes 8, 8' is successively or simultaneously executed. The principal component of the sputter particles to the substrate 10 come from the vertical direction according to the above-mentioned constitution and therefore the film thickness to the step part is thoroughly assured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はスパッタ装置に係り5特に、その段差部での膜
厚を充分確保し、しかも、所期の膜特性を得るのに好適
なスパッタ室の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sputtering apparatus5, and in particular, to a sputtering chamber suitable for ensuring a sufficient film thickness at the stepped portion and obtaining desired film characteristics. Regarding the structure of

〔発明の背景〕[Background of the invention]

スパッタ装置は種々の材料の薄膜化手段の−っとして各
方面でニーズが高まっている。その方式も、成膜素材か
ら成るターゲット電極と、成膜すべき母材である基板を
対向させた二極スパッタ法から、磁場によってプラズマ
を閉じ込み成膜効率を飛躍的に向上させたマグネトロン
スパッタ法まで多くの方式が提案されている。一方、形
成する膜についても、平坦な膜から1段差のついたもの
まであるが、ここでは後者を対象としている。通常のス
パッタ装置では、一般に、段差部で膜厚が薄くなる傾向
があるが、膜に要求される特性の観点からはこの傾向は
好ましくない、その対策として、一つは、例えば、特開
昭56−156765 、特開昭56−156766号
公報等にように基板を傾けて、段差部の膜厚を補正する
ことが可能である。
The need for sputtering equipment is increasing in various fields as a means for thinning films of various materials. The method ranges from bipolar sputtering, in which a target electrode made of the film-forming material faces the substrate, which is the base material on which the film is to be formed, to magnetron sputtering, which uses a magnetic field to confine plasma and dramatically improve film-forming efficiency. Many methods have been proposed. On the other hand, there are various types of films to be formed, ranging from flat films to films with one step difference, and the latter is the target here. In ordinary sputtering equipment, there is a tendency for the film thickness to become thinner at the step part, but this tendency is not desirable from the viewpoint of the properties required for the film. It is possible to correct the film thickness at the stepped portion by tilting the substrate as disclosed in Japanese Patent Laid-Open No. 56-156765 and Japanese Patent Application Laid-Open No. 56-156766.

一方、薄膜磁気ヘッドのコア材料等に用いられるパーマ
ロイ薄膜等では、磁気特性を得るため、−軸異方性をつ
ける必要がある。これは組成原子配列に基づくものであ
るため、形成した膜の結晶構造が広い範囲に亘って均一
に配列するのが望ましい。一般に、スパッタ法で得られ
る膜は、その結晶構造の最稠密面がスパッタ粒子の入射
方向を向く性質があるため、複数の方面から入射してく
る構造では結晶構造の均一な成長を疎外される。
On the other hand, permalloy thin films and the like used as core materials of thin-film magnetic heads need to have -axis anisotropy in order to obtain magnetic properties. Since this is based on the compositional atomic arrangement, it is desirable that the crystal structure of the formed film be uniformly arranged over a wide range. In general, films obtained by sputtering have the property that the most dense plane of the crystal structure faces the direction of incidence of sputtered particles, so if the sputter particles are incident from multiple directions, uniform growth of the crystal structure will be hindered. .

又、薄膜の断面観察より明らかになっている薄膜の内部
の結晶が柱のような形で基板上に林立する。
Furthermore, crystals inside the thin film, which have been revealed by cross-sectional observation of the thin film, stand up on the substrate in the form of pillars.

いわゆる、柱状構造も、その柱の成長方向がスパッタ粒
子の入射方向を向く性質を持っている。これに関しても
、複数方向からの入射はこの柱状構造の均一な成長を妨
げ、又は、斜め方向からの入射、いわゆる、斜方入射で
は、大きな柱状構造の成長が難しくなる。
The so-called columnar structure also has the property that the growth direction of the column faces the direction of incidence of sputtered particles. In this regard, incidence from multiple directions hinders the uniform growth of this columnar structure, or incidence from oblique directions, so-called oblique incidence, makes it difficult to grow a large columnar structure.

ターゲット電極の大面積化で、段差部の膜厚特性を改良
する工夫もなされているが、ターゲット電極が大きくな
ると、磁気特性の付与への影響の大きい、ガス圧、注入
電力等のプロセスパラメータにより、プラズマの形状、
すなわち、密度分布が変り、段差部も含めた膜厚分布特
性の変動が大きくなる。このことは、磁気特性と膜厚分
布特性を独立して制御することを困難にし、両特性を満
たす上での大きな障害となる。
Efforts have been made to improve the film thickness characteristics at step portions by increasing the area of the target electrode, but as the target electrode becomes larger, process parameters such as gas pressure and injected power have a large effect on imparting magnetic properties. , the shape of the plasma,
That is, the density distribution changes and the variation in film thickness distribution characteristics including the step portion becomes large. This makes it difficult to independently control the magnetic properties and film thickness distribution properties, and becomes a major obstacle in satisfying both properties.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、段差部での膜厚を充分に厚くし、かつ
、斜方入射の影響を極力押えることにより、均一な結晶
成長を可能とし、所期膜特性の得られるスパッタ装置を
提供することにある。
An object of the present invention is to provide a sputtering apparatus that enables uniform crystal growth and obtains desired film characteristics by making the film thickness sufficiently thick at the stepped portion and suppressing the influence of oblique incidence as much as possible. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明の要点は、基板に対向する位置にターゲット主電
極を1段差部と対向する位置にターゲット補助電極をそ
れぞれ配置したことにある。
The key point of the present invention is that the target main electrode is placed at a position facing the substrate, and the target auxiliary electrode is placed at a position facing the one-step difference.

〔発明の実施例〕[Embodiments of the invention]

以下に、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

第1図は薄膜磁気ヘッドの要部のみを拡大して模式的に
表わしたものである。基板1上に、絶縁物2に覆われて
導体でらせん状に形成されたコイル3とコイル3に鎖交
するように形成されたパーマロイ膜より成るコア4より
なる。薄膜磁気ヘッドの大きさは数十〜数百μmの大き
さで、例えば、径3インチの基板上に数百側同時に形成
される。
FIG. 1 is an enlarged schematic representation of only the essential parts of the thin film magnetic head. It consists of a coil 3 formed spirally from a conductor and covered with an insulator 2 on a substrate 1, and a core 4 made of a permalloy film formed to interlink with the coil 3. The size of the thin film magnetic head is from several tens to several hundreds of micrometers, and for example, is formed simultaneously on several hundred sides on a substrate with a diameter of 3 inches.

磁気ヘッドの動作は、基板上から個別に切り出された後
、コイル3に電流が通電され、コア4内に磁束が発生し
、ギャップ部5で漏洩した磁束で、磁気ディスク等の媒
体に書き込みが行なわれる。
The operation of the magnetic head is such that after each piece is cut out from the substrate, a current is applied to the coil 3, a magnetic flux is generated in the core 4, and the magnetic flux leaks in the gap part 5, which writes on a medium such as a magnetic disk. It is done.

媒体からの読み出しはほぼこの逆過程である。ここでコ
ア4に関して問題となるのは、段差P部での膜厚と、第
2欄に示す磁気特性である。本発明は段差P部を含む磁
性層の成膜工程を主対象として述べる。(a)はパーマ
ロイ膜の酸化容易軸のB−Hカーブで第1図の紙面と垂
直方向に形成される。第2図(b)は磁化困難軸の特性
で、容易軸と垂直方向、すなわち、第1図紙面内方向に
形成される。磁気ヘッド内の磁束は、困難軸方向に向く
た・め、B−Hカーブの閉じた損失の少いものとなる。
Reading from a medium is almost the reverse process. The issues concerning the core 4 here are the film thickness at the step P portion and the magnetic properties shown in the second column. The present invention will be mainly described with reference to the process of forming a magnetic layer including a step P portion. (a) is a B-H curve of the easy oxidation axis of the permalloy film, which is formed in a direction perpendicular to the paper plane of FIG. FIG. 2(b) shows the characteristics of the hard axis of magnetization, which is formed in a direction perpendicular to the easy axis, that is, in the direction in the plane of the paper in FIG. Since the magnetic flux within the magnetic head is oriented in the hard axis direction, the BH curve is closed and loss is small.

この磁化容易軸と困難軸の分離、すなわち、−軸異方性
の付与は成膜時に平行磁場を印加しておくことで得られ
、容易軸が印加磁場方向。
This separation of the easy axis and hard axis of magnetization, that is, imparting -axis anisotropy, can be achieved by applying a parallel magnetic field during film formation, with the easy axis in the direction of the applied magnetic field.

困難軸がその垂直方向に向いて得られる。しかし前述の
ように、この現象は膜の組成であるNi原子とFa原子
の結晶内での配置に起因するため、スパッタ粒子は基板
面と垂直方向から入射するとき、−軸異方性が得られ易
く、斜め方向から入射するほど困難になってゆく、一方
1段差部での膜厚は、垂直入射の場合、平坦部に比較し
て薄くなるため、磁気ヘッドとして記録する際、磁気飽
和を生じ、効率を落とす原因となる。この対策として段
差に対向する方向からの斜方入射が望まれ、前述のもの
と矛盾した構造が要求される。
The difficulty axis is obtained with its vertical orientation. However, as mentioned above, this phenomenon is caused by the arrangement of Ni atoms and Fa atoms in the film composition, so when sputtered particles are incident from a direction perpendicular to the substrate surface, -axis anisotropy is obtained. On the other hand, in the case of perpendicular incidence, the film thickness at one step is thinner than that at a flat part, so when recording as a magnetic head, it is difficult to prevent magnetic saturation. This causes a drop in efficiency. As a countermeasure to this problem, oblique incidence from the direction opposite to the step is desired, and a structure inconsistent with the above-mentioned structure is required.

これらを実現できる実施例を第3図に示した。An embodiment that can realize these is shown in FIG.

図において、真空容器6内にターゲット主電極7ターゲ
ツト補助電極8,8′及び基板トレイ9に搭載された基
板10が配置されている。真空容器6内は排気口11よ
り図示しない排気装置により真空引き(ここでは10−
’〜10−’Torr)された後、給気口12より図示
しないガス供給系により所望のガス(ここではアルゴン
)を流量を制御しながら供給し、真空容器6内を一定の
雰囲気ガス圧(ここでは10−’ 〜10−1Torr
)に保つ。基板10を搭載した基板トレイ9は搬送機構
13によりターゲット電極7のほぼ真上に設置され、電
位は真空容器6と同一の接地電位に保たれる。基板面は
第1図に示す絶縁物の二層が成膜された段差のある形状
であるが細かいので省略した0本実施例では各ターゲッ
ト電極ともプレーナ形マグネトロンタイプのものを用い
たが、これらはいずれも、ターゲット14.磁石容器1
5.永久磁石16゜冷却水配管17.絶縁支持体18.
アースシールド19より成る。ターゲット補助電極8は
基板上の段差部にほぼ対向して設置されている。永久磁
石16によりターゲット14の表面にプラズマ閉じ込め
用の磁場を発生する。このときターゲットが磁性体であ
るため、これを磁気飽和させる必要があり、通常のスパ
ッタ装置より強力な磁石とする必要がある。実際には鉄
心を用いて磁界の帰路を設けるが1図では省略した。タ
ーゲット電極7゜8.8′は絶縁支持体18により、真
空容器6と絶縁支持され、各々電源20に接続されてい
る。
In the figure, a target main electrode 7, target auxiliary electrodes 8, 8', and a substrate 10 mounted on a substrate tray 9 are arranged in a vacuum container 6. The inside of the vacuum container 6 is evacuated from the exhaust port 11 by an exhaust device (not shown) (here, 10-
'~10-' Torr), a desired gas (argon here) is supplied from the air supply port 12 by a gas supply system (not shown) while controlling the flow rate, and the inside of the vacuum vessel 6 is kept at a constant atmospheric gas pressure ( Here, 10-' ~ 10-1Torr
). The substrate tray 9 carrying the substrate 10 is placed almost directly above the target electrode 7 by the transport mechanism 13, and the potential is kept at the same ground potential as the vacuum container 6. The substrate surface has a stepped shape with two layers of insulators deposited on it as shown in Figure 1, but it is omitted because it is too small.In this example, planar magnetron type target electrodes were used for each target electrode. Both target 14. Magnet container 1
5. Permanent magnet 16° Cooling water piping 17. Insulating support 18.
It consists of an earth shield 19. The target auxiliary electrode 8 is placed substantially opposite to the stepped portion on the substrate. A permanent magnet 16 generates a magnetic field for plasma confinement on the surface of the target 14. At this time, since the target is a magnetic material, it is necessary to bring it into magnetic saturation, which requires a stronger magnet than in a normal sputtering device. In reality, an iron core is used to provide a return path for the magnetic field, but it is omitted in Figure 1. The target electrodes 7°8.8' are supported insulatingly from the vacuum vessel 6 by an insulating support 18, and are each connected to a power source 20.

電源は高周波(一般に13.56MHzが多用される)
又は直流である。さらに、基板は、シースヒータ又はラ
ンプヒータ等の加熱機構21を設け、基板の予備加熱、
成膜中の基板温度制御、成膜後の磁気焼鈍に用いら五る
。基板10とターゲット7.8.8’間の空間には成膜
に先立つ予備放電でスパッタ粒子の付着を防止するシャ
ッターを設けるが図では省略した。この状態で電源20
により電力を供給するとターゲット前面が密となるグロ
ー放電が発生し、ターゲット材料がスパッタされ、基板
上に薄膜が形成される。スパッタ現象の詳細な既知であ
るのでここでは省略する。薄膜に一軸異方性を付与する
ため、成膜する際、基板面に平行な磁場を印加しておく
ことが必要であり、この手段として空芯コイルを対向配
置させる方法。
Power source is high frequency (13.56MHz is commonly used)
Or direct current. Furthermore, the substrate is provided with a heating mechanism 21 such as a sheath heater or a lamp heater to preheat the substrate.
It is used for substrate temperature control during film formation and magnetic annealing after film formation. A shutter is provided in the space between the substrate 10 and the target 7, 8, 8' to prevent adhesion of sputtered particles during preliminary discharge prior to film formation, but is not shown in the figure. In this state, the power supply
When power is supplied, a glow discharge is generated in which the front surface of the target becomes dense, and the target material is sputtered to form a thin film on the substrate. Since the details of the sputtering phenomenon are already known, they will be omitted here. In order to impart uniaxial anisotropy to a thin film, it is necessary to apply a magnetic field parallel to the substrate surface during film formation, and this method involves arranging air-core coils facing each other.

電磁コイルのギャップ間に発生する磁場を印加する方法
、永久磁石を対向配置する方法等があるが図では省略し
た。
There are methods of applying a magnetic field generated between the gaps of electromagnetic coils, methods of arranging permanent magnets facing each other, etc., but these are not shown in the figure.

本構成におけるポイントは、ターゲット主電極7から放
出されるスパッタ粒子で主に成膜し、補助的にターゲッ
ト補助媒極8,8′を用いることにより、基板上の段差
部の膜厚を補正することである。従って、好ましくは、
先にターゲット主電極7により成膜した後、ターゲット
補助電極8゜8′による成膜を順次、又は同時に行なう
のが良い、場合によってはターゲット補助電極8,8′
の注入電力が低い範囲で、ターゲット主電極7と同時に
成膜することも可能である。本実施例によれば、基板へ
のスパッタ粒子の主成分が垂直方向から飛来するため、
膜の磁気特性の付与が容易でしかも段差部の膜厚も充分
に確保することが可能である。
The key point in this configuration is that the film is formed mainly using sputtered particles emitted from the target main electrode 7, and the film thickness at the stepped portion on the substrate is corrected by supplementarily using the target auxiliary medium electrodes 8, 8'. That's true. Therefore, preferably
It is better to first form a film using the target main electrode 7, and then perform film forming using the target auxiliary electrodes 8, 8' sequentially or simultaneously.
It is also possible to form a film at the same time as the target main electrode 7 within a range where the injection power is low. According to this example, since the main component of sputtered particles to the substrate comes from the vertical direction,
It is easy to impart magnetic properties to the film, and it is also possible to ensure a sufficient film thickness at the step portion.

第4図はターゲット電極7,8.8’の正面図でありほ
ぼ円形に構成した場合であるが、空間的に制約のあると
き等第5図に示すように方形又はこれに近い形状にする
ことが可能である0本発明ではターゲット電極は全て磁
場でプラズマを閉じ込めるマグネトロンタイプとしたが
、ターゲット主電極7をマグネトロンタイプ、ターゲッ
ト補助電極8,8′は磁石のない、いわゆる、コンベン
ショナルタイプにするとか、いずれもコンベンショナル
タイプにするための組合わせは自由である。
Figure 4 is a front view of the target electrodes 7, 8, 8' and shows a case in which they are configured in a nearly circular shape, but when there are spatial constraints, etc., they may be made into a rectangular or similar shape as shown in Figure 5. In the present invention, all target electrodes are magnetron type that confine plasma using a magnetic field, but target main electrode 7 is of magnetron type, and target auxiliary electrodes 8 and 8' are of so-called conventional type without magnet. You can freely combine them to create a conventional type.

第6図は多数枚の基板10(ここでは3枚)の処理に適
した電極配置である。(a)に正面図、(b)に断面図
を示す。ここでのポイントは基板10を一列に段差方向
を直角に配置し、ターゲット7.8.8’ を細長く構
成したことである。スパッタ方式は前述のように、任意
に選択してよいが、ここではマグネトロンスパッタ方式
を示した。
FIG. 6 shows an electrode arrangement suitable for processing a large number of substrates 10 (three in this case). (a) shows a front view, and (b) shows a cross-sectional view. The key point here is that the substrates 10 are arranged in a row with the step directions perpendicular to each other, and the targets 7, 8, 8' are made elongated. Although the sputtering method may be arbitrarily selected as described above, the magnetron sputtering method is shown here.

各電極はターゲット14.永久磁石16と、鉄心22か
ら構成される。本方式で、前述と同様の効果が得られる
他、処理枚数はターゲット電極の長さを伸ばすことによ
り原理的には何枚でも処理ができる。但し、電源容量は
それに伴って大きくする必要があり、真空容器の効率も
考え、複数列平行処理とするのが良いと考える。本実施
例では、大面積のターゲットで処理するのと異なり図中
に破線で示すエロージョンエリア23の短辺24の長さ
を短かく構成できるため、この膜厚分布に及ぼす影響を
少なくすることが可能で、処理する基板の中央のものと
端部のものの膜厚の差を少なくすることができる。
Each electrode has a target 14. It is composed of a permanent magnet 16 and an iron core 22. With this method, the same effects as described above can be obtained, and in principle, any number of sheets can be processed by increasing the length of the target electrode. However, the power supply capacity needs to be increased accordingly, and considering the efficiency of the vacuum container, we think it is better to perform parallel processing in multiple rows. In this example, unlike processing with a large-area target, the length of the short side 24 of the erosion area 23 shown by the broken line in the figure can be shortened, so that the influence on the film thickness distribution can be reduced. It is possible to reduce the difference in film thickness between the center and the edge of the substrate to be processed.

第7図は基板10及びターゲット電極7,8゜8′を最
適化することにより、前述のものと同様の構成で複数列
(ここでは二列)の基板を同時に処理できるようにした
ものである。
FIG. 7 shows a system in which multiple rows (in this case, two rows) of substrates can be processed simultaneously with the same configuration as the one described above by optimizing the substrate 10 and target electrodes 7, 8°8'. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スパッタ粒子の主成分が基板に対し垂
直方向から飛来するため、基板上でのスパッタ粒子の成
長が優れ、そのため、パーマロイ磁性体膜のスパッタで
は膜への磁気特性の付与が容易で、しかも段差部への膜
厚の充分な確保が可能となる。
According to the present invention, since the main components of sputtered particles fly in the direction perpendicular to the substrate, the growth of the sputtered particles on the substrate is excellent, and therefore, when sputtering a permalloy magnetic film, it is difficult to impart magnetic properties to the film. This is easy, and it is possible to ensure a sufficient film thickness on the stepped portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成膜対象の断面模式図、第2図は第1
図のB−H特性を示す線図、第3図は本発明の断面図、
第4図は第1図の要部に関する正面図、第5図は本発明
の変形例を示す正面図、第6図は異なる変形例を示す正
面図及び断面図、第7図は異なる変形例を示す正面図お
よび断面図である。 14・・・ターゲット、10・・・基板、6・・・真空
容器、7・・・ターゲット主電極。
FIG. 1 is a schematic cross-sectional view of the object to be deposited according to the present invention, and FIG.
A diagram showing the B-H characteristics in the figure, FIG. 3 is a cross-sectional view of the present invention,
FIG. 4 is a front view of the main part of FIG. 1, FIG. 5 is a front view showing a modification of the present invention, FIG. 6 is a front view and sectional view showing a different modification, and FIG. 7 is a different modification. FIG. 14...Target, 10...Substrate, 6...Vacuum container, 7...Target main electrode.

Claims (1)

【特許請求の範囲】 1、ターゲットと、成膜すべき母材である基板とを真空
容器内に保持したものにおいて、 前記基板面に平担部のほぼ対向する位置に、前記ターゲ
ットの主電極を配置し、段差部とほぼ対向する位置に前
記ターゲットの補助電極を配置したことを特徴とするス
パッタ装置。 2、特許請求の範囲第1項において、複数の前記基板を
、その段差部の向きと直交して配置し、それらと対向す
る位置に細長いターゲット主電極を、段差部と対向する
位置に細長いターゲット補助電極をそれぞれ配置したこ
とを特徴とするスパッタ装置。
[Scope of Claims] 1. A target and a substrate, which is a base material on which a film is to be formed, are held in a vacuum container, and a main electrode of the target is located at a position substantially opposing the flat portion of the substrate surface. A sputtering apparatus characterized in that an auxiliary electrode of the target is arranged at a position substantially facing the stepped portion. 2. In claim 1, a plurality of the substrates are arranged perpendicularly to the direction of the stepped portions, and an elongated target main electrode is provided at a position facing the substrates, and an elongated target is provided at a position opposite to the stepped portions. A sputtering device characterized by arranging auxiliary electrodes.
JP14035885A 1985-06-28 1985-06-28 Sputtering device Pending JPS621866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14035885A JPS621866A (en) 1985-06-28 1985-06-28 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14035885A JPS621866A (en) 1985-06-28 1985-06-28 Sputtering device

Publications (1)

Publication Number Publication Date
JPS621866A true JPS621866A (en) 1987-01-07

Family

ID=15266965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14035885A Pending JPS621866A (en) 1985-06-28 1985-06-28 Sputtering device

Country Status (1)

Country Link
JP (1) JPS621866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096798C (en) * 1994-06-17 2002-12-18 株式会社三益金属制作所 Portable communication apparatus preventing trouble when battery wears
US20110089031A1 (en) * 2009-10-16 2011-04-21 Suntek Precision Corp. Sputtering System with Normal Target and Slant Targets on the Side

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096798C (en) * 1994-06-17 2002-12-18 株式会社三益金属制作所 Portable communication apparatus preventing trouble when battery wears
US20110089031A1 (en) * 2009-10-16 2011-04-21 Suntek Precision Corp. Sputtering System with Normal Target and Slant Targets on the Side

Similar Documents

Publication Publication Date Title
US4407894A (en) Method for producing a perpendicular magnetic recording medium
US6692619B1 (en) Sputtering target and method for making composite soft magnetic films
JPS6274073A (en) Sputtering device
KR910007776B1 (en) Magnetic media producing method
US4399013A (en) Method of producing a magnetic recording medium
JPS621866A (en) Sputtering device
JPH0572733B2 (en)
JPH04331795A (en) Production of polycrystalline thin film
JPH031810B2 (en)
JPS60101721A (en) Formation of barium ferrite layer
JPS6367328B2 (en)
JPS59139616A (en) Manufacture of magnetic thin film
JP2980266B2 (en) Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film
JPS59147422A (en) Formation of magnetic layer
JP2906163B2 (en) Sputtering equipment
JPH08199353A (en) Production of soft magnetic thin film
JPH0480357A (en) Sputtering system and its target electrode
JPH0718005B2 (en) Sputtering device
EP0522982B1 (en) An FeGaSi-based magnetic material with Ir as an additive
JP2611976B2 (en) Method for manufacturing magneto-optical recording film
JPH10245675A (en) Magnetic thin film forming device
JPH035644B2 (en)
Takahashi et al. A comparative study of CoZrNb and NiFe targets in discharge and sputtering using plasma confining type of magnetron sputtering method
JPH0281409A (en) Thin magnetic film, manufacture thereof and magnetron sputtering device
JPH07272967A (en) Formation of magnetic thin film