JP3807686B2 - Opposite target type sputtering system - Google Patents

Opposite target type sputtering system Download PDF

Info

Publication number
JP3807686B2
JP3807686B2 JP20332296A JP20332296A JP3807686B2 JP 3807686 B2 JP3807686 B2 JP 3807686B2 JP 20332296 A JP20332296 A JP 20332296A JP 20332296 A JP20332296 A JP 20332296A JP 3807686 B2 JP3807686 B2 JP 3807686B2
Authority
JP
Japan
Prior art keywords
target
sputtering apparatus
magnetic field
space
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20332296A
Other languages
Japanese (ja)
Other versions
JPH1046330A (en
Inventor
貞夫 門倉
Original Assignee
貞夫 門倉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 貞夫 門倉 filed Critical 貞夫 門倉
Priority to JP20332296A priority Critical patent/JP3807686B2/en
Publication of JPH1046330A publication Critical patent/JPH1046330A/en
Application granted granted Critical
Publication of JP3807686B2 publication Critical patent/JP3807686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、真空槽内に所定の間隔を隔てて一対のターゲットを対向させて配置し、その間の空間にスパッタプラズマを生成し、この空間に対面するようにその側方に配置した基板上に膜形成するようにした対向ターゲット式スパッタ装置に関する。
【0002】
【従来の技術】
前記対向ターゲット式スパッタ装置は、本発明者らが出願した特公昭63ー20303号、特公昭63ー20304号、特公昭62ー14633号等の公報で既に公知であり、図1の構成を基本構成にしている。すなわち、真空槽10内に所定距離の空間120を隔てて対向するように配置されたターゲット110a、110bと、該対向空間120の外縁部の側面を磁束が均一に覆うように磁界を発生させるターゲット110a、110bのそれぞれの背面に設けた磁界発生手段130a、130bとからなるスパッタ部を設け、その側方に設けた基板ホルダー21により基板20を該対向空間120に対面するように配置した構成になっている。なお、図の140a、140bは、ターゲット部100a、100bのターゲット110a、110bの前面以外の部分がスパッタされないように保護するためのシールドである。
【0003】
従って、図示省略した排気系により排気口30を通して真空槽10内を排気した後、図示省略したガス導入手段により導入口40からアルゴン等のスパッタガスを導入し、図示の如く直流電源からなるスパッタ電源50によりシールド140a、140b従って真空槽10をアノード(陽極)(接地)に、ターゲット110a、110bをカソード(陰極)にしてスパッタ電力を供給すると、ターゲット110a、110bの間の対向空間120にスパッタプラズマが形成されてスパッタが行われ、基板20上にターゲット110a、110bの組成に対応した組成の薄膜が形成される。
【0004】
この際、前述の構成によりターゲット110a、110bの面と垂直方向に磁界が形成されているので、ターゲット110a、110b間の対向空間120内に高エネルギーの電子が閉じ込められてスパッタプラズマが生成し、ここでのスパッタガスのイオン化が促進されてスパッタ速度が高くなり高速の膜形成ができる。その上、基板20は、従来の代表的なスパッタ装置である基板とターゲットを対向配置した2極のスパッタ装置の如く、ターゲット110a、110bに対面せずターゲット110a、110bの側方に配置されたているので、基板20へのイオンや電子の衝突が非常に少なくなり、かつターゲット110a、110bからの熱輻射も小さく基板温度の上昇も小さくなる。よって低温の膜形成ができる。このように、従来のマグネトロン式スパッタ法では高速成膜が困難であった磁性材を含め各種材料を低温、高速で膜形成できる特徴を有し、磁性薄膜、薄膜型磁気記録媒体等の製造に利用されている。
【0005】
しかし、通常この方式には矩形、円形のターゲットが用いられるがターゲットの形状に係わらず、スパッタされて浸食されるターゲット表面についてはその中心部に侵食が集中し易く、ターゲットの利用効率を改善する必要があることが分かった(IEEE Trans on Magnetics MAGー17, pp.3175ー3177 (1981))。又、長方形ターゲットを使用した場合には、ターゲット侵食パターンがターゲット中央部に対して非対称となり、基板の幅方向においても膜厚分布が生じ、生産性及び薄膜の均一性についても改善を必要とすることが分かった。
【0006】
これに対して、本発明者らは特公平3ー2231号公報及び特公昭63ー54789号公報において、ターゲット浸食特性をターゲット面全域に拡大する改良技術として、各ターゲットの外側周囲に磁界発生手段を設け、その磁界発生部である磁極端部にコアを配置し、磁界をターゲットの周囲に発生させるようにした構成を提案した。
【0007】
この構成により、磁界はターゲットを経由しないで直接対向して配置したコア間に形成されるので、磁界分布がターゲット材の透磁率、飽和磁化、ターゲットの厚みに影響されにくくなり、且つスパッタプラズマ拘束用磁界がターゲット外周に沿ってその外側周囲に形成され、その侵食領域がターゲットの中央部から外縁周辺部まで拡大してターゲット利用効率が大きく改善した。しかしながら、スパッタの際、放電電圧が高くなり、高いスパッタガス圧でないと安定なスパッタができない欠点があることが分かった。
【0008】
更に、これを解決するものとして対向ターゲット式スパッタ法の特長であるプラズマ拘束条件をターゲット面全域に亘ってより一層均一に発現させる技術を、本発明者らは特公平4ー11624号、特公平5ー75827号等の公報で提案した。これら技術はスパッタプラズマを生成・拘束する技術として従来の対向ターゲット式スパッタにおけるターゲット面に垂直な磁力線(磁場)に加えてターゲット面の外縁部全周の近傍空間にターゲット面に閉じる円弧状の磁力線を形成するとともに磁極端部近傍に電子を反射する電子反射手段を設けることを特徴にしている。この技術においては対向したターゲットの間の空間を飛び交う高エネルギー電子は該空間をドリフトするとともにターゲット外縁部表面近傍の電磁界によりターゲット外縁部を全周に亙って磁極に吸収されることなくドリフトするので全体的にスパッタガスのイオン化効率が著しく高まり、前述の問題の無い技術が実現した。
【0009】
この結果、ターゲット全域に渡ってスパッタ効率を高めることが可能になった。この技術のスパッタ装置を用いて超高密度記録材料として期待されているCoーCr 、CoーCrーTa等の合金薄膜をポリエチレンテレフタレート(PET)フィルムやポリエチレンナフタレート(PEN)フィルムに形成した結果、150℃の低温基板に磁気特性、微細構造ともに優れた磁性薄膜を作製できることが確認された(J.Mag.Soc.Jpn.,18,Suppl.S1,pp.19ー2,pp.331ー334、他)。本スパッタ技術により、基板とスパッタ源が対向する従来のスパッタ法では実現できない微細構造等の特性の優れた薄膜が形成できるとともに、ターゲット全域で一様な侵食が可能になり、長方形ターゲットを使用した場合にもターゲット侵食パターンのターゲット中央部に対する対称性も飛躍的に改善した。
【0010】
しかし、この改良された対向ターゲット式スパッタ装置においても、ターゲット表面からスパッタされる反跳ガス粒子やスパッタ粒子はターゲット間の空間の全ての側面から真空槽内に飛散する状態には変わりない。このため、ターゲット全面から均一にスパッタが出来、基板上に一様な膜厚分布の薄膜を制御良く実現することは出来ても、ターゲットの側方空間のうち基板に面する一部しか薄膜形成に使用できないこと、真空槽壁に飛散した粒子により真空槽壁に内蔵されるガスがスパッタ中に放出される結果、基板に形成される薄膜の膜質が低下するといった問題があった。
【0011】
これに対して、本発明者らは、先に特願平8ー162676号明細書で以下の構成の対向空間を基板側を除いてターゲットにより区画した対向空間区画型の対向ターゲット式スパッタ装置を提案した。すなわち、所定距離の空間を隔てて対向配置した一対の第1のターゲットと該空間の基板に対面する開口部を除いた側面を覆うように配置した第2のターゲットとにより該空間を開口部を除いて区画された区画空間に構成し、スパッタプラズマを拘束する磁界を発生する磁界発生手段を第1のターゲットのそれぞれの外周に沿ってその外側近傍に磁極が対向するように配置し、該磁界発生手段により一対の第1のターゲットを囲む筒状の磁界と、第1のターゲットの外縁部の表面近傍に前記磁極から内側表面に円弧状に閉じた磁界と、第2のターゲットの表面近傍にその表面と平行な磁界と、第2のターゲットの磁界発生手段に隣接する両側縁部の表面近傍に前記磁極から内側表面に円弧状に閉じた磁界とを形成すると共に、磁界発生手段の該区画空間に臨む磁極端部及び第2のターゲットの該区画空間の開口部端部に電子を反射する電子反射手段を設け、該区画空間内にスパッタプラズマを生成して、その開口部の前方に配置した基板上に薄膜を形成するようにした対向ターゲット式スパッタ装置である。
【0012】
この装置では、上記の通り、対向した一対の第1のターゲットの間の空間の基板に面する側の開口部を除いた全側面を第2のターゲットで囲んだ区画空間で、電子反射手段を介して上記の各磁界に拘束された電子の相互作用により各ターゲットのほぼ全表面に高密度プラズマが生成・拘束され、全ターゲットの全表面のほぼ均一なスパッタが実現され、前述の問題が解決された。
【0013】
【発明が解決しようとする課題】
ところで、上述の対向ターゲット式スパッタ装置においては、製膜速度を上げるために投入するスパッタ電力を増加すると、堆積される膜の膜質が低下する傾向が認められた。この傾向は、電子反射手段を設けた装置において、特に顕著であった。この問題は、生産速度が大きなコスト要因である工業生産においては非常に大きな問題である。
本発明はかかる問題に鑑みて為されたもので、投入電力を大きくしても膜質低下のない工業生産に適した対向ターゲット式スパッタ装置を目的としたものである。
【0014】
【課題を解決するための手段】
上記目的は、以下の本発明により達成される。すなわち、本発明は、真空槽内に所定の間隔を隔てて一対のターゲットを対向配置し、該ターゲットの外周に沿ってその外側に永久磁石からなる磁界発生手段を設けて該ターゲット間の対向空間を囲むようにプラズマ捕捉用磁界を形成して、該対向空間内にスパッタプラズマを生成し、該対向空間の方に配置した基板上に薄膜形成するようにした対向ターゲット式スパッタ装置において、該ターゲット及びその支持部を囲むようにその外周に沿って真空槽壁面から槽内側へ突き出した、槽外から出し入れ可能とした電子を反射する電位の収納部を設け、該収納部には槽外から穿設され槽内と遮断した穴に磁界発生手段の永久磁石を収納したことを特徴とする対向ターゲット式スパッタ装置である。
【0015】
上記本発明は、以下のようにして為されたものである。すなわち、前記問題についてその原因を種々検討したところ、この問題は磁界発生手段の永久磁石が高温になり発生する不純物ガスが主因であり、場合によりこれに更に永久磁石の高温による磁力の低下に基づくプラズマ捕捉用磁界の低下に伴う基板へ飛来する電子の増加も加わって生ずることを見出し、為されたものである。
本発明は、上記の構成により磁界発生手段の永久磁石を実質的に真空槽外の大気下に設けているので、前述の不純ガスの問題は完全に解決された。更に、この真空槽外の構成により、自然冷却も槽内の真空下に比べ大気下では大きく、又スペースに制約がないので必要に応じて強制冷却の冷却手段も自由に設計でき、永久磁石の磁力低下の問題も解決した。
【0016】
上述の本発明は、その趣旨から、対向したターゲットの外周に沿ってその外側に磁界発生手段の永久磁石を設けた対向ターゲット式スパッタ装置に広く適用できることは明らかである。中でも、ターゲット全面が一様にスパッタされるように磁界発生手段の磁極がターゲット前面より対向空間側に突き出したものにおいては、磁界発生手段の突出部がスパッタプラズマに触れて加熱される問題が顕著であり、その効果は大である。更に、磁界発生手段の先端部に電子反射手段を備えたものでは、電子反射手段が場合によりスパッタされることが有り、前記問題は安定生産面から大きな問題であり、工業生産では本発明は欠くことができないものとなる。
以下、本発明を実施例に基づいて詳細に説明する。
【0017】
【発明の実施の形態】
本実施例は、前述の図1の従来の対向ターゲット式スパッタ装置において、ターゲット部100a、100bを前記特公平5ー75827号公報開示のものと基本構成が同じの図2、図3に示す電子反射手段を備えたターゲット部100a、100bに変更したものであり、図2は実施例のターゲット部100aの側断面図、図3は図2のA−B線での断面図である。従って、ターゲット部100a、100bを除いた構成は、前述した図1の従来例と同様であり、その説明は省略する。なお、図1〜図3において記号は同じものには同じ記号を用いた。
図2に示すように、本例のターゲット部100a,100bは、真空槽10の槽壁11に取り外し可能に取付けられている。なお、図2は、ターゲット部100aであるが、ターゲット部100bは磁界発生手段130a、130bの永久磁石の磁極配置が逆になる点を除いてこのターゲット部100aと同じ構成である。
【0018】
ターゲット110aは、冷却台150aの前面にその周辺部で一定間隔のボルト111aにより交換可能に取付けられている。冷却台150aの前面には冷却溝151aが図3に示すように隔壁152aによりジグザグに設けられ、ターゲット110aを取付けると冷却ジャケットが形成されるようになっている。冷却溝151aの両端には冷却媒体の供給口153aと出口154aが設けられ、冷却水を循環させてターゲット110aを直接冷却できるようになっている。従って、非常に冷却効率のよい冷却ができ、高速製膜に対応できる。冷却台150aは、電気絶縁材からなるパッキン155aを介して支持板160aに一定間隔のボルト156aにより取付けられている。
【0019】
支持板160aには、磁界発生手段130aを収納する収納部131aが、図示のように、ターゲット110aの周囲に沿って所定空隙Gを隔ててその外側を囲むように、槽内側にターゲット110a前面より所定長dだけ突き出して設けられている。図示の通り、収納部131aは槽外から磁界発生手段130aの永久磁石を出し入れする槽外に開口した所定深さの穴を所定ピッチでブロック体に穿設した構造となっており、磁界発生手段130aはこの収納部131aの穴部の各々に棒状の永久磁石を図示の磁極配置で挿入して止め具132aで固定し、多数個の永久磁石を一定ピッチでターゲット110aの周囲に並設した構成となっている。収納部131aは、導電性材料とし、後述の電子反射手段の一部としても作用するように構成してある。本例では、この収納部131aと支持板160aは、熱伝導性の良い金属等の構造材料具体的にはアルミニウムブロックからNC旋盤により図示の断面が逆T字状に削りだして所定の枠体を製作し、その底辺部を支持部の支持体160aとし、その垂直部に底辺側から穴を所定ピッチで穿設して収納部とし、継ぎ目の無い一体構造とした。これにより槽内とは完全に遮断され、全く真空漏れがなく、支持板160aからの放熱により収納した永久磁石を自然冷却のみで充分冷却できる収納部131aが得られた。
【0020】
収納部131aの先端部には、ここに到る電子を反射できる負電位に保持される電子反射手段の電子反射板170aが、図示のように、ターゲット110aの周辺の取付け部の取付けのボルト111aを保護するためにこれを覆うように設けられている。本例ではこの電子反射板170aは、高透磁率の磁性材具体的にはパーマロイを用いて、磁界発生手段130aのコアを兼用した構成としている。
以上、ターゲット部100aは、支持板160aにその全部が設けられたユニット構成となっている。そして、ターゲット部100aは、図示のように、支持板160aを真空槽10の槽壁11に電気絶縁材からなるパッキン161aを介して一定間隔のボルト162aにより取付けることにより、真空槽10に設置される。従って、清掃時等には、ターゲット部100aを取り外すことができ、非常に効率良く行うことができ、保全性更には全体としての生産性向上に大きな効果が得られる。
【0021】
上記の磁界発生手段130a、130bをターゲット110a、110bの外側に設け、その磁極端部からターゲット110a、110bの周辺の取付け部に亙って電子反射板170a、170b設けたターゲット部100a、100bの基本構成は、前記特公平5ー75827号公報に開示の対向ターゲット式スパッタ装置のターゲット部と同じであり、同様の作用により、該公報に開示の通り、以下のように、高品質の薄膜を形成できると共に、ターゲット110a、110bのほぼ全面が均一にスパッタされる、ターゲット使用効率の高い膜作成ができる。
すなわち、この構成により、ターゲット110a、110bと対向空間120には以下のプラズマ捕捉用の磁力線が形成される。その1は、磁界発生手段130a、130bにより、その磁極間にターゲット110a、110b及び対向空間120を囲むようにターゲット110a、110bの垂直方向に筒状に形成される垂直磁力線である。その2は、ターゲット110a、110bのそれぞれの外縁部に磁界発生手段130a、130bのコアを兼ねる電子反射板170a、170bの先端部からターゲット110a、110bの前面に円弧状に形成される補助磁力線である。
【0022】
この垂直磁力線により、ターゲット110a、110bの表面の中央部から放射され、陰極電位降下部で加速されるγ電子は、この垂直磁力線に弦巻状に拘束され、ターゲット110a、110bの間を往復運動する。一方、ターゲット110a、110bの外縁部で生ずるγ電子は、補助磁力線に拘束されてこの電子を反射できる負電位の電子反射板170a、170bに到り、ここで反射されてその方向により一部はこの補助磁力線に拘束されて戻り、一部は対向空間120の中央部に戻される。
【0023】
従って、対向空間120にγ電子が蓄積されて高密度プラズマが生成され、低電圧、低ガス圧のスパッタが実現され、内部歪みやスパッタガス等の混入の少ない高品質薄膜の形成ができる。また、補助磁力線によりターゲット110a、110bのそれぞれの外縁部には周知の平板型マグネトロンスパッタと同様なプラズマ捕捉磁界が形成され、電子反射板170a、170bで反射されたγ電子等が効果的にターゲット110a、110bのそれぞれの外縁部表面近傍に捕捉されてこの外縁部のプラズマ密度が高くでき、よって外縁部まで略均一のスパッタが実現され、ターゲット110a、110bがほぼ全面均一に使用される使用効率の高い膜形成ができる。
【0024】
ところで、上述の構成において、磁界発生手段130a、130bの先端部はターゲット110a、110bの前面より突き出しており、また電子反射板170a、170bが設けられているので、磁界発生手段130a、130b、特にその先端部はターゲット110a、110b からの輻射熱、電子反射板170a、170bへの電子等の衝突により加熱されるが、本実施例では大気下の槽外に直結した熱伝導性の良い収納部131a、131bに収納されているので、実用上支障の無い温度に維持できる。なお、自然冷却で不十分な場合には支持板160a、160bに冷却管を配設する、さらには収納部131a、131bをジャケット構成にする等して強制冷却すればよい。
なお、本実施例では、ガス漏れの全く心配ない収納部及び支持板を一体成形したものを示したが、各部を溶接等により接続した構造も適用できることは、本発明の趣旨から明らかである。また、冷却性も良く、棒状磁石の収納に適した穴をブロックに穿設した収納部を示したが、収納部の構造は限定されず、連続溝等用いる永久磁石の形状に適したもの、或は冷却が容易な構造等目的に応じて適用できる。
【0025】
さらに、保全作業性の良いターゲット部全体を真空槽から取り外しできるものを示したが、収納部を真空槽壁に直接突設し、ターゲット冷却台も真空槽壁に設置する構成でも良い。本発明では、磁界発生手段の永久磁石を真空槽外から対向したターゲットのそれぞれの回りに磁極が対向するように真空槽内と遮断して真空槽外から配置できる構成であれば適用できる。
【0026】
上述したところより、本収納部構成は、更に側面ターゲットからの輻射熱も加わり、区画空間内に収納部の先端部が位置し、磁界発生手段の永久磁石に対する熱的条件の厳しい対向空間120の基板20に面する側面を除いた側面にもターゲットを設けて基板20に面する側面の開口部を除いてターゲットで区画された区画空間にスパッタプラズマを形成するようにした前記特願平8ー162676号明細書で提案したスパッタ装置に特に好ましく適用される。
【0027】
【発明の効果】
本発明、以上の通り、磁界発生手段の永久磁石を、真空槽内と遮断され、槽外から収納するようにした収納部を真空槽の槽壁から内側に突設してターゲット周囲に配置することにより、永久磁石からの放出ガスの膜形成への影響が無くなり、更に永久磁石の熱劣化も防止されるものであり、対向ターゲット式スパッタ装置の性能向上特に長期安定性の向上に大きな効果を奏するものである。
以上、本発明は高速製膜が要求される工業規模の対向ターゲット式スパッタ装置の実現に大きな寄与をなすものである。
【図面の簡単な説明】
【図1】図1は、従来の対向ターゲット式スパッタ装置の基本構成の説明図である。
【図2】図2は、本発明の実施例のターゲット部の概略側断面図である。
【図3】図3は、図2のA−B線での概略断面図である。
【符号の説明】
10 真空槽
20 基板
30 排気口
40 導入口
50 スパッタ電源
100a、100b ターゲット部
110a、10b ターゲット
120 対向空間
130a、130b 磁界発生手段
140a、140b シールド
150a、150b 冷却台
160a、160b 支持板
170a、170b 電子反射板
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a pair of targets are arranged facing each other at a predetermined interval in a vacuum chamber, sputter plasma is generated in a space between them, and the substrate disposed on the side so as to face this space. The present invention relates to a counter target type sputtering apparatus in which a film is formed.
[0002]
[Prior art]
The above-mentioned facing target type sputtering apparatus is already known in Japanese Patent Publications Nos. 63-20303, 63-20304, 62-14633, etc. filed by the present inventors, and has the basic configuration shown in FIG. It has a configuration. That is, the targets 110a and 110b disposed so as to face each other with a space 120 of a predetermined distance in the vacuum chamber 10, and a target that generates a magnetic field so that the magnetic flux uniformly covers the side surface of the outer edge portion of the facing space 120. A sputtering unit comprising magnetic field generating means 130a and 130b provided on the back of each of 110a and 110b is provided, and the substrate 20 is arranged so as to face the facing space 120 by the substrate holder 21 provided on the side thereof. It has become. 140a and 140b in the figure are shields for protecting the portions other than the front surfaces of the targets 110a and 110b of the target portions 100a and 100b from being sputtered.
[0003]
Therefore, after exhausting the inside of the vacuum chamber 10 through the exhaust port 30 by an exhaust system (not shown), a sputtering gas such as argon is introduced from the introduction port 40 by a gas introduction means (not shown), and a sputtering power source comprising a DC power source as shown in the figure. When the sputtering power is supplied by 50 with the shields 140a and 140b and thus the vacuum chamber 10 as the anode (anode) (ground) and the targets 110a and 110b as the cathode (cathode), sputtering plasma is applied to the facing space 120 between the targets 110a and 110b. Then, sputtering is performed, and a thin film having a composition corresponding to the composition of the targets 110a and 110b is formed on the substrate 20.
[0004]
At this time, since the magnetic field is formed in the direction perpendicular to the surfaces of the targets 110a and 110b by the above-described configuration, high-energy electrons are confined in the facing space 120 between the targets 110a and 110b, and sputter plasma is generated. The ionization of the sputtering gas here is promoted to increase the sputtering speed, and a high-speed film can be formed. In addition, the substrate 20 is arranged on the side of the targets 110a and 110b without facing the targets 110a and 110b, like a conventional bipolar sputtering apparatus in which a substrate and a target are arranged to face each other. Therefore, the collision of ions and electrons with the substrate 20 is extremely reduced, the thermal radiation from the targets 110a and 110b is small, and the rise in the substrate temperature is also small. Therefore, a low temperature film can be formed. In this way, various materials including magnetic materials, which were difficult to form at high speed by the conventional magnetron sputtering method, can be formed at low temperature and high speed, making it possible to manufacture magnetic thin films, thin film magnetic recording media, etc. It's being used.
[0005]
However, this method usually uses a rectangular or circular target. Regardless of the shape of the target, the target surface that is sputtered and eroded tends to concentrate at the center, improving the efficiency of use of the target. I found it necessary (IEEE Trans on Magnetics MAG-17, pp.3175-3177 (1981)). In addition, when a rectangular target is used, the target erosion pattern becomes asymmetric with respect to the center of the target, a film thickness distribution occurs in the width direction of the substrate, and improvements in productivity and thin film uniformity are required. I understood that.
[0006]
On the other hand, the present inventors disclosed in Japanese Patent Publication No. 3-2231 and Japanese Patent Publication No. 63-54789 as an improved technique for expanding the target erosion characteristics over the entire target surface, a magnetic field generating means around the outside of each target. And a core is arranged at the end of the magnetic pole, which is the magnetic field generating part, and a magnetic field is generated around the target.
[0007]
With this configuration, since the magnetic field is formed between the cores arranged directly opposite each other without passing through the target, the magnetic field distribution is less affected by the magnetic permeability, saturation magnetization, and target thickness of the target material, and is constrained by sputtering plasma. A magnetic field for use was formed around the outer periphery of the target, and its erosion area expanded from the center of the target to the periphery of the outer edge, greatly improving the target utilization efficiency. However, it has been found that the discharge voltage becomes high during sputtering, and stable sputtering cannot be performed unless the sputtering gas pressure is high.
[0008]
Furthermore, as a solution to this problem, the present inventors have developed a technique for even more uniformly expressing the plasma constraint conditions, which is a feature of the opposed target sputtering method, over the entire target surface. Proposed in publications such as 5-75827. In addition to the magnetic field lines (magnetic field) perpendicular to the target surface in the conventional facing target type sputtering, these technologies are arc-shaped magnetic field lines that close to the target surface in the vicinity of the entire periphery of the outer edge of the target surface. And an electron reflecting means for reflecting electrons in the vicinity of the end of the magnetic pole. In this technology, high-energy electrons flying in the space between the opposing targets drift in the space, and drift without being absorbed by the magnetic pole over the entire circumference of the target outer edge due to the electromagnetic field near the surface of the target outer edge. As a result, the ionization efficiency of the sputter gas is remarkably increased as a whole, and a technique free from the above-mentioned problems has been realized.
[0009]
As a result, it has become possible to increase the sputtering efficiency over the entire target. Results of forming alloy thin films such as Co-Cr and Co-Cr-Ta, which are expected as ultra-high-density recording materials, on polyethylene terephthalate (PET) films and polyethylene naphthalate (PEN) films using the sputtering equipment of this technology It was confirmed that a magnetic thin film with excellent magnetic properties and microstructure can be produced on a low-temperature substrate at 150 ° C (J. Mag. Soc. Jpn., 18, Suppl. S1, pp.19-2, pp.331- 334, others). With this sputtering technology, it is possible to form a thin film with excellent characteristics such as fine structure that cannot be realized by the conventional sputtering method in which the substrate and the sputtering source face each other, and uniform erosion is possible across the entire target, and a rectangular target was used. In some cases, the symmetry of the target erosion pattern with respect to the center of the target was also dramatically improved.
[0010]
However, even in this improved facing target type sputtering apparatus, the recoil gas particles and sputtered particles sputtered from the target surface are not scattered in the vacuum chamber from all the sides of the space between the targets. For this reason, even if sputtering can be performed uniformly from the entire surface of the target and a thin film having a uniform film thickness distribution can be realized with good control, only a part of the target side space facing the substrate can be formed. In other words, there is a problem that the quality of the thin film formed on the substrate deteriorates as a result of the gas built in the vacuum chamber wall being released during sputtering due to the particles scattered on the vacuum chamber wall.
[0011]
On the other hand, the inventors of the present invention previously described an opposed space type opposed target sputtering apparatus in which the opposed space having the following configuration is partitioned by a target except the substrate side in Japanese Patent Application No. 8-162676. Proposed. That is, the space is defined by a pair of first targets arranged opposite to each other with a predetermined distance space and a second target arranged so as to cover a side surface excluding the opening facing the substrate in the space. A magnetic field generating means for generating a magnetic field for constraining the sputtering plasma is arranged along the outer periphery of each of the first targets so that the magnetic poles oppose each other in the vicinity of the outer side, and the magnetic field is generated. A cylindrical magnetic field surrounding the pair of first targets by the generating means, a magnetic field closed in an arc from the magnetic pole to the inner surface near the surface of the outer edge of the first target, and near the surface of the second target A magnetic field parallel to the surface and a magnetic field closed in an arc from the magnetic pole to the inner surface in the vicinity of the surface of both side edges adjacent to the magnetic field generating means of the second target; Electron reflecting means for reflecting electrons is provided at the end of the magnetic pole facing the partition space and the opening end of the partition space of the second target, and sputter plasma is generated in the partition space, in front of the opening. This is a counter target type sputtering apparatus in which a thin film is formed on a placed substrate.
[0012]
In this apparatus, as described above, the electron reflecting means is provided in the partitioned space in which the entire surface except for the opening facing the substrate in the space between the pair of opposed first targets is surrounded by the second target. Through the interaction of electrons constrained by each magnetic field, high-density plasma is generated and restrained on almost the entire surface of each target, realizing almost uniform sputtering on the entire surface of all targets, and solving the above-mentioned problems It was done.
[0013]
[Problems to be solved by the invention]
By the way, in the above-mentioned facing target type sputtering apparatus, when the sputtering power input in order to increase the film forming speed was increased, the tendency of the film quality of the deposited film to decrease was recognized. This tendency was particularly remarkable in an apparatus provided with electron reflecting means. This problem is a very big problem in industrial production where production speed is a large cost factor.
The present invention has been made in view of such problems, and an object of the present invention is to provide an opposed target sputtering apparatus suitable for industrial production that does not deteriorate the film quality even when the input power is increased.
[0014]
[Means for Solving the Problems]
The above object is achieved by the present invention described below. That is, according to the present invention, a pair of targets are arranged opposite to each other at a predetermined interval in a vacuum chamber, and a magnetic field generating means made of a permanent magnet is provided outside the target along the outer periphery of the target. A counter target type sputtering apparatus in which a plasma trapping magnetic field is formed so as to surround the substrate, a sputtering plasma is generated in the opposing space, and a thin film is formed on a substrate disposed on a side of the opposing space. Providing a potential storage part that reflects electrons that can be taken in and out from the outside of the tank , projecting from the vacuum tank wall surface to the inside of the tank along the outer periphery so as to surround the target and its support part, and the storage part from the outside of the tank A counter-target type sputtering apparatus characterized in that a permanent magnet of a magnetic field generating means is accommodated in a hole that is drilled and cut off from a tank .
[0015]
The present invention has been made as follows. That is, when the cause of the problem is variously examined, this problem is mainly caused by the impurity gas generated when the permanent magnet of the magnetic field generating means becomes high temperature. In some cases, this problem is further caused by a decrease in magnetic force due to the high temperature of the permanent magnet. It has been found out that the increase of electrons flying to the substrate accompanying the decrease of the plasma trapping magnetic field is also added.
According to the present invention, since the permanent magnet of the magnetic field generating means is provided substantially in the atmosphere outside the vacuum chamber with the above configuration, the above-described problem of impure gas is completely solved. Furthermore, due to the structure outside the vacuum chamber, the natural cooling is larger in the atmosphere than in the vacuum in the chamber, and there is no space restriction, so that the cooling means for forced cooling can be freely designed as necessary. It also solved the problem of reduced magnetic force.
[0016]
From the gist of the present invention, it is obvious that the present invention can be widely applied to the opposed target sputtering apparatus in which the permanent magnets of the magnetic field generating means are provided on the outside along the outer periphery of the opposed target. In particular, in the case where the magnetic pole of the magnetic field generating means protrudes to the opposite space side from the front surface of the target so that the entire surface of the target is sputtered uniformly, the problem that the protruding part of the magnetic field generating means touches the sputter plasma and is heated is remarkable. The effect is great. Further, in the case where the electron reflecting means is provided at the tip of the magnetic field generating means, the electron reflecting means may be sputtered in some cases, and the above problem is a big problem from the viewpoint of stable production, and the present invention is lacking in industrial production. It will not be possible.
Hereinafter, the present invention will be described in detail based on examples.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In this embodiment, in the conventional counter target type sputtering apparatus of FIG. 1 described above, the target portions 100a and 100b have the same basic structure as that disclosed in the above Japanese Patent Publication No. 5-75827. FIG. 2 is a side sectional view of the target portion 100a of the embodiment, and FIG. 3 is a sectional view taken along the line AB of FIG. Therefore, the configuration excluding the target portions 100a and 100b is the same as that of the conventional example of FIG. 1 described above, and the description thereof is omitted. 1 to 3, the same symbols are used for the same symbols.
As shown in FIG. 2, the target portions 100 a and 100 b of this example are detachably attached to the tank wall 11 of the vacuum chamber 10. FIG. 2 shows the target unit 100a, but the target unit 100b has the same configuration as the target unit 100a except that the magnetic poles of the permanent magnets of the magnetic field generating means 130a and 130b are reversed.
[0018]
The target 110a is attached to the front surface of the cooling table 150a so as to be replaceable by bolts 111a at regular intervals at the periphery thereof. As shown in FIG. 3, a cooling groove 151a is provided in a zigzag manner on the front surface of the cooling table 150a by a partition wall 152a, and a cooling jacket is formed when the target 110a is attached. A cooling medium supply port 153a and an outlet 154a are provided at both ends of the cooling groove 151a so that the target 110a can be directly cooled by circulating cooling water. Therefore, it is possible to perform cooling with very good cooling efficiency and to cope with high-speed film formation. The cooling table 150a is attached to the support plate 160a with bolts 156a at regular intervals via a packing 155a made of an electrical insulating material.
[0019]
On the support plate 160a, a storage portion 131a for storing the magnetic field generating means 130a has a predetermined gap G along the periphery of the target 110a and surrounds the outer side of the target 110a from the front surface of the target 110a so as to surround the outer periphery. Projected by a predetermined length d. As shown in the figure, the storage part 131a has a structure in which holes of a predetermined depth opened to the outside of the tank for inserting and removing the permanent magnet of the magnetic field generating means 130a from the outside of the tank are formed in the block body at a predetermined pitch, and the magnetic field generating means 130a has a configuration in which rod-shaped permanent magnets are inserted into the holes of the storage portion 131a in the illustrated magnetic pole arrangement and fixed with stoppers 132a, and a large number of permanent magnets are arranged in parallel around the target 110a at a constant pitch. It has become. The storage part 131a is made of a conductive material and is configured to function also as a part of an electron reflecting means described later. In this example, the storage portion 131a and the support plate 160a are made of a structural material such as a metal having good thermal conductivity, specifically, an aluminum block and an NC lathe, and the cross section shown in FIG. The base portion is used as a support body 160a of the support portion, and holes are formed in the vertical portion from the bottom side at a predetermined pitch to form a storage portion, which has a seamless integrated structure. As a result, it was possible to obtain a storage portion 131a that was completely cut off from the inside of the tank, had no vacuum leakage, and was able to sufficiently cool the permanent magnet stored by heat radiation from the support plate 160a only by natural cooling.
[0020]
An electron reflecting plate 170a serving as an electron reflecting means that is held at a negative potential capable of reflecting the electrons reaching here is attached to the front end portion of the housing portion 131a, as shown in the drawing, a bolt 111a for mounting the mounting portion around the target 110a. It is provided so as to cover it. In this example, the electron reflecting plate 170a is configured to use a magnetic material having a high magnetic permeability, specifically, permalloy, and also serves as a core of the magnetic field generating means 130a.
As described above, the target unit 100a has a unit configuration in which the entire support plate 160a is provided. The target unit 100a is installed in the vacuum chamber 10 by attaching the support plate 160a to the tank wall 11 of the vacuum chamber 10 with the bolts 162a at regular intervals via the packing 161a made of an electrical insulating material, as shown in the figure. The Therefore, at the time of cleaning or the like, the target portion 100a can be removed, which can be carried out very efficiently, and a great effect can be obtained in terms of maintainability and overall productivity improvement.
[0021]
The magnetic field generating means 130a and 130b are provided outside the targets 110a and 110b, and the target portions 100a and 100b provided with the electron reflectors 170a and 170b are extended from the magnetic pole ends to the mounting portions around the targets 110a and 110b. The basic configuration is the same as the target part of the opposed target type sputtering apparatus disclosed in the above Japanese Patent Publication No. 5-75827, and, as disclosed in the publication, a high-quality thin film is formed by the same action as described below. In addition, the target 110a and 110b can be sputtered uniformly over the entire surface, and a film with high target use efficiency can be formed.
That is, with this configuration, the following magnetic field lines for trapping plasma are formed in the targets 110a and 110b and the facing space 120. The first is a vertical magnetic field line formed in a cylindrical shape in the vertical direction of the targets 110a and 110b so as to surround the targets 110a and 110b and the facing space 120 between the magnetic poles by the magnetic field generating means 130a and 130b. The second is an auxiliary magnetic field line formed in an arc shape on the outer edge of each of the targets 110a and 110b from the tip of the electron reflectors 170a and 170b that also serves as the core of the magnetic field generating means 130a and 130b to the front of the targets 110a and 110b. is there.
[0022]
The γ electrons radiated from the central part of the surface of the targets 110a and 110b by the perpendicular magnetic field lines and accelerated by the cathode potential drop part are constrained by the vertical magnetic field lines in a string shape, and reciprocate between the targets 110a and 110b. . On the other hand, the γ electrons generated at the outer edges of the targets 110a and 110b reach the negative potential electron reflectors 170a and 170b that are restrained by the auxiliary magnetic field lines and can reflect the electrons. Returned while being constrained by the auxiliary magnetic field lines, a part is returned to the center of the facing space 120.
[0023]
Accordingly, γ electrons are accumulated in the facing space 120 to generate high-density plasma, low-voltage, low-gas pressure sputtering is realized, and a high-quality thin film with little internal distortion, sputtering gas, or the like can be formed. Further, a plasma trapping magnetic field similar to that of the well-known flat-plate magnetron sputtering is formed on the outer edge portions of the targets 110a and 110b by the auxiliary magnetic field lines, and γ electrons reflected by the electron reflectors 170a and 170b are effectively targeted. 110a and 110b are trapped in the vicinity of the outer edge surface and the plasma density of the outer edge can be increased, so that substantially uniform sputtering is realized up to the outer edge, and the target 110a and 110b are used almost uniformly over the entire surface. High film formation can be achieved.
[0024]
By the way, in the above configuration, the tip portions of the magnetic field generating means 130a and 130b protrude from the front surfaces of the targets 110a and 110b, and the electron reflecting plates 170a and 170b are provided, so that the magnetic field generating means 130a and 130b, particularly The tip is heated by radiant heat from the targets 110a and 110b, collision of electrons and the like with the electron reflectors 170a and 170b, etc., but in this embodiment, the storage portion 131a with good thermal conductivity directly connected to the outside of the tank in the atmosphere. Since it is housed in 131b, it can be maintained at a temperature that does not impede practical use. If natural cooling is not sufficient, a cooling pipe may be provided on the support plates 160a and 160b, and the housings 131a and 131b may be configured as a jacket to perform forced cooling.
In the present embodiment, the housing part and the support plate that are integrally formed with no concern about gas leakage are shown. However, it is apparent from the gist of the present invention that a structure in which each part is connected by welding or the like can also be applied. Moreover, although the cooling property is good, a storage portion in which a hole suitable for storing a rod-shaped magnet is formed in the block is shown, the structure of the storage portion is not limited, and it is suitable for the shape of a permanent magnet used for a continuous groove, Or it can apply according to the objectives, such as a structure with easy cooling.
[0025]
Furthermore, although the whole target unit with good maintenance workability can be removed from the vacuum chamber, a configuration in which the storage unit is directly projected on the vacuum chamber wall and the target cooling stand is also installed on the vacuum chamber wall may be employed. The present invention can be applied to any configuration in which the permanent magnet of the magnetic field generating means can be disposed from outside the vacuum chamber so that the magnetic poles are opposed to each other around the target facing from the outside of the vacuum chamber and separated from the inside of the vacuum chamber.
[0026]
As described above, this storage unit configuration is further applied with radiant heat from the side surface target, the front end of the storage unit is located in the partition space, and the substrate of the opposing space 120 with severe thermal conditions for the permanent magnet of the magnetic field generating means. The above-mentioned Japanese Patent Application No. 8-162676, in which a target is also provided on the side surface except for the side surface facing 20, and sputter plasma is formed in a partitioned space partitioned by the target except for the opening on the side surface facing the substrate 20. It is particularly preferably applied to the sputtering apparatus proposed in the specification.
[0027]
【The invention's effect】
As described above, the permanent magnet of the magnetic field generating means is cut off from the inside of the vacuum chamber, and the storage portion that is stored from the outside of the chamber is projected from the inside of the vacuum chamber wall and arranged around the target. This eliminates the influence on the film formation of the gas released from the permanent magnet, and further prevents the permanent magnet from being thermally deteriorated, and has a great effect on improving the performance of the opposed target type sputtering apparatus, particularly on the long-term stability. It is what you play.
As described above, the present invention greatly contributes to the realization of an industrial scale facing target type sputtering apparatus that requires high-speed film formation.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a basic configuration of a conventional opposed target sputtering apparatus.
FIG. 2 is a schematic sectional side view of a target portion according to an embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view taken along the line AB in FIG. 2;
[Explanation of symbols]
10 vacuum chamber 20 the substrate 30 outlet 40 inlet 50 sputtering power source 100a, 100b target unit 110a, 1 1 0b target 120 facing the space 130a, 130b field generating means 140a, 140b shield 150a, 150b cooling stage 160a, 160b support plate 170a, 170b Electron reflector

Claims (8)

真空槽内に所定の間隔を隔てて一対のターゲットを対向配置し、該ターゲットの外周に沿ってその外側に永久磁石からなる磁界発生手段を設けて該ターゲット間の対向空間を囲むようにプラズマ捕捉用磁界を形成して、該対向空間内にスパッタプラズマを生成し、該対向空間の方に配置した基板上に薄膜形成するようにした対向ターゲット式スパッタ装置において、該ターゲット及びその支持部を囲むようにその外周に沿って真空槽壁面から槽内側へ突き出した、槽外から出し入れ可能とした電子を反射する電位の収納部を設け、該収納部には槽外から穿設され槽内と遮断した穴に磁界発生手段の永久磁石を収納したことを特徴とする対向ターゲット式スパッタ装置。A pair of targets are arranged opposite to each other at a predetermined interval in the vacuum chamber, and a magnetic field generating means made of a permanent magnet is provided along the outer periphery of the target so as to surround the facing space between the targets. In a counter target type sputtering apparatus in which a magnetic field is generated, sputter plasma is generated in the counter space, and a thin film is formed on a substrate disposed on the side of the counter space. Protruding from the vacuum chamber wall to the inside of the tank along the outer periphery so as to surround, a storage portion of the potential that reflects the electrons that can be taken in and out from the outside of the bath is provided, and the storage portion is drilled from the outside of the bath. A facing target type sputtering apparatus, wherein a permanent magnet of a magnetic field generating means is accommodated in a blocked hole. 前記収納部に穿設された穴の先端部がターゲット面より対向空間側に突き出しており、永久磁石がその磁極がこの突き出した位置に位置するように収納され、ターゲットの周縁部前面近傍に円弧状の磁界を形成した請求項1記載の対向ターゲット式スパッタ装置。The tip portion of the hole drilled in the housing portion is protruded to the opposite space side than the target surface, the permanent magnet whose magnetic poles are accommodated so as to be positioned in the protruding position, circle periphery front vicinity of the target The opposed target sputtering apparatus according to claim 1, wherein an arc-shaped magnetic field is formed. 前記収納部の先端部の槽内側にスパッタプラズマ中の電子を反射する電子反射手段を備えた請求項2記載の対向ターゲット式スパッタ装置。  The opposed target sputtering apparatus according to claim 2, further comprising an electron reflecting means for reflecting electrons in the sputter plasma inside the tank at the tip of the storage section. 前記収納部が継ぎ目の無い一体成形体である請求項1〜請求項3記載のいずれかの対向ターゲット式スパッタ装置。  The opposed target sputtering apparatus according to any one of claims 1 to 3, wherein the storage portion is an integrally formed body without a joint. 前記収納部とこれを支持して真空槽に取り付ける支持部とが一体成形体である請求項4記載の対向ターゲット式スパッタ装置。  The opposed target sputtering apparatus according to claim 4, wherein the storage portion and the support portion that supports the storage portion and attaches to the vacuum chamber are integrally formed bodies. 前記一体成形体がアルミニウムブロックから削り出した断面逆T字状の成形体であり、その底辺部を支持部とし、垂直部に永久磁石を収納する穴を底辺部側から一定ピッチで穿設して収納部とした請求項5記載の対向ターゲット式スパッタ装置。  The integral molded body is a molded body having an inverted T-shaped cross section cut out from an aluminum block, and the bottom side thereof is used as a support portion, and holes for storing permanent magnets are formed in the vertical portion from the bottom side at a constant pitch. The counter target type sputtering apparatus according to claim 5, wherein the opposing target type sputtering apparatus is used. ターゲット部が支持部に取り付けたユニット構成で、支持部を介して真空槽に取り外し出来るように取り付けられている請求項1〜請求項6記載のいずれかの対向ターゲット式スパッタ装置。  The counter target sputtering apparatus according to any one of claims 1 to 6, wherein the target unit is attached to the support unit so as to be removable from the vacuum chamber through the support unit. 前記対向空間の基板に面する側面を除いた側面を囲む側面ターゲットを備えた請求項1〜請求項7記載のいずれかの対向ターゲット式スパッタ装置。  The counter-target type sputtering apparatus according to claim 1, further comprising a side target surrounding a side surface excluding a side surface facing the substrate in the counter space.
JP20332296A 1996-08-01 1996-08-01 Opposite target type sputtering system Expired - Lifetime JP3807686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20332296A JP3807686B2 (en) 1996-08-01 1996-08-01 Opposite target type sputtering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20332296A JP3807686B2 (en) 1996-08-01 1996-08-01 Opposite target type sputtering system

Publications (2)

Publication Number Publication Date
JPH1046330A JPH1046330A (en) 1998-02-17
JP3807686B2 true JP3807686B2 (en) 2006-08-09

Family

ID=16472106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20332296A Expired - Lifetime JP3807686B2 (en) 1996-08-01 1996-08-01 Opposite target type sputtering system

Country Status (1)

Country Link
JP (1) JP3807686B2 (en)

Also Published As

Publication number Publication date
JPH1046330A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
JP3886209B2 (en) Opposite target type sputtering system
US4784739A (en) Method of producing a thin film by sputtering and an opposed target type sputtering apparatus
US6881311B2 (en) Facing-targets-type sputtering apparatus
JP4097893B2 (en) Opposing target sputtering method and conductive film forming method
US6146509A (en) Inverted field circular magnetron sputtering device
JPS6039159A (en) Magnetron cathode for cathode sputtering device
CA1153733A (en) Magnetically enhanced sputtering device including means for sputtering magnetically permeable targets
JP3807686B2 (en) Opposite target type sputtering system
JP3807684B2 (en) Sputtering method and sputtering apparatus
JPS60182711A (en) Method and apparatus for forming magnetic thin-film
JPS63468A (en) Opposed target type sputtering device
JPH0784659B2 (en) Sputtering target
JPS63118067A (en) Target for sputtering
JPS6354789B2 (en)
JP2010031371A (en) Sputtering apparatus, and method for sputtering material from target onto substrate via sputtering apparatus
JPH03243761A (en) Sputtering device
JPS6338576A (en) Sputtering device
JP2505587B2 (en) Magnetic recording medium and manufacturing method thereof
JP2004107733A (en) Facing target sputtering system
JP2613294B2 (en) Thin film formation method
JPS61270366A (en) Tripolar sputtering source
JPS6343465B2 (en)
JPH1161405A (en) Sputtering device
JPS6320303B2 (en)
JPS6134175A (en) Sputtering device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term