JPS6335710B2 - - Google Patents

Info

Publication number
JPS6335710B2
JPS6335710B2 JP57163081A JP16308182A JPS6335710B2 JP S6335710 B2 JPS6335710 B2 JP S6335710B2 JP 57163081 A JP57163081 A JP 57163081A JP 16308182 A JP16308182 A JP 16308182A JP S6335710 B2 JPS6335710 B2 JP S6335710B2
Authority
JP
Japan
Prior art keywords
targets
substrate
opposing
target
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57163081A
Other languages
Japanese (ja)
Other versions
JPS5953680A (en
Inventor
Sadao Kadokura
Kazuhiko Pponjo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16308182A priority Critical patent/JPS5953680A/en
Publication of JPS5953680A publication Critical patent/JPS5953680A/en
Publication of JPS6335710B2 publication Critical patent/JPS6335710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は、真空槽内でターゲツトをスパツタリ
ングして基板上に該ターゲツトに対応した組成の
薄膜を形成するようにした周知のスパツタ装置に
関し、更に詳しくは薄膜の大量生産に適したスパ
ツタ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a well-known sputtering apparatus that sputters a target in a vacuum chamber to form a thin film on a substrate with a composition corresponding to the target, and more particularly relates to a sputtering apparatus that sputters a target in a vacuum chamber to form a thin film having a composition corresponding to the target on a substrate. This invention relates to a sputtering device suitable for.

近年、研究・開発の盛んな超LSI、光通信用機
能デバイス、超高密度記録用素子などでは、真空
蒸着法ではとても作製できないような高融点ある
いは活性的な材料の膜をその組成、寸法、特性を
制御しながら作製するという強い要望があり、ど
のような材料でもほとんどの基板上に膜形成がで
きる技術としてスパツタ法が見直され、その欠点
の克服のために精力的な研究、開発がなされてい
る。そして、その方向は高速化、低温化にあり、
マグネトロンスパツタ法等既に多くの提案があ
る。
In recent years, research and development has been active in ultra-LSIs, optical communication functional devices, ultra-high density recording devices, etc., and the composition, size, and composition of films made of high melting point or active materials that cannot be fabricated using vacuum evaporation methods are currently being actively researched and developed. There is a strong desire to manufacture films while controlling their properties, and the sputtering method has been reconsidered as a technology that can form films on almost any substrate using any material, and vigorous research and development has been carried out to overcome its drawbacks. ing. And the direction is toward faster speeds and lower temperatures.
There are already many proposals such as the magnetron sputtering method.

ところで高速、低温のスパツタができる上、磁
性材料にも適用できるスパツタ方式として対向タ
ーゲツト式スパツタ装置が提案されている(「応
用物理」第48巻第6号(1979)P558−P559)。こ
の対向ターゲツト式スパツタ装置は第1図に示す
ように構成される。すなわち、従来の真空槽内に
基板とターゲツトを対向させた2極スパツタ装置
と異なり、真空槽10内に一対のターゲツト
TA,TBをスパツタされるスパツタ面TAs,
TBsが空間を隔てて平行に対面するように配置
すると共に、基板20はターゲツトTA,TBの
側方に設けた基板ホルダー21によりターゲツト
TA,TBの空間の側方に該空間に対面するよう
に配置する。そして、真空槽10の回りに設けた
コイル30によりスパツタ面TAs,TBsに垂直
な方向の磁界Hを発生させるようにしてある。な
お、図の11A,11Bは鉄からなるターゲツト
ホルダー、12A,12Bは保護のためのシール
ドである。
By the way, a facing target type sputtering device has been proposed as a sputtering method that can perform high-speed, low-temperature sputtering and can also be applied to magnetic materials ("Oyoi Physics", Vol. 48, No. 6 (1979), pages 558-559). This opposed target sputtering apparatus is constructed as shown in FIG. That is, unlike a conventional bipolar sputtering device in which a substrate and a target are placed facing each other in a vacuum chamber, a pair of targets are placed in a vacuum chamber 10.
Sputtered surface TAs where TA and TB are sputtered,
The TBs are arranged so as to face each other parallel to each other with a space between them, and the substrate 20 is mounted on the target TA by a substrate holder 21 provided on the side of the TB.
It is placed on the side of the TA and TB spaces so as to face the spaces. A coil 30 provided around the vacuum chamber 10 generates a magnetic field H in a direction perpendicular to the sputtering surfaces TAs and TBs. In the figure, 11A and 11B are target holders made of iron, and 12A and 12B are shields for protection.

従つて、図示省略した排気系により排気口40
を通して真空槽10内を排気した後、図示省略し
たガス導入系から導入口50を通してアルゴン等
のスパツタガスを導入し、図示の如く直流電源か
らなるスパツタ電源60によりシールド12A,
12B従つて真空槽器10を陽極(接地)に、タ
ーゲツトTA,TBを陰極にしてスパツタ電力を
供給し、コイル30により前述の磁界Hを発生さ
せることによりスパツタが行なわれ、基板20上
にターゲツトTA,TBに対応した組成の薄膜が
形成される。
Therefore, the exhaust port 40 is opened by an exhaust system (not shown).
After evacuating the inside of the vacuum chamber 10 through a gas inlet system (not shown), a sputter gas such as argon is introduced through an inlet 50, and as shown in the figure, a sputter gas such as argon is used as a direct current power source 60 to evacuate the shield 12A,
12B Therefore, sputtering is performed by supplying sputtering power using the vacuum chamber 10 as an anode (grounded) and the targets TA and TB as cathodes, and generating the above-mentioned magnetic field H using the coil 30, and sputtering is performed to form a target on the substrate 20. A thin film with a composition corresponding to TA and TB is formed.

この際、前述の構成によりスパツタ面TAs,
TBsに垂直に磁界が印加されているので、対向
するターゲツトTA,TB間の空間内に高エネル
ギー電子が閉じ込められ、ここでのスパツタガス
のイオン化が促進されてスパツタ速度が高くなり
高速の膜形成ができる。その上、基板20は従来
のスパツタ装置の如くターゲツトに対向せずター
ゲツトTA,TBの側方に配置されているので、
基板20上への高いエネルギーを有するイオンや
電子の衝突がほとんどなくなり、かつターゲツト
TA,TBからの熱輻射も小さく基板温度の上昇
の小さい、よつて低温の膜形成ができる。更に磁
界は全体としてターゲツトTA,TBの垂直方向
に印加してあるので、ターゲツトTA,TBに磁
性材料を用いても有効に磁界が作用し、高速膜形
成ができる。
At this time, with the above-mentioned configuration, the sputtered surface TAs,
Since a magnetic field is applied perpendicular to the TBs, high-energy electrons are confined in the space between the opposing targets TA and TB, which promotes ionization of the sputtering gas and increases the sputtering speed, resulting in high-speed film formation. can. Moreover, since the substrate 20 is placed to the side of the targets TA and TB instead of facing the targets as in conventional sputtering equipment,
Collision of high-energy ions and electrons onto the substrate 20 is almost eliminated, and the target
Thermal radiation from TA and TB is also small, resulting in a small rise in substrate temperature, and therefore low-temperature film formation is possible. Furthermore, since the magnetic field is applied as a whole in the perpendicular direction to the targets TA and TB, even if magnetic materials are used for the targets TA and TB, the magnetic field acts effectively and high-speed film formation is possible.

しかしながら、工業規模の大量生産においては
より一層の生産性向上が望まれ、更には全体的な
効率向上が必要である。そして、上述の従来の対
向ターゲツト式スパツタ装置では、生産性向上に
対処するため大型化するとコイルも大型化し設備
費が上昇すると共に、効率面でもスパツタ粒子の
薄膜形成への利用率が低いという問題がある。
However, in industrial scale mass production, further improvement in productivity is desired, and furthermore, overall efficiency improvement is required. In the above-mentioned conventional facing target sputtering equipment, when the size is increased in order to improve productivity, the coil also becomes larger and equipment costs increase, and in terms of efficiency, the utilization rate of sputtered particles for thin film formation is low. There is.

本発明は、かかる現状に鑑みなされたものであ
り、上述の対向ターゲツト式スパツタ法を基本構
成としてその優れた膜形成能等の特性を利用する
一方、前述の問題点を解消して生産性、効率も良
く且つコンパクトな大量生産に適したスパツタ装
置を提供するものである。
The present invention has been made in view of the current situation, and utilizes the above-mentioned facing target sputtering method as a basic structure and utilizes its characteristics such as excellent film forming ability, while solving the above-mentioned problems and improving productivity. To provide a sputtering device that is efficient, compact, and suitable for mass production.

すなわち、本発明は、真空槽内にターゲツト空
間を隔てて対向した対向ターゲツトを設けると共
に、該ターゲツトの後方に配した磁界発生手段に
より該ターゲツト間の空間にターゲツト面に垂直
方向の磁界を形成し、両ターゲツトをスパツタし
て該空間の側方に配した基板上に薄膜を形成する
ようにしたスパツタ装置において、長尺のフイル
ムからなる基板を支持して所定速度で回転する支
持ローラと、該基板を該支持ローラに密着させて
移送する基板搬送手段と、支持ローラの周面に沿
つてターゲツト面が支持ローラ軸と平行になるよ
うに配設された支持ローラ軸方向が長辺の短冊状
のターゲツトからなる複数組の前記対向ターゲツ
トとを具備し、長尺のフイルム基板を移送しつつ
連続的に膜形成するようになしたことを特徴とす
るスパツタ装置である。
That is, in the present invention, opposing targets are provided in a vacuum chamber and are opposed to each other across a target space, and a magnetic field is generated in the space between the targets in a direction perpendicular to the target plane by means of magnetic field generation means arranged behind the targets. , a sputtering device that sputters both targets to form a thin film on a substrate disposed on the side of the space; a support roller that supports a substrate made of a long film and rotates at a predetermined speed; a substrate conveying means for transporting the substrate in close contact with the support roller; and a support roller arranged in a strip shape with a long side in the axial direction, the support roller being disposed along the circumferential surface of the support roller so that the target surface is parallel to the support roller axis. This sputtering apparatus is characterized in that it is equipped with a plurality of sets of opposing targets each consisting of a plurality of targets, and is adapted to continuously form a film while transporting a long film substrate.

以下、本発明の詳細を実施例に基いて図面によ
り説明する。
Hereinafter, details of the present invention will be explained based on examples and drawings.

第2図は本発明の実施例の概略側面図である。 FIG. 2 is a schematic side view of an embodiment of the invention.

図において、10は真空槽であり、第1図の従
来装置と同様に排気口40を通して排気系に、導
入口50を通してガス導入系に接続され、必要に
応じて排気し、あるいはアルゴン等のスパツタガ
スの供給することができるようになつている。
In the figure, 10 is a vacuum chamber, which is connected to the exhaust system through the exhaust port 40 and to the gas introduction system through the inlet port 50, as in the conventional device shown in FIG. It is now possible to supply the following.

T1,T2は、所定間隔の対向空間を隔てて対
向した細長い短冊形状の同じターゲツトTA1,
TB1,TA2,TB2からなる2組の対向ターゲ
ツトであり、真空槽10の側壁に固設されたター
ゲツトホルダー111,112,113,114
により、図示の通り、その長辺(図に垂直方向の
辺)が互いに平行で且つ対向空間が対面するよう
に並設されている。
T1 and T2 are the same targets TA1 and T2 in the form of elongated strips facing each other with a predetermined space in between.
Two sets of opposing targets consisting of TB1, TA2, and TB2, and target holders 111, 112, 113, and 114 are fixed to the side wall of the vacuum chamber 10.
As shown in the figure, the long sides (the sides perpendicular to the figure) are parallel to each other and the opposing spaces face each other.

101,102,103は長尺の有機高分子フ
イルムからなる基板20を前記対向空間に対面さ
せつつ移送する移送ローラで、対向ターゲツトT
1,T2の長辺と軸平行で且つその対向空間の両
側に配置される。なお、移送ローラ102は対向
ターゲツトT1,T2に共通に使用される。
Reference numerals 101, 102, and 103 are transfer rollers that transport the substrate 20 made of a long organic polymer film while facing the opposing space;
1, arranged parallel to the axis of the long side of T2 and on both sides of the opposing space. Note that the transfer roller 102 is commonly used for the opposing targets T1 and T2.

そして、案内ローラ151,152,153,
154と繰出し装置61と巻取装置62とからな
るフイルム移送手段により、基板20は移送ロー
ラ101,102,103に密着しつつ且つ各対
向空間に対面しつつ移送されるようになつてい
る。
And guide rollers 151, 152, 153,
154, a feeding device 61, and a winding device 62, the substrate 20 is transferred while being in close contact with the transfer rollers 101, 102, and 103 and facing each opposing space.

従つて、全体としてコンパクトな構成で生産性
の高いスパツタ装置が実現できる。
Therefore, it is possible to realize a highly productive sputtering device with an overall compact configuration.

なお、移送ローラ101,102,103は基
板20を一様な速度で搬送するよう、移送ローラ
101,102,103間の周速が調整できる制
御装置(図示せず)で駆動される。制御装置とし
ては、移送ローラ101を一定の周速で駆動し、
案内ローラ151,152の中間部に基板20の
張力を検出する張力検知器(図示せず)を設け、
張力が一定になるように移送ローラ102の速度
を調節する。移送ローラ103の速度は移送ロー
ラ102と同様に調節することができる。
Note that the transfer rollers 101, 102, and 103 are driven by a control device (not shown) that can adjust the circumferential speed between the transfer rollers 101, 102, and 103 so that the substrate 20 is transferred at a uniform speed. The control device drives the transfer roller 101 at a constant circumferential speed,
A tension detector (not shown) for detecting the tension of the substrate 20 is provided between the guide rollers 151 and 152,
The speed of the transfer roller 102 is adjusted so that the tension remains constant. The speed of transfer roller 103 can be adjusted similarly to transfer roller 102.

移送ローラ101,102,103の表面は平
坦性にすぐれ基板20との密着性に優れているの
が好ましい。又移送ローラ101,102,10
3の表面温度は常温から数百度Cまで調節できる
のが好ましい。表面温度の調節はシリコン油など
の熱媒をローラ内部に循環させて行うことができ
る。
It is preferable that the surfaces of the transfer rollers 101, 102, 103 have excellent flatness and excellent adhesion to the substrate 20. Also, transfer rollers 101, 102, 10
It is preferable that the surface temperature of No. 3 can be adjusted from room temperature to several hundred degrees Celsius. The surface temperature can be adjusted by circulating a heating medium such as silicone oil inside the roller.

ターゲツトホルダー111,112,113,
114は非磁性材料からなる空胴構造とし、冷却
管(図示省略)を通して冷却水等により冷却可能
となしてある。
Target holder 111, 112, 113,
Reference numeral 114 has a cavity structure made of a non-magnetic material, and can be cooled with cooling water or the like through a cooling pipe (not shown).

また、磁界発生手段も第1図のコイル30にか
えて、ターゲツトTA1,TB1,TA2,TB2
の背後に対向するターゲツトTA1とTB1,TA
2とTB2の極性が同一方向でその磁力線がター
ゲツトTA1,TB1,TA2,TB2に垂直とな
るようにターゲツトホルダー111,112,1
13,114内に配置した永久磁石301,30
2,303,304となしてある。永久磁石30
1,302,303,304は第2図に示すよう
に、それぞれターゲツトホルダー111,11
2,113,114の周辺部のみに配置してある
ので、対向ターゲツトT1,T2の周縁部に沿つ
て、その間の対向空間を囲撓するように磁界の壁
が形成される。そして図示の如く、永久磁石30
1,302,303,304の対向側を周辺側に
先端がある刃先状にすると前記磁界の壁が周縁部
に限定され、ターゲツトのエロージヨンが均一化
する。
Also, the magnetic field generating means is replaced with the coil 30 shown in FIG.
Targets TA1 and TB1, TA facing behind
Place the target holders 111, 112, 1 so that the polarities of TB2 and TB2 are in the same direction and the lines of magnetic force are perpendicular to the targets TA1, TB1, TA2, TB2.
Permanent magnets 301, 30 placed in 13, 114
2,303,304. Permanent magnet 30
1, 302, 303, 304 are target holders 111, 11, respectively, as shown in FIG.
2, 113, and 114, a wall of magnetic field is formed along the periphery of the opposing targets T1 and T2 so as to surround the opposing space between them. And as shown, a permanent magnet 30
When the opposing sides of the magnetic field elements 1, 302, 303, and 304 are shaped like cutting edges with tips on the peripheral side, the wall of the magnetic field is limited to the peripheral edge, and the erosion of the target becomes uniform.

なお、シールドリング121,122,12
3,124は従来と同様にターゲツトホルダー1
11,112,113,114の周囲に図示の如
く配置してある。
In addition, the shield rings 121, 122, 12
3,124 is target holder 1 as before.
11, 112, 113, and 114 as shown in the figure.

また、スパツタ電力は、前述の従来装置と同様
夫々の電源(図示省略)から、アース電位に保持
した真空槽10及びシールドリング121,12
2,123,124を陽極とし、それぞれ対向タ
ーゲツトT1,T2に別々に供給するようになし
てある。
In addition, the sputtering power is supplied from the respective power sources (not shown) to the vacuum chamber 10 and the shield rings 121 and 12, which are held at ground potential, as in the conventional device described above.
Anodes 2, 123, and 124 are respectively supplied to opposing targets T1 and T2.

以上の構成から、従来装置と同様に真空槽10
内を排気後、スパツタガスを導入しつつ電源から
スパツタ電力を供給することにより、対向ターゲ
ツトT1,T2がスパツタされ、ターゲツト物質
に対応した組成の薄膜が基板20上に形成され
る。
From the above configuration, the vacuum chamber 10
After evacuating the inside, the opposing targets T1 and T2 are sputtered by supplying sputtering power from the power supply while introducing sputtering gas, and a thin film having a composition corresponding to the target material is formed on the substrate 20.

そして、前述の通り永久磁石301,302,
303,304により対向ターゲツトT1,T2
の周縁部には磁界の壁が形成さたているので、各
対向空間に高エネルギー電子が閉じ込められ、ス
パツタガスのイオン化が促進されて高速の膜形成
ができる上、基板20は対向ターゲツトT1,T
2の側方に位置するので、低温の膜形成ができ
る。すなわち、各対向ターゲツトT1,T2は第
1図の従来の対向ターゲツト式スパツタ装置と同
様に作用し、高速且つ低温の膜形成という優れた
特性を保持する。
As mentioned above, permanent magnets 301, 302,
Opposing targets T1, T2 by 303, 304
Since a magnetic field wall is formed at the periphery of the substrate 20, high-energy electrons are confined in each opposing space, ionization of the sputtering gas is promoted, and high-speed film formation is possible.
Since it is located on the side of 2, it is possible to form a film at a low temperature. That is, each of the facing targets T1 and T2 functions in the same manner as the conventional facing target type sputtering apparatus shown in FIG. 1, and maintains the excellent characteristics of high-speed and low-temperature film formation.

その上、上記構成からコイルが不要となりコン
パクトな構成となる上、ターゲツトの周辺部のみ
に磁界の壁を構成しているので、ターゲツト全面
に亘つて磁界を形成したものに比し、ターゲツト
のスパツタが全面で均一化すると共に磁界形成が
容易なためターゲツト間隔を広げることができる
という大きな効果がある。
In addition, the above structure eliminates the need for a coil, resulting in a compact structure, and since the magnetic field wall is formed only around the target, the spatter of the target is less This has the great effect of making the magnetic field uniform over the entire surface and making it easy to form a magnetic field, making it possible to widen the distance between the targets.

ところで、基板20を移送しつゝ膜形成する
と、対向ターゲツトT1,T2でスパツタされた
粒子が順次基板20上に堆積して形成される。従
つて、各対向ターゲツトT1,T2を同一組成の
ターゲツト物質で構成すると、従来の対向ターゲ
ツト式スパツタ装置の4倍の膜形成速度となり、
非常に生産性が上昇する。その上、スパツタされ
た粒子は対向ターゲツトT1,T2の両側面で膜
形成に使用されるので、ターゲツトの使用効率は
従来装置の少なくとも2倍になる。さらに前述の
如くターゲツトT1,T2を細長い短冊形状とな
し、基板20が移送される側面を巾広く構成して
あるので、ターゲツトの前述の使用効率すなわ
ち、スパツタされたターゲツト物質のうち膜形成
に使用された率は大巾に上昇させることができ
る。この使用効率は対向ターゲツトT1,T2の
基板20に面する長辺側と短辺側の巾比となるの
で、その巾比を4:1以上にすれば80%以上とな
り、多くの場合に満足なものとなろう。
By the way, when a film is formed while the substrate 20 is being transferred, particles sputtered by the opposed targets T1 and T2 are deposited and formed on the substrate 20 one after another. Therefore, if each of the facing targets T1 and T2 is composed of target materials of the same composition, the film formation rate will be four times that of the conventional facing target type sputtering device.
Productivity increases significantly. Moreover, since the sputtered particles are used to form a film on both sides of opposing targets T1, T2, the efficiency of target usage is at least twice that of conventional devices. Furthermore, as mentioned above, the targets T1 and T2 are formed into elongated rectangular shapes, and the side surface through which the substrate 20 is transferred is configured to have a wide width. The calculated rate can be increased significantly. This usage efficiency is determined by the width ratio of the long side facing the substrate 20 and the short side of the opposing targets T1 and T2, so if the width ratio is set to 4:1 or more, it becomes 80% or more, which is satisfactory in many cases. Become something.

なお、基板20に面していない短辺側は、スパ
ツタされた粒子を捕獲するようにしやへい板を設
けることができる。すなわち、膜形成する基板2
0に飛来するスパツタ粒子以外は、対向するター
ゲツトホルダー111,112,113,114
の外周部分で捕獲する。従つて真空槽10の内壁
等にスパツタされた粒子が付着することはないの
で、真空槽を常に清浄に保つことができる。特に
大型スパツタ装置の場合には、膜作成時の清掃が
容易となり、生産性、保全性を高めることができ
る。
Note that a shielding plate may be provided on the short side not facing the substrate 20 to capture sputtered particles. That is, the substrate 2 on which the film is formed
Spatter particles other than those flying to the target holder 111, 112, 113, 114 facing
Capture at the outer periphery of. Therefore, the spattered particles do not adhere to the inner wall of the vacuum chamber 10, so that the vacuum chamber can be kept clean at all times. Particularly in the case of a large sputtering device, cleaning during film formation becomes easy, and productivity and maintainability can be improved.

また、以下のように、基板20に多層膜を順次
形成する場合に大きな効果が得られる。例えば、
特開昭54−51804号、特開昭57−100627号等に開
示の垂直磁気記録媒体の製造に際し、対向ターゲ
ツトT1にパーマロイ、対向ターゲツトT2にコ
バルトクロムの合金ターゲツトを用い、基板20
を移送させながら膜作製することにより、基板2
0すなわち高分子フイルム上にパーマロイの軟磁
性膜、コバルトクロムの垂直磁化膜を有する所望
の垂直磁気記録媒体を連続的に作ることができ
る。ところで、垂直磁気記録媒体は基板20の表
面平坦性が重要であり、基板20移送時に基板2
0の表面平坦性を害するひつかき傷、凹凸斑の発
生があると、記録媒体としての価値が半減する。
しかしながら、本構成によれば、基板20は移送
ローラ101,102,103,104により移
送速度を厳密に調整しつつすべりを生ずることな
く移送され、かつ基板20上に二層膜作製が一度
の基板20の移送で実現できる。従つて、基板2
0の表面平坦性を害する要因の発生確率を激減さ
せることができる。
Further, great effects can be obtained when multilayer films are sequentially formed on the substrate 20 as described below. for example,
When manufacturing the perpendicular magnetic recording media disclosed in Japanese Patent Application Laid-open No. 54-51804, Japanese Patent Application Laid-Open No. 57-100627, etc., permalloy is used as the opposing target T1, cobalt chromium alloy target is used as the opposing target T2, and the substrate 20 is
By fabricating the film while transferring the substrate 2
In other words, a desired perpendicular magnetic recording medium having a permalloy soft magnetic film and a cobalt chromium perpendicularly magnetized film on a polymer film can be continuously produced. By the way, the surface flatness of the substrate 20 is important for perpendicular magnetic recording media, and the surface flatness of the substrate 20 is important when the substrate 20 is transferred.
If scratches or irregularities occur that impair the surface flatness of the recording medium, its value as a recording medium will be halved.
However, according to this configuration, the substrate 20 is transferred without slipping while strictly adjusting the transfer speed by the transfer rollers 101, 102, 103, and 104, and the two-layer film is formed on the substrate 20 only once. This can be achieved with 20 transfers. Therefore, substrate 2
The probability of occurrence of factors that impair the surface flatness of 0 can be drastically reduced.

以上、本発明を実施例に基いて説明したが、本
発明はかゝる実施例に限定されるものではない。
Although the present invention has been described above based on Examples, the present invention is not limited to such Examples.

2層膜作成に好適な例として2組の対向ターゲ
ツトを横方向に並設したものを示したが、対向タ
ーゲツトの組数は使用目的に応じ適宜設計すべき
で任意である。なお多数組、例えば4組の対向タ
ーゲツトを設ける場合は、実施例の如く2組並設
したものを上下2段に配置する多段配置も可能で
ある。このようにすると並び列方向の設置スペー
スが大巾に節約できる。
Although two pairs of opposing targets are shown as a suitable example for forming a two-layer film, the number of opposing targets should be designed as appropriate depending on the purpose of use and is arbitrary. Note that when a large number of sets, for example, four sets of opposing targets are provided, a multi-stage arrangement is also possible in which two sets are arranged side by side in two stages, one above the other, as in the embodiment. In this way, the installation space in the row direction can be greatly saved.

上述の4組の対向ターゲツトの場合、第3図に
示すように直交座標配置にすると、移送ローラを
大巾に減少できると共に全体としてコンパクトな
構成ができる。第3図はターゲツトの短辺側から
の側断面図であり、従つて、前記直交座標配置と
は、図示の如く、対向ターゲツトT1〜T4の短辺
側の中心線が直交座標軸の各辺上にあるような配
置のことである。図の配置により基板20を実線
で示すような経路で実線の矢印で示す方向に移送
しつつ膜形成する場合には、一度の走行で基板2
0の両面に3層膜までの多層膜が形成できる。な
お、全ターゲツトを同一組成で構成することによ
り、高速に単層膜が形成できる。図に一部点線で
示した経路に沿つて点線の矢印方向に移送するこ
とにより、単層膜を基板20の片面に非常な高速
で形成できる。
In the case of the above-mentioned four sets of opposing targets, if they are arranged in orthogonal coordinates as shown in FIG. 3, the number of transfer rollers can be greatly reduced and the overall structure can be made compact. FIG. 3 is a side sectional view from the short side of the target. Therefore, the orthogonal coordinate arrangement means that the center line of the short side of the opposing targets T 1 to T 4 is aligned with each of the orthogonal coordinate axes, as shown in the figure. It is an arrangement that looks like it is on an edge. When forming a film while transporting the substrate 20 in the direction shown by the solid arrow along the route shown by the solid line according to the arrangement shown in the figure, the substrate 20 can be transferred in one run.
Multilayer films of up to three layers can be formed on both sides of 0. Note that by configuring all targets with the same composition, a single layer film can be formed at high speed. A single layer film can be formed on one side of the substrate 20 at a very high speed by transporting it in the direction of the dotted arrow along the path partially indicated by the dotted line in the figure.

また、第3図のものでは、直交座標配置の原点
側のターゲツトTB1,TB2,TB3,TB4は
制御容易なように独立したターゲツトホルダー1
12,114,116,118に設けてあるが、
これらターゲツトホルダーを共通にするとコンパ
クトな構成となる利点がある。
In addition, in the one in Fig. 3, targets TB1, TB2, TB3, and TB4 on the origin side of the orthogonal coordinate arrangement are mounted on independent target holders 1 for easy control.
12, 114, 116, and 118,
If these target holders are used in common, there is an advantage of a compact configuration.

なお、第3図のその他の構成は第2図と同様で
あり、その説明は省略する。また第3図の記号は
第2図と同じである。また基板20の繰り出し装
置、巻取り装置をターゲツトと同室に設けたもの
を示したが、繰り出し室、スパツタ室、巻取り室
に開閉手段を介して分離しても良い。この場合、
スパツタ室は必要に応じて分離して真空を保持で
きるので、生産性の向上が期待できる。
Note that the other configurations in FIG. 3 are the same as those in FIG. 2, and the explanation thereof will be omitted. Further, the symbols in FIG. 3 are the same as in FIG. 2. Further, although the feeding device and the winding device for the substrate 20 are provided in the same room as the target, they may be separated into the feeding chamber, sputtering chamber, and winding chamber through an opening/closing means. in this case,
Since the sputtering chamber can be separated and kept under vacuum if necessary, productivity can be expected to improve.

以上の通り、本発明では、細長い短冊形状のタ
ーゲツトを対向させた対向ターゲツトとすると共
に、その長辺側の両側に移送ローラを配して、移
送ローラに密着させて基板となる長尺の高分子フ
イルムを移送しつつ膜形成するようになしたの
で、非常にコンパクトな構成でターゲツトの使用
効率が高く且つ基板を損傷させることないスパツ
タ装置が実現された。このように本発明は、スパ
ツタ装置特に対向ターゲツト方式のスパツタ装置
の生産性向上に大きな寄与をなすものである。
As described above, in the present invention, targets in the form of elongated strips are used as opposing targets, and transfer rollers are arranged on both sides of the long sides of the targets. Since the film is formed while the molecular film is being transported, a sputtering apparatus has been realized which has a very compact structure, has a high target usage efficiency, and does not damage the substrate. As described above, the present invention makes a significant contribution to improving the productivity of sputtering equipment, particularly sputtering equipment of the opposed target type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の構成を示す説明図、第2図
は本発明の実施例の構成を示す概略側断面図、第
3図は本発明の他の実施例の構成を示す概略側断
面図である。 10:真空槽、20:基板、TA〜TB4:タ
ーゲツト、101〜104:移送ローラ、11
A,11B,111〜118:ターゲツトホルダ
ー、12A,12B,121〜128:シールド
リング、151〜162:案内ローラ、301〜
308:磁石。
FIG. 1 is an explanatory diagram showing the structure of a conventional device, FIG. 2 is a schematic side sectional view showing the structure of an embodiment of the present invention, and FIG. 3 is a schematic side sectional view showing the structure of another embodiment of the present invention. It is. 10: Vacuum chamber, 20: Substrate, TA to TB4: Target, 101 to 104: Transfer roller, 11
A, 11B, 111-118: Target holder, 12A, 12B, 121-128: Shield ring, 151-162: Guide roller, 301-
308: Magnet.

Claims (1)

【特許請求の範囲】 1 真空槽内にターゲツトが空間を隔てて対向し
た対向ターゲツトを設けると共に、該ターゲツト
の後方に配した磁界発生手段により該ターゲツト
間の空間にターゲツト面に垂直な方向の磁界を形
成し、両ターゲツトをスパツタして該空間の側方
に配した基板上に薄膜を形成するようにしたスパ
ツタ装置において、長尺のフイルムからなる基板
を支持して所定速度で回転する支持ローラと、該
基板を該支持ローラに密着させて移送する基板搬
送手段と、支持ローラの周面に沿つてターゲツト
面が支持ローラ軸と平行になるように配設された
支持ローラ軸方向が長辺の短冊状のターゲツトか
らなる複数組の前記対向ターゲツトとを具備し、
長尺のフイルム基板を移送しつつ連続的に膜形成
するようになしたことを特徴とするスパツタ装
置。 2 前記複数組の対向ターゲツトの他方の長辺側
にも前記支持ローラを具備する特許請求の範囲第
1項記載のスパツタ装置。 3 前記支持ローラと前記複数組の対向ターゲツ
トとを交互に列状に配設した特許請求の範囲第2
項記載のスパツタ装置。 4 前記対向ターゲツトをその短辺側側断面の中
心線が直交座標の各辺にあるように配置すると共
に、該直交座標の各象限に隣接する各対向ターゲ
ツトに共通の前記支持ローラを設けた特許請求の
範囲第1項記載のスパツタ装置。 5 前記対向ターゲツトの各組の前記直交座標の
原点側のターゲツトを共通のターゲツトホルダー
に設けた特許請求の範囲第4項記載のスパツタ装
置。
[Scope of Claims] 1 Opposing targets are provided in a vacuum chamber and are opposed to each other with a space between them, and a magnetic field in a direction perpendicular to the target plane is generated in the space between the targets by a magnetic field generating means arranged behind the targets. In a sputtering device that forms a thin film on a substrate disposed on the sides of the space by sputtering both targets, a support roller rotates at a predetermined speed while supporting a substrate made of a long film. a substrate conveying means for transporting the substrate in close contact with the support roller; and a support roller disposed along the circumferential surface of the support roller such that the target surface is parallel to the support roller axis. and a plurality of sets of opposing targets consisting of strip-shaped targets,
A sputtering apparatus characterized in that a film is continuously formed while transporting a long film substrate. 2. The sputtering apparatus according to claim 1, wherein the support roller is also provided on the other long side of the plurality of opposing targets. 3. Claim 2, wherein the support roller and the plurality of opposing targets are arranged alternately in a row.
The sputtering device described in Section 1. 4. A patent in which the opposing targets are arranged so that the center line of the cross section on the short side is on each side of the orthogonal coordinates, and the supporting roller is provided common to each opposing target adjacent to each quadrant of the orthogonal coordinates. A sputtering device according to claim 1. 5. The sputtering apparatus according to claim 4, wherein the targets on the origin side of the orthogonal coordinates of each set of opposing targets are provided on a common target holder.
JP16308182A 1982-09-21 1982-09-21 Sputtering device Granted JPS5953680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16308182A JPS5953680A (en) 1982-09-21 1982-09-21 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16308182A JPS5953680A (en) 1982-09-21 1982-09-21 Sputtering device

Publications (2)

Publication Number Publication Date
JPS5953680A JPS5953680A (en) 1984-03-28
JPS6335710B2 true JPS6335710B2 (en) 1988-07-15

Family

ID=15766817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16308182A Granted JPS5953680A (en) 1982-09-21 1982-09-21 Sputtering device

Country Status (1)

Country Link
JP (1) JPS5953680A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666788A (en) * 1982-02-16 1987-05-19 Teijin Limited Perpendicular magnetic recording medium, method for producing the same, and sputtering device
JP2587924B2 (en) * 1986-10-11 1997-03-05 日本電信電話株式会社 Thin film forming equipment
JPS63270461A (en) * 1986-12-26 1988-11-08 Teijin Ltd Opposite target type sputtering device
CN100432286C (en) * 2003-12-31 2008-11-12 天津大学 Multipair target thin film sputterying instrument
KR20070030620A (en) * 2005-09-13 2007-03-16 삼성에스디아이 주식회사 Method for depositing electrode and the organic light emitting display produced using it
EP1978127A4 (en) * 2006-01-25 2012-06-20 Ulvac Inc Spattering device and film forming method
KR20140073239A (en) * 2012-12-06 2014-06-16 삼성디스플레이 주식회사 Sputtering apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573831A (en) * 1980-06-10 1982-01-09 Matsushita Electric Ind Co Ltd Vacuum metallizing method
JPS5743986A (en) * 1980-08-30 1982-03-12 Shimadzu Corp Film forming apparatus
JPS58189371A (en) * 1982-04-28 1983-11-05 Teijin Ltd Sputtering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573831A (en) * 1980-06-10 1982-01-09 Matsushita Electric Ind Co Ltd Vacuum metallizing method
JPS5743986A (en) * 1980-08-30 1982-03-12 Shimadzu Corp Film forming apparatus
JPS58189371A (en) * 1982-04-28 1983-11-05 Teijin Ltd Sputtering device

Also Published As

Publication number Publication date
JPS5953680A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
CN101899643B (en) Magnetic particle trapper for a disk sputtering system
EP0105407A2 (en) A sputtering cathode apparatus
JPS6335710B2 (en)
JPS6320304B2 (en)
JP2012102384A (en) Magnetron sputtering apparatus
JPH034621B2 (en)
JPS6214633B2 (en)
KR101299755B1 (en) Sputtering apparatus, thin film forming method and method for manufacturing field effect transistor
WO2012066080A1 (en) Sputtering apparatus and method
JP2001348663A (en) Sputtering system
JPS60182711A (en) Method and apparatus for forming magnetic thin-film
JPH05117851A (en) Sputtering device
JPH0411624B2 (en)
JP2006213963A (en) Low temperature sputtering process and system
JPH03243761A (en) Sputtering device
JPS6354789B2 (en)
JPH05287519A (en) Sputtering device
JP2011089146A (en) Sputtering apparatus and sputtering method
JPS6320303B2 (en)
JPS60101721A (en) Formation of barium ferrite layer
JP2505587B2 (en) Magnetic recording medium and manufacturing method thereof
JPS6192431A (en) Manufacture of magnetic recording medium
JPS59173266A (en) Apparatus for formation of thin film
JPS6134175A (en) Sputtering device
Bräuer et al. A NEW SPUTTERING TECHNIQUE FOR PROCESSING OF 2.5" MAGNETO-OPTICAL RECORDING MEDIA