JP2611976B2 - Method for manufacturing magneto-optical recording film - Google Patents
Method for manufacturing magneto-optical recording filmInfo
- Publication number
- JP2611976B2 JP2611976B2 JP61142703A JP14270386A JP2611976B2 JP 2611976 B2 JP2611976 B2 JP 2611976B2 JP 61142703 A JP61142703 A JP 61142703A JP 14270386 A JP14270386 A JP 14270386A JP 2611976 B2 JP2611976 B2 JP 2611976B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- magneto
- substrate
- film
- optical recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Thin Magnetic Films (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、希土類−遷移金属非晶質フェリ磁性合金薄
膜(以下RE-TM膜と略記)を記録層とする光磁気ディス
クの製造方法として利用でき、特に、希土類−遷移金属
合金ターゲット(以下R−Tターゲットと略記)を使用
する場合の、光磁気ディスク製造装置の仕様決定に利用
できる。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a magneto-optical device having a rare earth-transition metal amorphous ferrimagnetic alloy thin film (hereinafter abbreviated as RE-TM film) as a recording layer. The present invention can be used as a method for manufacturing a disk, and in particular, can be used to determine specifications of a magneto-optical disk manufacturing apparatus when a rare earth-transition metal alloy target (hereinafter abbreviated as RT target) is used.
(従来の技術) RE-TM膜を記録層とするイレーザブル光ディスクの実
用化を目指した研究が盛んである。RE-TM膜の製造法と
しては量産性・大面積一様性・低温プロセス性等の点か
らスパッタ法が適する。従来より、RE-TM膜のスパッタ
形成には、TM円板上にREのチップを配置した複合ターゲ
ットをスパッタする方法、基板を回転しながらREターゲ
ットとTMターゲットを同時にスパッタする方法が代表的
である。上記した2つの方法以外のR−Tターゲットを
スパッタする方法については、これまでは良質の合金タ
ーゲットができなかった為に研究・開発レベルにおいて
も使用されていなかったが、近年、第9回日本応用磁気
学会学術講演概要集28aA-9,P191,1985に開示される如
く、RE-TM垂直磁化膜を得る事のできるR−Tターゲッ
トが開発された。(Prior Art) There has been active research on practical use of an erasable optical disc having an RE-TM film as a recording layer. The sputtering method is suitable as a method for producing the RE-TM film in terms of mass productivity, large area uniformity, low temperature processability, and the like. Conventionally, RE-TM film sputter formation typically involves sputtering a composite target in which a RE chip is placed on a TM disk, and simultaneously sputtering the RE target and the TM target while rotating the substrate. is there. Methods other than the above two methods for sputtering an RT target have not been used at the research and development level because a high quality alloy target has not been obtained so far. An RT target capable of obtaining a RE-TM perpendicular magnetization film has been developed, as disclosed in the Abstract of the Japan Society of Applied Magnetics, 28aA-9, P191, 1985.
しかしながら、R−Tターゲットを使用する際に留意
しなければならないのは、基板面上に形成されるRE-TM
膜の特性の不均一性の問題である。これは、一様な組成
のR−Tターゲットを用いる場合においても、通常、ス
パッタリング中のターゲット温度下においてRE元素は非
磁性、TM元素は強磁性である為にターゲット面上からの
スパッタ放出角度分布が異なる事が原因となって起こる
問題である。光ディスク基板材料の制約から光ディスク
の製造には低温成膜性が要求され、この点からはスパッ
タ法の中ではマグネトロン・スパッタ法が好ましいが、
一方マグネトロンスパッタ源でR−Tターゲットを使用
した場合のR−Tターゲット面からのREとTMとのスパッ
タ放出角度分布の差は、TMスパッタ粒子がマグネトロン
場に拘束される効果も加わって助長されるので、上記し
た膜特性の均一性に対する留意が特に必要である。実用
的なR−Tターゲットが開発されて間もない事もあっ
て、上記した点に対する配慮は未だ不充分である。However, when using the RT target, it should be noted that the RE-TM formed on the substrate surface may be used.
This is a problem of non-uniformity of film properties. This is because the RE element is non-magnetic and the TM element is ferromagnetic at the target temperature during sputtering even when an RT target having a uniform composition is used. This is a problem caused by the difference in distribution. Due to the limitations of the optical disk substrate material, low-temperature film-forming properties are required for the manufacture of optical disks, and from this point, magnetron sputtering is preferred among sputtering methods,
On the other hand, when the RT target is used as the magnetron sputtering source, the difference in the sputter emission angle distribution between the RE and the TM from the RT target surface is promoted by the effect of the TM sputter particles being restrained by the magnetron field. Therefore, it is particularly necessary to pay attention to the uniformity of the film characteristics described above. Due to the fact that a practical RT target has just been developed, the above considerations are still insufficient.
(発明が解決しようとする問題点) 本発明は、R−Tターゲットを使用してRE-TM膜を形
成する際の基板面上のRE-TM膜特性の不均一性の問題点
を解決しようとするものである。(Problems to be Solved by the Invention) The present invention is intended to solve the problem of non-uniformity of RE-TM film characteristics on a substrate surface when forming an RE-TM film using an RT target. It is assumed that.
(問題を解決するための手段) 本発明は、上記した問題点を解決するために、R−T
ターゲットと基板との相対的位置関係を、R−Tターゲ
ット中心点Oと基板面上の任意の点Pとを結ぶ線分OPと
基板面とのなす角度θ〔deg〕とOPの長さL〔cm〕によ
って規定し、その規定された位置の領域に基板面を設置
する事を手段としている。(Means for Solving the Problem) The present invention provides an R-T
The relative positional relationship between the target and the substrate is represented by the angle θ [deg] between the line segment OP connecting the RT target center point O and an arbitrary point P on the substrate surface and the substrate surface, and the length L of the OP. [Cm], and the substrate surface is set in an area of the defined position.
本発明の規定する基板位置Pの領域は 0[cm]<L≦11.25[cm]かつ0[deg]<θ≦90[de
g]または11.25[cm]<L≦33.75[cm]かつ4[deg/c
m]×L-45[deg]≦θ≦90[deg]で与えられる。The area of the substrate position P defined by the present invention is 0 [cm] <L ≦ 11.25 [cm] and 0 [deg] <θ ≦ 90 [de
g] or 11.25 [cm] <L ≦ 33.75 [cm] and 4 [deg / c]
m] × L−45 [deg] ≦ θ ≦ 90 [deg].
(作用) 上記した本発明の手段を適用すれば、マグネトロンタ
イプのスパッタリング源にR−Tターゲットを設置し
て、RE-TM膜を形成した場合にも基板面全面に亘って垂
直磁化膜が得られ、さらに基板に前記領域P内で回転・
公転等の移動運転を付与しているので、一様な膜厚分
布、光磁気特性のRE-TM膜が得られる。(Operation) By applying the above-described means of the present invention, a perpendicular magnetization film can be obtained over the entire substrate surface even when an RT target is installed in a magnetron type sputtering source and a RE-TM film is formed. And rotated on the substrate in the region P.
Since a moving operation such as revolution is provided, a RE-TM film having a uniform film thickness distribution and magneto-optical characteristics can be obtained.
又、本発明の作用はREスパッタ粒子とTMスパッタ粒子
のR−Tターゲット面からのスパッタ放出角度分布が特
に異なるマグネトロンタイプのスパッタリング源を用い
た場合に特に大きな作用を有するが、マグネトロンタイ
プでないスパッタ源を用いた場合にも、本発明に規定さ
れる位置に基板を配置すれば極めて良好な均一性の膜が
得られる。The effect of the present invention is particularly large when using a magnetron type sputtering source in which the sputter emission angle distribution of RE sputtered particles and TM sputtered particles from the RT target surface is particularly different. Even when a source is used, a very good uniformity film can be obtained by arranging the substrate at the position defined in the present invention.
(実施例) 以下、図面を参照して本発明を説明する。第1図は本
発明の光磁気記録膜の製造方法に関わるターゲットと基
板との位置関係を示す図、第2図は第1図の位置関係に
あるターゲットと基板を収納するスパッタ装置の構成図
である。第1図,第2図において、1はスパッタ室、2
は基板ホルダー、3はホルダー支持棒(31,32,33の3つ
の位置に配置できる)、4は5mm口のSiを基板とするサ
ンプル、5はTbCo合金Target(Tb28.2Co71.1O0.5C0.2の
原子組成比)、6はアノード、7はマグネトロン放電用
のマグネット、8はマグネット回転棒、9はスパッタ源
ケース、10は絶縁シールド、11はDC電源、12はシャッタ
ー、13は基板昇降器と回転器を収納するケース、14はAr
ガス導入系、15は排気系である。Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a positional relationship between a target and a substrate in the method of manufacturing a magneto-optical recording film according to the present invention, and FIG. 2 is a configuration diagram of a sputtering device for accommodating the target and the substrate in the positional relationship shown in FIG. It is. 1 and 2, reference numeral 1 denotes a sputtering chamber, 2
Is a substrate holder, 3 is a holder support rod (can be arranged at three positions of 31, 32, and 33), 4 is a sample having a substrate of 5 mm Si, 5 is a TbCo alloy target (Tb28.2Co71.1O0.5C0. Atomic composition ratio of 2), 6 is an anode, 7 is a magnet for magnetron discharge, 8 is a magnet rotating rod, 9 is a sputter source case, 10 is an insulation shield, 11 is a DC power supply, 12 is a shutter, and 13 is a substrate elevator. And a case to store the rotator, 14 is Ar
A gas introduction system 15 is an exhaust system.
上記構成によって、本発明の光磁気記録膜の形成法を
以下の手順で従来技術との比較も含めて実施した。先
ず、第1図の構成の基板ホルダー2の上に光磁気特性を
評価する為のSiチップ4をその位置Pを変えて設置し
た。設置の仕方は、基板ホルダー側からターゲット5を
みた時にターゲット中心点Oを中心に放射状になるよう
に基板ホルダー中心からの距離rsを変えて行なった。基
板ホルダー中心とターゲット中心との距離Dは13cm,15c
m(第2図の31の位置)(D=13cmについては、第2図
とは異なるスパッタ装置を使用したが基本構成は第2図
のものと一致する)、及び7cm(第2図の32の位置)、2
1cm(第2図の33の位置)に、又、ターゲット−基板ホ
ルダー間隔GはD=13cmの場合については7cmと11cmの
2通りに、D=15cmの場合には、17cmと23cmの2通りに
各々パラメータとして変えた。D=7cm及び21cmの場合
はG=17cmとした。With the above configuration, the method of forming the magneto-optical recording film of the present invention was carried out by the following procedure, including comparison with the prior art. First, a Si chip 4 for evaluating magneto-optical characteristics was placed on the substrate holder 2 having the configuration shown in FIG. The arrangement was performed by changing the distance r s from the center of the substrate holder so that the target 5 was radially formed around the target center point O when the target 5 was viewed from the substrate holder side. The distance D between the center of the substrate holder and the center of the target is 13cm, 15c
m (position 31 in FIG. 2) (for D = 13 cm, a different sputter apparatus from that of FIG. 2 was used, but the basic configuration is the same as that of FIG. 2), and 7 cm (32 in FIG. 2). Position), 2
1 cm (at the position 33 in FIG. 2), the target-substrate holder spacing G is 7 cm and 11 cm for D = 13 cm, and 17 cm and 23 cm for D = 15 cm. Were changed as parameters. When D = 7 cm and 21 cm, G = 17 cm.
上記した6通りの基板配置に対して、TbCo膜の形成実
験を基板ホルダー静止状態で4通り、基板回転状態で3
通り行なった。TbCo膜の形成は基板ルダー2の上に前記
した配置方法でSiチップを設置した後、スパッタ室1内
を排気系14で5×10-6Torrまで排気後、ガス導入系13よ
りArガスを75sccm流入し、排気系14を調整してスパッタ
室内のガス圧力を5mTorrとし、次にマグネット8を6rpm
で回転させながら、シャッタ−12を閉じた状態で、ター
ゲット5にDC電源11より電力を投入して10分間プリース
パッタを行なった後、シャッター12を開いて行なった。
TbCo膜の形成されたサンプル4はカーヒステリシス測定
器を使用して光磁気特性を測定した。For the above six types of substrate arrangements, four types of TbCo film formation experiments were performed with the substrate holder stationary and three with the substrate rotating.
I did it. The TbCo film is formed by placing a Si chip on the substrate rudder 2 by the above-described arrangement method, exhausting the inside of the sputtering chamber 1 to 5 × 10 −6 Torr by the exhaust system 14, and then supplying Ar gas from the gas introducing system 13. 75 sccm inflow, the exhaust system 14 was adjusted to adjust the gas pressure in the sputtering chamber to 5 mTorr, and then the magnet 8 was set to 6 rpm.
With the shutter 12 closed, power was applied to the target 5 from the DC power supply 11 to perform pre-sputtering for 10 minutes, and then the shutter 12 was opened.
The magneto-optical characteristics of the sample 4 on which the TbCo film was formed were measured using a Kerr hysteresis measuring device.
第3図は、各サンプルの位置(L,Q)とその位置でTbC
o膜が垂直磁化となるか面内磁化となるのかを示す図で
ある。L,θはG,D,rsを用いれば、サンプル4の面が基板
ホルダー面と平行な場合は、 より求める事ができる。第3図中のプロット点の軌跡A,
B,C,Dは各々A(G=23cm,D=15cm)、B(G=17cm,D
=15cm)、C(G=11cm、D=13cm)、D(G=7cm,D
=13cm)、E(G=4cm,D=10cm)の条件で基板を静止
して得たサンプルの結果を示している。第3図より明ら
かな様に、θ90degの範囲でみると、4〔deg/cm〕×L
-45degよりもθの大きな領域で垂直磁化膜、4L-45より
θの小さな領域で面内磁化膜となっている事が明らか
で、光磁気記録膜として使用可能なTbCo膜は、θ4L-4
5の領域でのみ形成可能だという事が判る。又、θ90d
egの範囲にP1′,P2′2つのプロット点(各々位置はθ
=90degに対して対称)は、サンプル4の面をホルダー
面から傾けたものの結果であり、光磁気特性も同じLに
対してはθ=90degに対して対称である事が判る。これ
は第1図の位置関係からも充分推測できる事であり、第
1図に示したθの位置と180°−θの位置は全く等価で
あるためである。どの様な配置でも0°θ90°の範
囲で位置が一意に決まる事から、本発明ではθ90°と
いう上限が設けられているのである。Fig. 3 shows the position (L, Q) of each sample and the TbC
FIG. 9 is a diagram showing whether the film has perpendicular magnetization or in-plane magnetization. When G, D, and r s are used for L and θ, when the surface of sample 4 is parallel to the substrate holder surface, I can ask more. The locus A of the plot points in FIG. 3,
B, C and D are A (G = 23 cm, D = 15 cm), B (G = 17 cm, D
= 15 cm), C (G = 11 cm, D = 13 cm), D (G = 7 cm, D
= 13 cm) and E (G = 4 cm, D = 10 cm) showing the results of samples obtained with the substrate stationary. As is clear from FIG. 3, in the range of θ90 deg, 4 [deg / cm] × L
It is clear that the perpendicular magnetization film is in the region where θ is larger than -45 deg, and the in-plane magnetization film is in the region where θ is smaller than 4L-45.The TbCo film that can be used as the magneto-optical recording film is θ4L-4.
It turns out that it can be formed only in the area of 5. Also, θ90d
In the range of eg, P 1 ′ and P 2 ′ two plot points (each position is θ
(= 90 deg) is the result of tilting the surface of the sample 4 from the holder surface, and it can be seen that the magneto-optical characteristics are also symmetric with respect to θ = 90 deg for the same L. This can be sufficiently estimated from the positional relationship shown in FIG. 1, and the position of θ shown in FIG. 1 and the position of 180 ° −θ are completely equivalent. Since the position is uniquely determined within the range of 0 ° θ90 ° in any arrangement, the upper limit of θ90 ° is provided in the present invention.
本発明は、 i)0<L≦11.25[cm] かつ 0<θ≦90[deg] または ii)11.25[cm]<L≦33.75[cm] かつ 4[deg/cm]×L-45[deg]≦θ≦90[deg] の条件を満足する範囲で適用可能である。 In the present invention, i) 0 <L ≦ 11.25 [cm] and 0 <θ ≦ 90 [deg] or ii) 11.25 [cm] <L ≦ 33.75 [cm] and 4 [deg / cm] × L-45 [deg] ] ≦ θ ≦ 90 [deg].
ただし、Gが小さすぎるとマグネトロンスパッタにお
いても放電が生成されにくくまた基板への熱負荷が過大
になる等の問題が生じてくる場合があるので、θ−
(30/20)L+30であることが望ましい。However, if G is too small, discharge may not be easily generated even in magnetron sputtering, and a problem such as an excessive heat load on the substrate may occur.
(30/20) L + 30 is desirable.
第3図中のBの一連のサンプルについて、基板上のサ
ンプル位置とサンプル面に垂直な方向の膜保磁力をプロ
ットしたのが第4図であり、ICP発光分光法による組成
分析の結果が併記してある。第4図より、ターゲット直
上からrs=7cmの間はCo-richのカーループ、rs=6cm〜0
cmまではTb-richのカーループ、rsがターゲットと逆側
の3cm以上の領域では面内磁化膜のカーループとなって
いる事と、組成的にも確かにその様に変化している事が
判る。この理由は前記したTb粒子とCo粒子のターゲット
面からのスパッタ放出角度分布の差によると考えられ
る。発明者等は第4図の結果すなわち、rs=7cmを中心
にして(D=15cm,G=17cmの場合)Co-rich領域とTb-ri
ch領域とがほぼ対称となっている事に着目し、次に基板
ホルダー中心をこの点近傍のD=9cmとして基板ホルダ
ーを回転させた場合の分布を調べた。その結果、第5図
に32で示す様に、保磁力が|rs|10cmの領域で極めて
一様なTbCo膜を得る事ができた。FIG. 4 plots the sample position on the substrate and the film coercive force in the direction perpendicular to the sample surface for a series of samples B in FIG. 3, and also shows the results of composition analysis by ICP emission spectroscopy. I have. From Figure 4, during the r s = 7 cm from directly above the target of Co-rich Kerr loop, r s = 6cm~0
up to cm, Tb-rich Kerr loops, r s 3cm or more on the opposite side of the target from the in-plane magnetization film to Kerr loops, and the composition is certainly changing like that. I understand. The reason for this is considered to be the difference in the sputter emission angle distribution of the Tb particles and Co particles from the target surface. The inventors of the present invention obtained the results of FIG. 4, that is, the Co-rich region and the Tb-ri centered on rs = 7 cm (D = 15 cm, G = 17 cm).
Focusing on the fact that the channel region is almost symmetric, the distribution when the substrate holder is rotated with the center of the substrate holder set to D = 9 cm near this point was examined. As a result, as shown by 32 in FIG. 5, a very uniform TbCo film was obtained in the region where the coercive force was | r s | 10 cm.
第5図には、D=15cmの場合を31で、D=21cmの場合
を33で示してある。D=15cmで基板ホルダー外周側にゆ
く程Co-rich側に光磁気特性がシフトするのは、第4図
の静止状態の結果から容易に推定でき、すなわち、第5
図のディスクホルダー内周側ではサンプル面は第4図の
Tb-rich領域と面内磁化領域を交互に回転しながら通過
するのに対し、第5図のディスクホルダー外周側では、
サンプル面は第4図のCo-rich領域と面内磁化領域を交
互に回転しながら通過する為である。In FIG. 5, the case of D = 15 cm is indicated by 31, and the case of D = 21 cm is indicated by 33. The fact that the magneto-optical characteristics shift toward the Co-rich side as the distance to the outer periphery of the substrate holder increases at D = 15 cm can be easily estimated from the result of the stationary state shown in FIG.
On the inner side of the disc holder shown in the figure, the sample surface is
While passing through the Tb-rich region and the in-plane magnetization region while rotating alternately, on the outer side of the disk holder in FIG. 5,
This is because the sample surface passes through the Co-rich region and the in-plane magnetization region shown in FIG. 4 while rotating alternately.
本発明に従って基板を配置した第5図の32では、Co-r
ich垂直領域とTb-rich垂直領域を交互にほぼ対称に回転
しながら通過するので均一な特性となっている。At 32 in FIG. 5 where the substrate is arranged according to the invention, the Co-r
It passes through the ich vertical region and the Tb-rich vertical region alternately while rotating almost symmetrically, so that the characteristics are uniform.
本発明の光磁気記録膜の製造方法によれば、R−T合
金ターゲットをスパッタしてRE-TM膜を製造する場合
に、基板面上に膜厚分布、光磁気特性とも一様で極めて
均一性の良好なRE-TM膜が製造できる。According to the method for producing a magneto-optical recording film of the present invention, when producing an RE-TM film by sputtering an RT alloy target, the film thickness distribution and magneto-optical characteristics are uniform and extremely uniform on the substrate surface. An RE-TM film with good properties can be manufactured.
第1図はターゲットと基板の位置関係を示す図、第2図
はスパッタ装置の一実施例の構成図、第3図乃至第5図
は本発明の光磁気記録膜の製造方法の効果を示す図であ
る。 1……スパッタ室、2……基板ホルダー、3……ホルダ
ー支持棒、4……サンプル、5……希土類−遷移金属合
金ターゲット、6……アノード、7……マグネット、8
……マグネット回転棒、9……スパッタ源ケース、10…
…絶縁物、11……電源、12……シャッター、13……基板
ホルダー昇降器・回転器、14……ガス導入系、15……排
気系。FIG. 1 is a view showing the positional relationship between a target and a substrate, FIG. 2 is a view showing the configuration of an embodiment of a sputtering apparatus, and FIGS. 3 to 5 show the effects of the method for manufacturing a magneto-optical recording film of the present invention. FIG. DESCRIPTION OF SYMBOLS 1 ... Sputter chamber, 2 ... Substrate holder, 3 ... Holder support rod, 4 ... Sample, 5 ... Rare earth-transition metal alloy target, 6 ... Anode, 7 ... Magnet, 8
...... Magnet rotating rod, 9 ... Sputter source case, 10 ...
... Insulator, 11 ... Power supply, 12 ... Shutter, 13 ... Substrate holder elevator / rotator, 14 ... Gas introduction system, 15 ... Exhaust system.
Claims (2)
属合金ターゲットをスパッタし、スパッタ粒子のスパッ
タ放出方向における所定の領域で移動運転される基板上
に光磁気記録膜を形成する光磁気記録膜の製造方法にお
いて、ターゲット中心点と基板面上の任意の点とを結ぶ
線分と基板面のなす角度をθ[deg]、前記線分の長さ
をL[cm]とする時、 0[cm]<L≦11.25[cm]かつ 0[deg]<θ≦90[deg] または 11.25[cm]<L≦33.75[cm]かつ 4[deg/cm]×L-45[deg]≦θ≦90[deg] なる条件を満足してなる位置(L,θ)の領域に基板面が
配置される事を特徴とする光磁気記録膜の製造方法。1. A magneto-optical recording film which sputters a rare earth-transition metal alloy target placed in a sputtering chamber and forms a magneto-optical recording film on a substrate which is moved and operated in a predetermined region in a sputter emission direction of sputtered particles. 0 [deg.] When the angle formed between the line connecting the target center point and an arbitrary point on the substrate surface and the substrate surface is [deg] and the length of the line segment is L [cm], 0 [deg.] cm] <L ≦ 11.25 [cm] and 0 [deg] <θ ≦ 90 [deg] or 11.25 [cm] <L ≦ 33.75 [cm] and 4 [deg / cm] × L-45 [deg] ≦ θ ≦ A method for manufacturing a magneto-optical recording film, wherein a substrate surface is arranged in a region (L, θ) satisfying a condition of 90 [deg].
グネトロンタイプのスパッタリング源でスパッタされる
事を特徴とする特許請求の範囲第1項記載の光磁気記録
膜の製造方法。2. A method for manufacturing a magneto-optical recording film according to claim 1, wherein said rare earth-transition metal alloy target is sputtered by a magnetron type sputtering source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61142703A JP2611976B2 (en) | 1986-06-20 | 1986-06-20 | Method for manufacturing magneto-optical recording film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61142703A JP2611976B2 (en) | 1986-06-20 | 1986-06-20 | Method for manufacturing magneto-optical recording film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63838A JPS63838A (en) | 1988-01-05 |
JP2611976B2 true JP2611976B2 (en) | 1997-05-21 |
Family
ID=15321597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61142703A Expired - Lifetime JP2611976B2 (en) | 1986-06-20 | 1986-06-20 | Method for manufacturing magneto-optical recording film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2611976B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0664764B2 (en) * | 1984-10-16 | 1994-08-22 | 三菱樹脂株式会社 | Recording medium manufacturing method |
-
1986
- 1986-06-20 JP JP61142703A patent/JP2611976B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63838A (en) | 1988-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krupanidhi et al. | Multi‐ion‐beam reactive sputter deposition of ferroelectric Pb (Zr, Ti) O3 thin films | |
JP3408539B2 (en) | Characteristic control of deposited film on semiconductor wafer | |
EP0265246B1 (en) | Magnetic iron oxide film and production thereof | |
KR910007776B1 (en) | Magnetic media producing method | |
EP0410627A1 (en) | Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium | |
US5607781A (en) | Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium | |
US4013534A (en) | Method of making a magnetic oxide film | |
JP2611976B2 (en) | Method for manufacturing magneto-optical recording film | |
Kadokura et al. | Plasma effects on the Co-Cr deposition in opposing targets sputtering method | |
Hatwar et al. | Effect of argon sputtering pressure on the magnetic properties and morphology of TbFeCo films | |
JPH031810B2 (en) | ||
US5863661A (en) | Method of enhancing the c-axis perpendicular orientation of barium hexaferrite thin films and barium hexaferrite thin film recording media produced thereby | |
JPH0721544A (en) | Magnetic recording medium and its production | |
Bandyopadhyay et al. | The influence of ion beam sputtering geometry on metastable (Ni81Fe19) O/Ni81Fe19 exchange biased bilayers | |
JPH0558251B2 (en) | ||
JP3211458B2 (en) | Magnetic film forming equipment | |
JP2550098B2 (en) | Method for manufacturing magneto-optical recording film | |
JPS58169331A (en) | Magnetic recording medium | |
JPS621866A (en) | Sputtering device | |
Lo et al. | Near-zero magnetostriction NiFe films deposited by ion beam sputtering | |
JPH0194552A (en) | Manufacture of magneto-optical recording medium | |
JPS6015819A (en) | Magnetic recording medium | |
JP2553145B2 (en) | Magneto-optical recording medium | |
JPH05234053A (en) | Perpendicularly magnetizable film | |
JPS61253654A (en) | Production of photothermomagnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |