JPH0411624B2 - - Google Patents
Info
- Publication number
- JPH0411624B2 JPH0411624B2 JP61142962A JP14296286A JPH0411624B2 JP H0411624 B2 JPH0411624 B2 JP H0411624B2 JP 61142962 A JP61142962 A JP 61142962A JP 14296286 A JP14296286 A JP 14296286A JP H0411624 B2 JPH0411624 B2 JP H0411624B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- magnetic field
- facing
- targets
- sputtering apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 65
- 238000004544 sputter deposition Methods 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 14
- 239000000696 magnetic material Substances 0.000 claims description 5
- 239000010408 film Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
[利用分野]
本発明は、ターゲツトを対向させた対向ターゲ
ツト式スパツタ装置に関し、更に詳しくは磁気記
録媒体等の製造に好適な、巾の広い長尺の基板を
移送しつつ連続的に所望の薄膜を形成する対向タ
ーゲツト式スパツタ装置に関する。[Detailed Description of the Invention] [Field of Application] The present invention relates to a facing target type sputtering device in which targets are opposed to each other, and more specifically to a sputtering device for transferring a wide and long substrate suitable for manufacturing magnetic recording media, etc. The present invention relates to a facing target type sputtering apparatus that continuously forms a desired thin film.
[従来技術]
前述の対向ターゲツト式スパツタ装置は、特開
昭57−158380号、特開昭59−53680号公報等で公
知の通り、真空槽内で対向させたターゲツトの対
向方向に磁界を発生させ、ターゲツトの側方に配
した基板上に膜形成するスパツタ装置で、各種材
料中でも磁性材の低温、高速の膜形成できる特徴
を有し、磁性薄膜、薄膜型磁気記録媒体等の製造
に利用されている。[Prior art] As is known from Japanese Patent Application Laid-open Nos. 57-158380 and 59-53680, the above-mentioned facing target sputtering device generates a magnetic field in the opposite direction of targets facing each other in a vacuum chamber. This is a sputtering device that forms a film on a substrate placed on the side of a target, and is capable of forming films of magnetic materials at low temperatures and at high speeds among various materials, and is used for manufacturing magnetic thin films, thin-film magnetic recording media, etc. has been done.
ところが、従来の対向ターゲツト式スパツタ層
を用いて膜形成例えば垂直磁気記録媒体のCo−
Cr合金膜を連続形成した場合、ターゲツトはそ
の中心部に侵食が集中し、ターゲツトの利用効率
が低いことがわかつた(IEEE Trans on
Magnetics MAG17.p3175(1981))。又基板の巾
方向においても膜厚分布が生じ、生産性面で問題
があることがわかつた。 However, conventional facing-target sputtering layers are used to form films, such as Co-coal for perpendicular magnetic recording media.
It was found that when a Cr alloy film was continuously formed, the erosion of the target concentrated in the center, resulting in low target utilization efficiency (IEEE Trans on
Magnetics MAG17.p3175 (1981)). Furthermore, it was found that film thickness distribution occurred also in the width direction of the substrate, which caused problems in terms of productivity.
これに対して、本発明者らは特開昭58−164781
号公報及び特開昭59−116376号公報において、第
5図の構成すなわち、ターゲツトの周囲に磁界発
生機構のコアを配置し、磁界をターゲツトの周囲
に発生させるようにした構成を提案した。すなわ
ち、同図は、対向ターゲツト式スパツタ装置のタ
ーゲツト部のみ示したもので、対向ターゲツト
T,T′の周囲にシールドを兼ねて、端部301
a,302aをターゲツトT1,T2の表面に臨む
ように折曲させたコア301,302の脚部30
1b,302bに磁界を発生させるコイル又は永
久磁石からなる磁界発生源301′,302′を磁
気的に結合させて設け、図示の如く磁界Hをター
ゲツトT,T′の周囲のみ発生させるようにした
ものである。図において310は真空槽壁、31
1,312はターゲツトホルダー、311a,3
12aはターゲツト冷却のための冷却配管であ
る。この構成により磁界はターゲツトを経由しな
いで直接コア間に形成されるので、磁界の分布が
ターゲツト材の透磁率、飽和磁化、ターゲツトの
厚みに影響されず安定し且つ、プラズマ捕捉用磁
界がターゲツト周囲に形成されるのでその侵食領
域が中心部から周辺部へ拡大し、ターゲツトの利
用率が向上した。しかしながら、基板巾が広くな
りターゲツトの巾が広くなると、前述の基板巾方
向でその中心部と端部の薄膜差が大きくなると共
に、中心部の侵食が速く全体としてのターゲツト
の利用率が低下するという問題があることがわか
つた。 In contrast, the present inventors have
No. 59-116376 proposed the structure shown in FIG. 5, that is, a structure in which the core of the magnetic field generating mechanism is disposed around the target and a magnetic field is generated around the target. That is, the figure shows only the target portion of the facing target type sputtering device, and the end portion 301 is provided around the facing targets T and T' to also serve as a shield.
Legs 30 of the cores 301, 302 with a and 302a bent so as to face the surfaces of the targets T 1 and T 2
Magnetic field generation sources 301' and 302' made of coils or permanent magnets for generating magnetic fields are magnetically coupled to 1b and 302b, so that the magnetic field H is generated only around the targets T and T' as shown in the figure. It is something. In the figure, 310 is the vacuum chamber wall, 31
1,312 is a target holder, 311a,3
12a is a cooling pipe for cooling the target. With this configuration, the magnetic field is formed directly between the cores without passing through the target, so the distribution of the magnetic field is stable without being affected by the permeability of the target material, saturation magnetization, or thickness of the target, and the magnetic field for plasma trapping is distributed around the target. The erosion area expanded from the center to the periphery, improving the target utilization rate. However, as the substrate width becomes wider and the target width becomes wider, the difference in the thin film between the center and the edge becomes larger in the width direction of the substrate, and the center becomes more eroded and the overall utilization rate of the target decreases. It turns out that there is a problem.
[発明の目的]
本発明はかかる問題に鑑みなされたもので、巾
の広いターゲツトにおいても上述の問題のない生
産性の良い改良された対向ターゲツト式スパツタ
装置を目的とするものである。[Object of the Invention] The present invention was devised in view of the above problems, and an object of the present invention is to provide an improved facing target type sputtering apparatus which is free from the above-mentioned problems even when using a wide target and has good productivity.
[発明の構成及び作用]
すなわち、本発明は、前述の特開昭58−164781
号公報、特開昭59−116376号公報開示の対向ター
ゲツト式スパツタ装置の改良で、所定距離を隔て
て対向したターゲツトの周囲に磁界発生手段によ
りターゲツト対向方向の磁界を発生させ、ターゲ
ツトの側方をその対向方向に移送される基板上に
膜形成するようにした対向ターゲツト式スパツタ
装置において、前記ターゲツトは基板巾方向が長
い長方形で、長辺側で複数に分割されており、且
つ前記磁界発生手段はターゲツトの分割個所に前
記磁界を発生するようになされていることを特徴
とする対向ターゲツト式スパツタ装置である。[Structure and operation of the invention] That is, the present invention
In this improvement of the facing target type sputtering device disclosed in Japanese Patent Application Laid-Open No. 59-116376, a magnetic field is generated in the direction facing the target by a magnetic field generating means around the targets facing each other at a predetermined distance. In the opposed target type sputtering apparatus, the target is a rectangle with a long width direction of the substrate, and is divided into a plurality of parts on the long side, and The means is a facing target type sputtering apparatus characterized in that the magnetic field is generated at the part where the target is divided.
本発明はターゲツトを長辺側で分割して適当な
長さにすると共に、その分割個所にプラズマ捕捉
用磁界を発生させプラズマ空間も分割することに
より、各分割領域は、独立なターゲツトと同様に
作用し、全体はその重ね合せとなり、侵食領域が
平均化してターゲツトの利用率が向上すると共に
基板巾方向の膜厚分布も均一領域が大巾に拡大す
ることを見出しなされたものである。 In the present invention, the target is divided on the long side to have an appropriate length, and a plasma trapping magnetic field is generated at the divided points to divide the plasma space. By doing so, each divided region can be divided into two regions in the same way as independent targets. It was discovered that the eroded area is averaged, the utilization rate of the target is improved, and the uniform area of the film thickness distribution in the width direction of the substrate is greatly expanded.
本発明によれば、上述の点から前述した課題が
解決される上、ターゲツトが小さくて良いので、
その製造が容易となり安価となる利点もある。 According to the present invention, the above-mentioned problems are solved from the above points, and the target can be small, so
It also has the advantage of being easy to manufacture and inexpensive.
以下本発明の詳細を実施例に基いて説明する。
第1図は、実施例の全体構成を示す概略図、第2
図はその一方のターゲツトの平面図、第3図は基
板と直交する第2図のAB線での側断面図、第3
図は、その基板面と平行な第2図のCD線での側
断面図である。 The details of the present invention will be explained below based on examples.
Fig. 1 is a schematic diagram showing the overall configuration of the embodiment;
The figure is a plan view of one of the targets, the third figure is a side sectional view taken along line AB in figure 2, which is perpendicular to the substrate, and the third figure
The figure is a side sectional view taken along line CD in FIG. 2, which is parallel to the substrate surface.
第1図から明らかな通り、本装置は前述の特開
昭57−158380号公報等で公知の対向ターゲツト式
スパツタ装置と基本的に同じ構成となつている。 As is clear from FIG. 1, this apparatus has basically the same construction as the opposed target type sputtering apparatus known from the above-mentioned Japanese Patent Laid-Open Publication No. 57-158380.
すなわち、図において10は真空槽、20は真
空槽10を排気する真空ポンプ等からなる排気
系、30は真空槽10内に所定のガスを導入して
真空槽10内の圧力を10-1〜10-4Torr程度
の所定のガス圧力に設定するガス導入系である。 That is, in the figure, 10 is a vacuum chamber, 20 is an exhaust system consisting of a vacuum pump etc. for evacuating the vacuum chamber 10, and 30 is a system for introducing a predetermined gas into the vacuum chamber 10 to increase the pressure inside the vacuum chamber 10 to 10 -1 ~ This is a gas introduction system that is set to a predetermined gas pressure of approximately 10 -4 Torr.
そして、真空槽10内には、図示の如くターゲ
ツト部100,100′により1対の基板Sに面
する辺が長い長方形のターゲツトT,T′が、空
間を隔てて平行に対面するように配設してある。 In the vacuum chamber 10, as shown in the figure, rectangular targets T and T' with long sides facing the pair of substrates S are arranged so as to face each other in parallel with a space between them. It has been set up.
ターゲツト部100,100′は全く同じ構成
であり、以下その一方のターゲツト100に基い
て説明する。 The target units 100 and 100' have exactly the same configuration, and the following explanation will be based on one target 100.
ターゲツト部100は従来と異なり、第2図の
平面図から明らかなように、ターゲツトTがT1,
T2に2等分割されると共に、シールドリング1
10も、ターゲツトと同様その分割個所上で分割
辺110aにより2分割されている。プラズマ捕
捉用磁界を形成する磁界発生手段120は、分割
辺110aを含めてシールドリング110に沿つ
て、その背後に配置され、分割されたターゲツト
T1,T2毎に区画されたプラズマ捕捉用磁界を形
成するようになつている。 The target section 100 is different from the conventional one, and as is clear from the plan view of FIG .
It is divided into two parts T 2 , and the shield ring 1
10 is also divided into two by a dividing side 110a at the dividing point, similar to the target. A magnetic field generating means 120 for forming a magnetic field for plasma trapping is arranged along and behind the shield ring 110 including the dividing side 110a, and is arranged behind the shield ring 110 including the dividing side 110a.
A magnetic field for plasma trapping is formed divided by T 1 and T 2 .
このターゲツト部100の詳細構造は以下のよ
うに構成されている。第2図、第3図において1
01は、中央部にターゲツトTの分割個所に配置
される磁界発生手段120の後述の永久磁石の収
納部を設けた筒状体からなるターゲツトホルダー
で、その上には、テフロン(デユポン社商品名)
等の絶縁材からなる絶縁ブロツク102を介し
て、図で上面にターゲT1,T2を冷却するための
冷却溝103aを穿設した冷却板103がボルト
により固定される。そして冷却板103上には、
押え枠104によりターゲツトT1,T2がボルト
により固定される。冷却板103の接続口103
bは、図示省略した冷却配管が接続され、冷却媒
体の循環によりターゲツトT1,T2を冷却するよ
うになつている。なお、ターゲツトホルダ101
の上面、絶縁ブロツク102、冷却板103、タ
ーゲツトT1,T2の各接触面は、当然のことなが
らパツキン(図示省略)によりシールされてい
る。以上の構成によりターゲツトT1,T2の交換
が簡単になると共にターゲツトT1,T2は隅々迄
均一冷却が可能となり、生産性、安定運転面で効
果大である。 The detailed structure of this target section 100 is constructed as follows. 1 in Figures 2 and 3
01 is a target holder made of a cylindrical body, which has a storage part for a permanent magnet (to be described later) of a magnetic field generating means 120 disposed at the dividing point of the target T in the center, and a Teflon (trade name of DuPont) is placed on top of the holder. )
A cooling plate 103 having cooling grooves 103a for cooling the targets T 1 and T 2 on its upper surface as shown in the figure is fixed with bolts through an insulating block 102 made of an insulating material such as. And on the cooling plate 103,
The targets T 1 and T 2 are fixed by bolts using the holding frame 104 . Connection port 103 of cooling plate 103
A cooling pipe (not shown) is connected to b, and the targets T 1 and T 2 are cooled by circulation of a cooling medium. Note that the target holder 101
The contact surfaces of the upper surface of the insulating block 102, the cooling plate 103, and the targets T 1 and T 2 are naturally sealed with packing (not shown). With the above configuration, the targets T 1 and T 2 can be easily replaced, and the targets T 1 and T 2 can be uniformly cooled to every corner, which is highly effective in terms of productivity and stable operation.
ターゲツトホルダー101の外側にはステンレ
ス等の非磁性導電材からなる磁石ホルダー105
がボルトにより固定されている。磁石ホルダー1
05は図で上面にシールドリング110が取着で
き、その内部に磁界発生手段120のコア121
と永久磁石122が収納できるようにその先端部
外側にU字型ホルダー部105aが形成されてお
り、又ターゲツトT1,T2及び冷却板103と所
定の間隙を有するように配置されている。 On the outside of the target holder 101, there is a magnet holder 105 made of a non-magnetic conductive material such as stainless steel.
is fixed with bolts. Magnet holder 1
05 is a diagram in which a shield ring 110 can be attached to the upper surface, and a core 121 of a magnetic field generating means 120 is installed inside the shield ring 110.
A U-shaped holder portion 105a is formed outside the tip of the permanent magnet 122 so as to accommodate the permanent magnet 122, and is arranged to have a predetermined gap from the targets T1 , T2 and the cooling plate 103.
磁界発生手段120のコア121と永久磁石1
22とは、図示の通り、鉄、パーマロイ等の軟磁
性材の板状体からなるコア121が図で上部の先
端側に位置し、その背後に永久磁石122がター
ゲツトT1,T2のスパツタ面に垂直方向の磁界を
発生する磁極配置になるように固定枠106によ
りボルト等により固定される。なお、永久磁石1
22は、所定長の角棒状磁石をその合成磁界が前
記プラズマ捕捉用磁界を形成するように並設した
ものである。従つてプラズマ捕捉用磁界はコア1
21を磁極として発生するので、ターゲツトT1,
T2の周辺に均一な磁界を生じターゲツト使用効
率が向上する。 Core 121 of magnetic field generating means 120 and permanent magnet 1
22, as shown in the figure, a core 121 made of a plate-shaped material of soft magnetic material such as iron or permalloy is located at the upper tip side in the figure, and behind it a permanent magnet 122 is placed to attract spatter of targets T 1 and T 2 . The fixing frame 106 is fixed with bolts or the like so that the magnetic poles are arranged to generate a magnetic field perpendicular to the surface. In addition, permanent magnet 1
Reference numeral 22 indicates square bar-shaped magnets having a predetermined length arranged in parallel so that their combined magnetic field forms the plasma trapping magnetic field. Therefore, the magnetic field for plasma trapping is core 1
21 as the magnetic pole, the target T 1 ,
A uniform magnetic field is created around T 2 and target usage efficiency is improved.
シールドリング110が、磁石ホルダ105と
ターゲツトT1,T2との間の間隙を覆うようにタ
ーゲツトT1,T2の方に突き出して磁石ホルダ1
05のホルダ部105aの前面に設けられてい
る。従つて、シールドリング110は磁石ホルダ
105、ターゲツトホルダ101を介して接地さ
れる。 The shield ring 110 protrudes toward the targets T 1 and T 2 so as to cover the gap between the magnet holder 105 and the targets T 1 and T 2 .
It is provided on the front surface of the holder part 105a of 05. Therefore, the shield ring 110 is grounded via the magnet holder 105 and target holder 101.
シールドリング110の前面(図で上面)から
磁石ホルダのホルダ部105aの外面にかけて
は、ステンレス等からなる金網107が布設され
ている。金網107により、これら部位に堆積す
るスパツタ付着物のスパツタ中での剥離すなわち
異常放電が防止され、又清掃が簡単になり、生産
性、安定運転面で大きな効果が得られる。シール
ドリング110は冷却媒体を通すジヤケツト11
1を設けてあり、水冷することによりシールドリ
ング110の加熱が防止されるため、スパツタ速
度をあげても、基板への輻射熱が少ないので基板
の熱変形が少なく、高速生産性が実現される。 A wire mesh 107 made of stainless steel or the like is laid from the front surface (upper surface in the figure) of the shield ring 110 to the outer surface of the holder portion 105a of the magnet holder. The wire mesh 107 prevents the spatter deposits deposited on these parts from peeling off in the spatter, that is, abnormal discharge, and also simplifies cleaning, resulting in great effects in terms of productivity and stable operation. The shield ring 110 is a jacket 11 through which the cooling medium passes.
1 is provided, and heating of the shield ring 110 is prevented by water cooling, so even if the sputtering speed is increased, there is little radiant heat to the substrate, so there is little thermal deformation of the substrate, and high-speed productivity is realized.
シールドリング110の材質は導電材であれば
良く、前述のコア121と同様の軟磁性材でも良
く、その他銅、ステンレス等でも良い。図の配置
から明らかな通り、シールドリング110に軟磁
性材を用いると、シールドリング110は、コア
121と磁気的に結合するのでコア121に替つ
てあるいはそれと共に、磁界発生手段120の磁
界発生部位すなわち磁極として作用する。この構
成によるとターゲツトT1,T2に対する磁極位置
をシールドリング110の先端位置を調整するこ
とにより調整できる利点がある。 The material of the shield ring 110 may be any conductive material, may be a soft magnetic material similar to the above-described core 121, or may be made of copper, stainless steel, or the like. As is clear from the arrangement in the figure, when a soft magnetic material is used for the shield ring 110, the shield ring 110 is magnetically coupled to the core 121, and therefore acts as a magnetic field generating portion of the magnetic field generating means 120 instead of or in addition to the core 121. In other words, it acts as a magnetic pole. This configuration has the advantage that the magnetic pole position relative to the targets T 1 and T 2 can be adjusted by adjusting the tip position of the shield ring 110.
第1図に戻つて、以上の構成のターゲツト部1
00,100′に取着され対向したターゲツトT,
T′の側方には、磁性薄膜が形成される長尺の基
板Sを保持する基板保持手段40が、設けられて
いる。基板保持手段40は、図示省略した支持ブ
ラケツトにより夫々回転自在かつ互いに軸平行に
支持された、ロール状の基板Sを保持する繰り出
しロール41と、支持ロール42と、巻取ロール
43との3個のロールからなり、基板Sをターゲ
ツトT′,T間の空間に対面するようにスパツタ
面に対して略直角方向に保持するように配してあ
る。従つて基板Sは巻取ロール43によりスパツ
タ面に対して直角方向に移動可能である。なお、
支持ロール42はその表面温度が調節可能となつ
ている。 Returning to FIG. 1, the target section 1 with the above configuration
00,100' and facing target T,
A substrate holding means 40 for holding a long substrate S on which a magnetic thin film is formed is provided on the side of T'. The substrate holding means 40 includes three rolls, a feed roll 41 holding a roll-shaped substrate S, a support roll 42, and a take-up roll 43, which are supported rotatably and parallel to each other by support brackets (not shown). The roll is arranged to hold the substrate S in a direction substantially perpendicular to the sputtering surface so as to face the space between the targets T' and T. Therefore, the substrate S can be moved by the take-up roll 43 in a direction perpendicular to the sputtering surface. In addition,
The surface temperature of the support roll 42 can be adjusted.
一方、スパツタ電力を供給する直流電源からな
る電力供給手段50はプラス側をアースに、マイ
ナス側をターゲツトT,T′に夫々接続する。従
つて電力供給手段50からのスパツタ電力は、ア
ースをアノードとし、ターゲツトT,T′をカソ
ードとして、アノード、カソード間に供給され
る。 On the other hand, a power supply means 50 consisting of a DC power source for supplying sputter power has its positive side connected to the ground and its negative side connected to the targets T and T', respectively. Therefore, the sputtering power from the power supply means 50 is supplied between the anode and the cathode, with the ground as the anode and the targets T and T' as the cathode.
なお、プレスパツタ時基板Sを保護するため、
基板SとターゲツトT,T′との間に出入するシ
ヤツター(図示省略)が設けてある。 In addition, in order to protect the substrate S during press sputtering,
A shutter (not shown) is provided between the substrate S and the targets T and T'.
以上の通り、前述の特開昭57−158380号公報の
ものと基本的には同じ構成であり、公知の通り高
速低温スパツタが可能となる。すなわち、ターゲ
ツトT,T′間の空間に、プラズマ捕捉用磁界の
作用によりスパツタガスイオン、スパツタにより
放出されたγ電子等が束縛され高密度プラズマが
形成される。従つて、ターゲツトT,T′のスパ
ツタが促進されて前記空間より析出量が増大し、
基板S上への堆積速度が増し高速スパツタが出来
る上、基板SがターゲツトT,T′の側方にある
ので低温スパツタも出来る。 As mentioned above, the structure is basically the same as that of the above-mentioned Japanese Patent Application Laid-open No. 57-158380, and as is known, high-speed low-temperature sputtering is possible. That is, in the space between targets T and T', sputter gas ions, γ electrons emitted by sputtering, etc. are bound by the action of the plasma trapping magnetic field, and a high-density plasma is formed. Therefore, sputtering of the targets T and T' is promoted and the amount of precipitation increases from the space,
The deposition rate on the substrate S is increased and high-speed sputtering is possible, and since the substrate S is on the side of the targets T and T', low-temperature sputtering is also possible.
ところで、前述のターゲツトT,T′を分割す
ると共に磁界発生手段120もターゲツトの分割
に従つて分割した構成によれば磁界が、対面する
コア121,121′(ここで、以下“′”は図示
省略したターゲツトホルダ100′のターゲツト
ホルダー100の数字部位と同じ個所を示す)を
磁極とてターゲツトT1,T2,T1′,T2′の周縁を
囲撓するように形成され、かつターゲツトT1,
T2,T1′,T2′の内側には洩れ磁界が形成される
程度に弱いため、ターゲツトT1,T1′の周縁で形
成される磁界の分布とターゲツトT2,T2′周縁で
形成される磁界の分布とはほぼ独立に形成でき
る。 By the way, according to the configuration in which the aforementioned targets T and T' are divided and the magnetic field generating means 120 is also divided according to the division of the targets, the magnetic field is generated by the cores 121 and 121' (hereinafter "'" is not shown) facing each other. The omitted target holder 100' is formed so as to surround the periphery of the targets T 1 , T 2 , T 1 ', and T 2 ' by using the same numbers as the target holder 100 as magnetic poles, and T1 ,
Since the leakage magnetic field is weak enough to be formed inside T 2 , T 1 ′, and T 2 ′, the distribution of the magnetic field formed at the periphery of targets T 1 , T 1 ′ and the periphery of targets T 2 , T 2 ′ The magnetic field can be formed almost independently of the distribution of the magnetic field formed by the magnetic field.
ところで、ターゲツトT1,T1′及びT2,T2′の
表面からスパツタされる高いエネルギーを持つγ
電子は前述のターゲツトT1,T1′及びT2,T2′の
空間に放射されるが、ターゲツトの中央及び外周
部近傍までは磁界の影響を受けないためほぼ一様
なγ電子密度になりスパツタに使われるAr+イオ
ンの形成がターゲツト全面でほぼ一様になされ
る。ターゲツト外周縁部に形成されている強い磁
界部に到るγ電子は、磁界でターゲツト外周縁部
に垂直に形成されている磁力線に沿つてつる巻き
状に拘束されてターゲツトT1,T1′及びT2,
T2′間を往復運動する。この過程でAr+イオンを
形成するため、イオン化されたアルゴン粒子はタ
ーゲツトT1,T1′面及びT2,T2′面近傍の強い電
界で加速されターゲツト物質をスパツタし、高速
で膜形成が出来る。特に本発明によれば、ターゲ
ツト周囲に設けた磁界発生手段における磁極から
生じる洩れ磁束は、空隙を介してターゲツト表面
に流入するすなわちシールド端近傍ではマグネト
ロンスパツターの洩れ磁界に類似したターゲツト
面に平行する磁界も形成される。従つてγ電子は
シールド端とターゲツト面にほぼ水平方向に形成
される磁束に沿つてドリフトするため、シールド
端近傍でもAr+イオンが増殖する。この結果、タ
ーゲツトT1,T1′及びT2,T2′の全面がスパツタ
されてエロージヨンパターンが均一になるのでタ
ーゲツトの使用効率を向上できる。特にターゲツ
トの厚みを変えても磁界の分布は一様であるた
め、長時間連続スパツタが可能となり生産性を著
しく向上することが出来る。 By the way, high energy γ sputtered from the surfaces of targets T 1 , T 1 ' and T 2 , T 2 '
Electrons are emitted into the space between the targets T 1 , T 1 ′ and T 2 , T 2 ′, but since they are not affected by the magnetic field near the center and outer periphery of the targets, the γ electron density is almost uniform. The formation of Ar + ions used in sputtering occurs almost uniformly over the entire surface of the target. The γ electrons that reach the strong magnetic field formed at the outer periphery of the target are restrained in a spiral shape by the magnetic field along the lines of magnetic force formed perpendicular to the outer periphery of the target, and are directed to the targets T 1 , T 1 ′. and T 2 ,
It moves back and forth between T 2 ′. In this process, Ar + ions are formed, so the ionized argon particles are accelerated by a strong electric field near the target T 1 , T 1 ′ planes and T 2 , T 2 ′ planes, sputtering the target material, and forming a film at high speed. I can do it. In particular, according to the present invention, the leakage magnetic flux generated from the magnetic poles of the magnetic field generation means provided around the target flows into the target surface through the air gap, that is, near the shield edge, it flows parallel to the target surface similar to the leakage magnetic field of a magnetron sputter. A magnetic field is also formed. Therefore, the γ electrons drift along the magnetic flux that is formed approximately horizontally between the shield end and the target surface, so that Ar + ions proliferate even near the shield end. As a result, the entire surfaces of the targets T 1 , T 1 ' and T 2 , T 2 ' are sputtered and the erosion pattern becomes uniform, thereby improving the efficiency of target use. In particular, since the distribution of the magnetic field is uniform even if the thickness of the target is changed, continuous sputtering can be performed for a long time, and productivity can be significantly improved.
本発明の他の効果は分割したターゲツトの幅方
向における膜厚の均一性の向上及び基板へのスパ
ツタ粒子付着効率が著しく向上することにある。 Another effect of the present invention is that the uniformity of the film thickness in the width direction of the divided target is improved and the efficiency of adhering sputter particles to the substrate is significantly improved.
以上本発明を実施例に基いて説明したが、本発
明はかかる実施例に限定されるものではない。 Although the present invention has been described above based on Examples, the present invention is not limited to such Examples.
薄膜型磁気記録媒体等の連続製造に好適な例と
して基板にポリエステルフイルム等の高分子フイ
ルムの如き可撓性基板をロールアツプし、連続的
に移送しつつ形成するものを示したが、基板及び
その移送方式には何ら制限はなく枚葉方式等にも
適用できることは云うまでもない。 As an example suitable for continuous production of thin-film magnetic recording media, etc., a flexible substrate such as a polymer film such as a polyester film is rolled up as a substrate and formed while being continuously transferred. Needless to say, there are no restrictions on the transfer method, and a single-wafer method can also be applied.
ターゲツト部の構造として、ターゲツトの交換
容易なものを示したが他の構造でも良いことも当
然である。 As for the structure of the target part, although the structure in which the target can be easily replaced is shown, it is of course possible to use other structures.
以上、本発明は、種々の態様を包含するもので
ある。 As described above, the present invention includes various aspects.
第1図は実施例の全構成の概略を示す概略構成
図、第2図はその一方のターゲツト部の平面図、
第3図は第2図のAB線での側断面図、第4図は
同じく第2図のCD線での側断面図、第5図は従
来例のターゲツト部の構成を示す側断面図であ
る。
10……真空槽、20……排気系、30……ガ
ス導入系、40……基板保持手段、50……電力
供給手段、120……磁界発生手段、T,T′,
T1,T2……ターゲツト、S……基板。
FIG. 1 is a schematic configuration diagram showing the outline of the entire configuration of the embodiment, FIG. 2 is a plan view of one of the target parts,
Fig. 3 is a side sectional view taken along line AB in Fig. 2, Fig. 4 is a side sectional view taken along line CD in Fig. 2, and Fig. 5 is a side sectional view showing the structure of a conventional target section. be. 10... Vacuum chamber, 20... Exhaust system, 30... Gas introduction system, 40... Substrate holding means, 50... Power supply means, 120... Magnetic field generating means, T, T',
T1 , T2 ...Target, S...Substrate.
Claims (1)
に磁界発生手段によりターゲツト対向方向の磁界
を発生させ、ターゲツトの側方をその対向方向に
移送される基板上に膜形成するようにした対向タ
ーゲツト式スパツタ装置において、前記ターゲツ
トは基板巾方向が長い長方形で、長辺側で複数に
分割されており、且つ前記磁界発生手段はターゲ
ツトの分割個所にも前記磁界を発生するようにな
されていることを特徴とする対向ターゲツト式ス
パツタ装置。 2 前記磁界発生手段がターゲツトの周囲及び分
割個所に配置された磁極となる磁性材からなるコ
アと、コアに磁気的に結合した永久磁石とからな
る特許請求の範囲第1項記載の対向ターゲツト式
スパツタ装置。 3 永久磁石がターゲツトホルダの外側に取着さ
れている特許請求の範囲第2項記載の対向ターゲ
ツト式スパツタ装置。 4 前記コアがシールドリングである特許請求の
範囲第2項若しくは第3項記載の対向ターゲツト
式スパツタ装置。 5 シールドリングが金網で被覆されている特許
請求の範囲第1項〜第4項記載のいずれかの対向
ターゲツト式スパツタ装置。 6 シールドリングが冷却ジヤケツトを有する特
許請求の範囲第1項〜第5項記載のいずれかの対
向ターゲツト式スパツタ装置。 7 前記ターゲツトはターゲツトホルダ上に固定
された冷却溝を形成した冷却板上に取外可能に固
定されている特許請求の範囲第1項〜第6項記載
のいずれかの対向ターゲツト式スパツタ装置。[Claims] 1. A magnetic field generating means generates a magnetic field in a direction facing the target around targets facing each other at a predetermined distance, and a film is formed on the sides of the target on a substrate that is transferred in the opposite direction. In the facing target type sputtering apparatus, the target is a rectangle with a long substrate width direction, and is divided into a plurality of parts on the long side, and the magnetic field generating means is configured to generate the magnetic field also at the divided parts of the target. A facing target sputtering device characterized by: 2. The facing target type according to claim 1, wherein the magnetic field generating means comprises a core made of a magnetic material serving as magnetic poles arranged around the target and at the dividing points, and a permanent magnet magnetically coupled to the core. Spatuta device. 3. The opposed target sputtering apparatus according to claim 2, wherein the permanent magnet is attached to the outside of the target holder. 4. The opposed target sputtering apparatus according to claim 2 or 3, wherein the core is a shield ring. 5. The opposed target sputtering apparatus according to any one of claims 1 to 4, wherein the shield ring is covered with a wire mesh. 6. The opposed target sputtering apparatus according to any one of claims 1 to 5, wherein the shield ring has a cooling jacket. 7. The opposed target sputtering apparatus according to any one of claims 1 to 6, wherein the target is removably fixed on a cooling plate having cooling grooves fixed on a target holder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14296286A JPS63468A (en) | 1986-06-20 | 1986-06-20 | Opposed target type sputtering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14296286A JPS63468A (en) | 1986-06-20 | 1986-06-20 | Opposed target type sputtering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63468A JPS63468A (en) | 1988-01-05 |
JPH0411624B2 true JPH0411624B2 (en) | 1992-03-02 |
Family
ID=15327707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14296286A Granted JPS63468A (en) | 1986-06-20 | 1986-06-20 | Opposed target type sputtering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63468A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006070623A1 (en) * | 2004-12-28 | 2006-07-06 | Fts Corporation | Opposing target type sputter device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006336029A (en) * | 2005-05-31 | 2006-12-14 | Fts Corporation:Kk | Continuous sputtering apparatus and continuous sputtering method |
JP6579796B2 (en) * | 2015-05-18 | 2019-09-25 | 長州産業株式会社 | Mirrortron sputtering equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5747870A (en) * | 1980-09-04 | 1982-03-18 | Fujitsu Ltd | Magnetron sputtering method for ferromagnetic material |
JPS57126969A (en) * | 1981-01-30 | 1982-08-06 | Hitachi Ltd | Target structure of planer magnetron type sputtering apparatus and method for controlling magnetic flux thereof |
JPS58164781A (en) * | 1982-03-23 | 1983-09-29 | Teijin Ltd | Sputtering device of opposed target type |
-
1986
- 1986-06-20 JP JP14296286A patent/JPS63468A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5747870A (en) * | 1980-09-04 | 1982-03-18 | Fujitsu Ltd | Magnetron sputtering method for ferromagnetic material |
JPS57126969A (en) * | 1981-01-30 | 1982-08-06 | Hitachi Ltd | Target structure of planer magnetron type sputtering apparatus and method for controlling magnetic flux thereof |
JPS58164781A (en) * | 1982-03-23 | 1983-09-29 | Teijin Ltd | Sputtering device of opposed target type |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006070623A1 (en) * | 2004-12-28 | 2006-07-06 | Fts Corporation | Opposing target type sputter device |
Also Published As
Publication number | Publication date |
---|---|
JPS63468A (en) | 1988-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4784739A (en) | Method of producing a thin film by sputtering and an opposed target type sputtering apparatus | |
US6146509A (en) | Inverted field circular magnetron sputtering device | |
JP4097893B2 (en) | Opposing target sputtering method and conductive film forming method | |
JPS6214633B2 (en) | ||
JPH079062B2 (en) | Spatter device | |
JPH0411624B2 (en) | ||
JPH034621B2 (en) | ||
JPH11106914A (en) | Counter magnetron composite sputtering device | |
JPH0257144B2 (en) | ||
JPS60182711A (en) | Method and apparatus for forming magnetic thin-film | |
JPS6335710B2 (en) | ||
JPH10130836A (en) | Wall tight adhesion type electrode of phase control multielectrode type ac discharge device | |
KR100963413B1 (en) | Magnetron sputtering apparatus | |
JPS6354789B2 (en) | ||
JP2505587B2 (en) | Magnetic recording medium and manufacturing method thereof | |
JPH024964A (en) | Opposed target-type sputtering device | |
JPH0625845A (en) | Sputtering device | |
JPH10259478A (en) | Sputtering apparatus, sputtering method and its sputtering target | |
JPS6134175A (en) | Sputtering device | |
JPH0232353B2 (en) | TAIKOTAAGETSUTOSHIKISUPATSUTASOCHI | |
JPH0313575A (en) | Opposed targets sputtering device | |
JPS6134176A (en) | Opposed target type sputtering device | |
JP3807686B2 (en) | Opposite target type sputtering system | |
JPH0245701B2 (en) | TAIKOTAAGETSUTOSHIKISUPATSUTASOCHI | |
JPS61279673A (en) | Counter target type sputtering device |