JPH0541242Y2 - - Google Patents

Info

Publication number
JPH0541242Y2
JPH0541242Y2 JP1985180311U JP18031185U JPH0541242Y2 JP H0541242 Y2 JPH0541242 Y2 JP H0541242Y2 JP 1985180311 U JP1985180311 U JP 1985180311U JP 18031185 U JP18031185 U JP 18031185U JP H0541242 Y2 JPH0541242 Y2 JP H0541242Y2
Authority
JP
Japan
Prior art keywords
governor
speed
lever
governor lever
fulcrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985180311U
Other languages
Japanese (ja)
Other versions
JPS6288842U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985180311U priority Critical patent/JPH0541242Y2/ja
Priority to KR1019860009473A priority patent/KR940008268B1/en
Publication of JPS6288842U publication Critical patent/JPS6288842U/ja
Application granted granted Critical
Publication of JPH0541242Y2 publication Critical patent/JPH0541242Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • High-Pressure Fuel Injection Pump Control (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、デイーゼルエンジンの調速装置に関
し、調速レバーの支点を変動することにより、ガ
バナスプリングがガバナレバーを引き張る引き角
を調整し、もつて所望のガバナ差を選定できるも
のを提供する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a speed governor for a diesel engine, and by varying the fulcrum of the speed governor lever, the pulling angle at which the governor spring pulls the governor lever is adjusted. To provide a device that allows a desired governor difference to be selected.

〈従来技術 1〉 本考案の対象となるデイーゼルエンジンの調速
装置の基本構造は、例えば第4,7、又は9図に
示すように、デイーゼルエンジンEのガバナGの
ガバナスプリング2の一端をガバナレバー1との
従動側係合点6に係合するとともに、他端を調整
レバー3との主動側係合点7に係合してガバナレ
バー1を調速レバー3に連動連結してなる形式の
ものである。
<Prior Art 1> The basic structure of the speed governor of a diesel engine, which is the subject of the present invention, is as shown in FIGS. 4, 7, or 9, for example, as shown in FIG. The governor lever 1 is engaged with the driven side engagement point 6 with the adjusting lever 3, and the other end is engaged with the driving side engagement point 7 with the adjustment lever 3, thereby interlocking the governor lever 1 with the speed regulating lever 3. .

この形式の従来技術1としては、第7図に示す
ように、ガバナレバー1が無負荷位置Aに位置す
る状態において、調速レバー3の支点4をガバナ
スプリング2の長手方向が区切る上・下空間に関
しガバナレバー1の支点5と同じ側に位置させ、
このガバナレバー支点5と上記の従動側係合点6
とを結ぶ仮想線分と、ガバナスプリング2の中心
軸線との夾角で形成されるガバナスプリング2の
ガバナレバー1を引つ張る引き角θを低速運転位
置Bから高速運転位置Cにかけて略90度に設定し
たものがある。
As shown in FIG. 7, in this type of prior art 1, when the governor lever 1 is in the no-load position A, the upper and lower spaces are separated by the longitudinal direction of the governor spring 2 and the fulcrum 4 of the speed regulating lever 3. with respect to the fulcrum 5 of the governor lever 1,
This governor lever fulcrum 5 and the above driven side engagement point 6
The pull angle θ of the governor spring 2 that pulls the governor lever 1, which is formed by the included angle between the imaginary line segment connecting the above and the central axis of the governor spring 2, is set to approximately 90 degrees from the low speed operation position B to the high speed operation position C. There is something I did.

〈従来技術1の問題点〉 一般に、ガバナフオースは、横軸に回転数を、
また、縦軸に力を各々とる場合、第8図に示すよ
うに、二次曲線的に変化するが、一方のガバナス
プリングはリニアー的にしか変化しないため、ガ
バナフオース曲線の高速側の変化率に合致したス
プリングを選択して、高速回転側のガバナの応答
感度を高めている。
<Problems with Prior Art 1> Generally, the governor force has the rotational speed on the horizontal axis.
In addition, when the force is applied to the vertical axis, as shown in Figure 8, it changes in a quadratic curve, but one governor spring changes only linearly, so the rate of change on the high-speed side of the governor force curve changes. Matching springs are selected to increase the response sensitivity of the governor on the high-speed rotation side.

従つて、低速側ではガバナフオース曲線の変化
率とスプリング直線の傾きとの間にずれを生じ、
所定の運転状態から負荷が軽減した場合、ガバナ
フオースに対してガバナスプリングの張力が強く
なりすぎ、速度変動率を大きくしてしまう。
Therefore, on the low speed side, a deviation occurs between the rate of change of the governor force curve and the slope of the spring straight line,
When the load is reduced from a predetermined operating state, the tension of the governor spring becomes too strong with respect to the governor force, increasing the rate of speed fluctuation.

逆に、負荷が増大した場合には、ガバナフオー
クに対してガバナスプリングの張力が弱くなりす
ぎて回転低下が大きく、出力を充分に発揮し得な
くなつてしまう。
Conversely, when the load increases, the tension of the governor spring against the governor fork becomes too weak, resulting in a large drop in rotation and the inability to produce sufficient output.

〈従来技術 2〉 第9図は、低速側での速度変動率の増大を抑制
できる従来技術2を示す。
<Prior Art 2> FIG. 9 shows a prior art 2 that can suppress an increase in speed fluctuation rate on the low speed side.

即ち、ガバナレバー1が無負荷位置Aに位置す
る状態において、調速レバー3の支点4をガバナ
スプリング2を中にしてガバナレバー1の支点5
とは反対側に位置させる。
That is, when the governor lever 1 is in the no-load position A, the fulcrum 4 of the speed control lever 3 is located at the fulcrum 5 of the governor lever 1 with the governor spring 2 in between.
It is located on the opposite side to the.

そして、ガバナスプリング2がガバナレバー1
を引く張る前記の引き角θを鋭角に接点するとと
もに、調整レバー3が低速運転位置Bから高速運
転位置Cに近づくにつれてこの引き角θの値が大
きくなるように設定する。
Then, the governor spring 2 is connected to the governor lever 1.
The pull angle θ is set to be an acute angle, and the value of the pull angle θ is set to increase as the adjustment lever 3 approaches the high speed operation position C from the low speed operation position B.

調速レバー3の支点がガバナスプリング2とガ
バナレバー1との従動側係合点6から離れる離間
距離lを、調速レバー3の支点4からガバナスプ
リング2と調速レバー3との主動側係合点7まで
の腕長さrよりも、可成り小さい寸法に設定す
る。
The distance l between the fulcrum of the governor lever 3 and the driven side engagement point 6 between the governor spring 2 and the governor lever 1 is calculated from the fulcrum 4 of the governor lever 3 to the main drive side engagement point 7 between the governor spring 2 and the governor lever 3. Set the dimension to be considerably smaller than the arm length r up to.

そして、調速レバー支点4と従動側係合点6と
を結ぶ仮想直線Pと直交し且つ調速レバー支点4
を通る仮想基準線Sを想定し、調速レバーの低速
運転位置Bと高速運転位置Cとの間の調速揺動領
域Tを仮想基準線Sよりも高速側の領域に位置さ
せたものである。
The governor lever fulcrum 4 is perpendicular to the imaginary straight line P connecting the governor lever fulcrum 4 and the driven side engagement point 6.
Assuming a virtual reference line S that passes through the imaginary reference line S, the speed control swing region T between the low-speed operation position B and the high-speed operation position C of the speed control lever is located in an area on the high-speed side of the virtual reference line S. be.

この構造によれば、ガバナスプリング2の張力
F0のうち、揺動運動に作用する分力F1は、ガバ
ナレバー1とガバナスプリング2とのガバナレバ
ー支点5側の夾角θを用いて表わせば、 F1=F0sinθ となる。
According to this structure, the tension of the governor spring 2
Of F 0 , the component force F 1 that acts on the rocking motion is expressed using the included angle θ between the governor lever 1 and the governor spring 2 on the side of the governor lever fulcrum 5, as follows: F 1 =F 0 sin θ.

従つて、この揺動分力F1は調速レバー3の設
定回転数に対し、sin曲線を描いて変化し、ガバ
ナフオースの二次曲線的な変化に近似する。
Therefore, this oscillating force F 1 changes in a sinusoidal curve with respect to the set rotational speed of the governor lever 3, and approximates a quadratic curve-like change in the governor force.

このため、調速レバー3が高速及び低速運転位
置のいずれに来ても、揺動分力F1の変化率はガ
バナフオークの変化率に近似するので、当該揺動
分力F1はガバナフオースに狭い回転領域で釣り
合うことがことができ、従来技術1の問題点であ
つた低速運転時における速度変動率が大きくなる
事を抑制できる。
Therefore, regardless of whether the speed governor lever 3 is in the high-speed or low-speed operating position, the rate of change of the swing component force F1 approximates the rate of change of the governor fork, so the swing component force F1 is narrow to the governor force. Balance can be achieved in the rotational range, and it is possible to suppress an increase in speed fluctuation rate during low-speed operation, which was a problem with Prior Art 1.

〈従来技術2の問題点〉 その反面、ガバナスプリング2の張力F0のう
ち、揺動分力F1に直交する求心分力F2はF0cosθ
の値でガバナレバーを支点5に押付けるため、ガ
バナレバー1が揺動するのを妨げる摩擦抵抗とな
る。
<Problems with Prior Art 2> On the other hand, of the tension F 0 of the governor spring 2, the centripetal force F 2 perpendicular to the swinging force F 1 is F 0 cosθ
Since the governor lever is pressed against the fulcrum 5 with a value of , a frictional resistance is generated that prevents the governor lever 1 from swinging.

上記従来技術2においては、離間距離lが小さ
いうえ、調速揺動領域Tが仮想基準線Sよりも高
速側に偏ることから、ガバナスプリング2は低速
運転位置Bと高速運転位置Cとの間での長さの変
化幅が小さくなるので、その張力の変化が少な
い。
In the above-mentioned prior art 2, since the separation distance l is small and the speed control swing region T is biased toward the high speed side with respect to the virtual reference line S, the governor spring 2 is located between the low speed operation position B and the high speed operation position C. Since the width of change in length is small, the change in tension is small.

これにより、低速運転時には、ガバナスプリン
グ2の張力F0が高速運転時のときに近似した大
きい値になる。
As a result, during low-speed operation, the tension F 0 of the governor spring 2 becomes a large value that approximates that during high-speed operation.

従つて、これに伴い求心分力F2が大きくなつ
て、ガバナレバー1はその支点5で大きな摩擦抵
抗を受けて揺動しにくくなる。
Accordingly, the centripetal force F 2 increases accordingly, and the governor lever 1 receives a large frictional resistance at its fulcrum 5, making it difficult to swing.

この結果、回転数のバラ付きが大きくなり、ハ
ンチングも起り易くなる。
As a result, variations in the number of rotations become large and hunting becomes more likely to occur.

〈先行技術〉 そこで、本考案者はこの回転数のバラ付きを小
さくするとともに、ハンチングを起りにくくする
技術を、本考案に先立つて開発した。
<Prior Art> Therefore, prior to the present invention, the present inventor developed a technique to reduce the variation in the rotational speed and to make hunting less likely to occur.

即ち、第4図及び第5図を用いて以下に説明す
ると、ガバナレバー1が無負荷位置Aに位置する
ときの上記の従動側係合点6と調速レバー支点4
との離間距離lを、調速レバー支点4から前記の
主動側係合点7までの腕長さrと略等しい寸法に
設定し、調速レバー支点4と従動側係合点6とを
結ぶ仮想直線Pと直交し且つ調速レバー支点4を
通る仮想基準線Sを想定し、調速レバー3の低速
運転位置Bと高速運転位置Cとの間の調速揺動領
域Tを仮想基準線Sより低速側と高速側との両方
にまたがらせて位置させたものである。
That is, to explain below using FIGS. 4 and 5, when the governor lever 1 is located at the no-load position A, the above-mentioned driven side engagement point 6 and the governor lever fulcrum 4
The separation distance l from the regulating lever fulcrum 4 is set to be approximately equal to the arm length r from the driving side engagement point 7, and an imaginary straight line connecting the regulating lever fulcrum 4 and the driven side engagement point 6 is set. Assuming a virtual reference line S that is perpendicular to P and passing through the governor lever fulcrum 4, the governor swing region T between the low speed operation position B and the high speed operation position C of the governor lever 3 is calculated from the virtual reference line S. It is located across both the low speed side and the high speed side.

この先行技術では、離間距離lを大きくして腕
長さrと略等しくするうえ、調速揺動領域Tを仮
想基準線Sより低速側と高速側との両方にまたが
らせて位置させた事から、ガバナスプリング2は
低速運転位置Bと高速運転位置Cとの間での長さ
の変化幅が大きくなり、その張力の変化が大きく
なる。
In this prior art, the separation distance l is increased to be approximately equal to the arm length r, and the speed control swing region T is located so as to straddle both the low speed side and the high speed side of the virtual reference line S. As a result, the length of the governor spring 2 varies greatly between the low-speed operating position B and the high-speed operating position C, and the tension thereof varies greatly.

また、離間距離lを腕長さrに比べて大きすぎ
る寸法に設定すると、ガバナ装置が大型化する欠
点があるうえ、ガバナスプリング2の全長が長く
なるため、低速運転位置Bと高速運転位置Cとの
間のガバナスプリングの長さ変化率が小さくな
り、離間距離が小さい場合と同様の張力変化が小
さくなる欠点があるが、この先行技術では離間距
離lと腕長さrとを略等しい寸法に設定している
ので、ガバナ装置をコンパクトに構成しながらも
ガバナスプリング2の長さ変化率が大きくなり、
その張力の変化が大きくなる。
Furthermore, if the separation distance l is set to be too large compared to the arm length r, there is a disadvantage that the governor device becomes larger, and the overall length of the governor spring 2 becomes longer. However, in this prior art, the separation distance l and the arm length r are set to approximately equal dimensions. , the rate of change in length of the governor spring 2 is large even though the governor device is configured compactly.
The change in tension becomes large.

これにより、低速運転時には、ガバナスプリン
グ2の張力F0が高速運転のときよりも!?かに弱
い小さい値になる。
As a result, during low-speed operation, the tension F 0 of the governor spring 2 becomes a much weaker value than during high-speed operation!

従つて、これに伴い求心分力F2が小さくなる
ので、ガバナレバー1と支点5との摩擦抵抗を小
さくでき、ガバナレバー1を軽く揺動できるよう
になる。
Accordingly, since the centripetal force F 2 becomes smaller, the frictional resistance between the governor lever 1 and the fulcrum 5 can be reduced, and the governor lever 1 can be easily swung.

この結果、回転数のバラ付きが小さくなるう
え、ハンチングも起りにくくなる。
As a result, variations in the number of rotations become smaller, and hunting becomes less likely to occur.

〈考案が解決しようとする問題点〉 一般に、実際のエンジンにおいては、例えば、
発動発電機用にはヘルツの変動の小さくする必要
から、速度変動率、即ち、ガバナ差の小さなもの
を使用せねばならない。逆に、耕耘機等の農作業
機では、些細な負荷変動でガバナを過敏に作動し
ないようにするため、安定性を重視してガナバ差
のある程度大きなものを使用する方が好ましい。
<Problems to be solved by the invention> Generally, in an actual engine, for example,
For motor generators, it is necessary to reduce Hertz fluctuations, so it is necessary to use a motor with a small speed fluctuation rate, that is, a governor difference. On the other hand, in agricultural machines such as power tillers, it is preferable to use a machine with a somewhat large difference in governor, with emphasis on stability, in order to prevent the governor from operating too sensitively due to small load fluctuations.

しかしなら、上記先行技術で、ガバナスプリン
グの張力がsin曲線的に変化するものの、ガバナ
スプリングの張力変化幅及び、ガバナレバー1を
引つ張るガバナスプリング2の引き角θの値の変
化幅は一定なので、ガバン差も一義的に決定され
る。このため、発電機用等のガバナ差の小さいエ
ンジンと農機用等のガバナ差の大き目のエンジン
とでは、調速装置を別個に設計・製造しなければ
ならない。
However, in the above prior art, although the tension of the governor spring changes in a sinusoidal manner, the range of change in the tension of the governor spring and the range of change in the pull angle θ of the governor spring 2 that pulls the governor lever 1 are constant. , the governor difference is also uniquely determined. Therefore, speed governors must be designed and manufactured separately for engines with a small governor difference, such as those for generators, and engines with a large governor difference, such as those for agricultural machinery.

本考案は、ガバナ差の異なる各種エンジンの調
速装置を共通化することにより、生産性を高める
ことを技術的課題とする。
The technical objective of the present invention is to increase productivity by standardizing the speed governor of various engines with different governor differences.

〈問題点を解決するための手段〉 上記課題を解決するための手段を、実施例に対
応する第1図乃至第5図を用いて以下に示す。
<Means for solving the problems> Means for solving the above problems will be described below using FIGS. 1 to 5, which correspond to embodiments.

即ち、前述の先行技術にさらに改良を加え、調
速レバー3の支点4を位置調節手段8により引き
角θが変る方向に進退調節可能に構成したもので
ある。
That is, the above-mentioned prior art is further improved, and the fulcrum 4 of the speed regulating lever 3 is configured to be adjustable forwards and backwards in the direction in which the pull angle θ is changed by the position adjusting means 8.

〈作用〉 調速レバー支点4を進退調節方向に沿つて変化
すると、変化の前・後によつて、スプリングの主
動側係合点7はその従動側係合点6に対して方向
を大きく変移できるので、ガバナスプリング2が
ガバナレバー1を引つ張る引き角θを変化させる
ことができる。
<Operation> When the speed governor lever fulcrum 4 is changed along the forward/backward adjustment direction, the driving side engagement point 7 of the spring can largely change its direction with respect to the driven side engagement point 6 depending on before and after the change. The pulling angle θ at which the governor spring 2 pulls the governor lever 1 can be changed.

例えば、第6図に示すように、調速レバー支点
4を位置調節手段8に沿つて進退移動すると、変
化の前・後によつて引き角θが増減する。下方位
置H1に支点4を設定すると、引き角θ1は小さく
なり、ガバナスプリングの張力曲線の勾配が低速
運転位置で小さくなり、ガバナフオース曲線との
ズレが小さくなるので、ガバナ差は小さくなる。
For example, as shown in FIG. 6, when the speed governor lever fulcrum 4 is moved forward or backward along the position adjustment means 8, the pull angle θ increases or decreases depending on before or after the change. When the fulcrum 4 is set at the lower position H 1 , the pull angle θ 1 becomes smaller, the slope of the tension curve of the governor spring becomes smaller at the low speed operating position, and the deviation from the governor force curve becomes smaller, so the governor difference becomes smaller.

また、上方位置H2に支点4を設定すると、引
き角θ2は大きくなり、ガバナスプリングの張力曲
線の勾配は逆に大きくなつて、ガバナフオースと
ガバナスプリングの張力との差異は拡がるので、
ガバナ差は大きくなり、運転の安全性が良くな
る。
Furthermore, when the fulcrum 4 is set at the upper position H 2 , the pull angle θ 2 increases, and the slope of the tension curve of the governor spring conversely increases, and the difference between the governor force and the tension of the governor spring increases.
The governor difference becomes larger and driving safety improves.

〈考案の効果〉 本考案は、まず第1に揺動分力をsin曲線的に
変化させ、低速運転時での速度変動率を小さく抑
制して従来技術1の問題点を解消することができ
る。
<Effects of the invention> The invention first of all changes the swing component force in a sinusoidal manner, suppresses the speed fluctuation rate during low-speed operation, and solves the problem of conventional technology 1. .

そして、調速レバー支点と従動側係合点との離
間距離を調速レバー支点から主動側係合点までの
腕長さと略等しい寸法に設定し、調速レバーの調
速揺動領域を仮想基準線の低速側と高速側との両
方にまたがらせて位置させたので、低速運転時に
おけるガバナスプリングの長さが高速運転時のそ
れに比べてかなり小さくなり、この結果、ガバナ
装置を大型化することなく、低速運転位置におけ
るガバナスプリングの張力を小さくして揺動抵抗
を抑制し、もつて回転数のバラ付きを小さくして
従来技術2の問題点をも解消することができる。
Then, the distance between the governor lever fulcrum and the driven side engagement point is set to be approximately equal to the arm length from the governor lever fulcrum to the driving side engagement point, and the governor swing area of the governor lever is set to the virtual reference line. Since the governor spring is located across both the low-speed side and the high-speed side of the engine, the length of the governor spring during low-speed operation is considerably smaller than that during high-speed operation, and as a result, it is possible to increase the size of the governor device. Instead, it is possible to reduce the tension of the governor spring at the low-speed operating position to suppress rocking resistance, thereby reducing variation in rotational speed, and solving the problem of prior art 2.

第2に、位置調節手段により調速レバー支点を
進退調節すると、ガバナスプリングの引き角が変
化してガバナ差を増・減できるので、ガバナ差の
小さいことが要求される発電機用等と安定性が重
視される農作業機用等とのいずれのエンジンに対
しても、調速装置を共通化することができ、生産
性を高める事ができる。
Second, when the governor lever fulcrum is adjusted forward or backward using the position adjustment means, the pull angle of the governor spring changes and the governor difference can be increased or decreased, making it stable for use in generators etc. that require a small governor difference. The speed governor can be shared with both engines, such as those for agricultural machines where performance is important, and productivity can be increased.

〈実施例〉 以下、本考案の実施例を図面に基づいて説明す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第1図は調速レバーの位置調節手段の分解斜視
図、第2図は調速レバーの要部縦断右側面図、第
3図は位置調節手段の要部正面図、第4図はガバ
ナの概略正面図、第5図はデイーゼルエンジンの
ガバナ周辺の縦断正面図であつて、デイーゼルエ
ンジンEの燃料噴射ポンプ収容室10に燃料噴射
カム軸11及びガバナ軸12を上・下並列状に軸
架し、各々ギヤを介してクランク軸に連動する。
Fig. 1 is an exploded perspective view of the position adjustment means of the speed governor lever, Fig. 2 is a vertical right side view of the main part of the speed control lever, Fig. 3 is a front view of the main part of the position adjustment means, and Fig. 4 is a view of the governor. A schematic front view, FIG. 5 is a longitudinal sectional front view of the vicinity of the governor of the diesel engine, in which the fuel injection camshaft 11 and the governor shaft 12 are mounted on shafts in parallel upper and lower positions in the fuel injection pump housing chamber 10 of the diesel engine E. and each is linked to the crankshaft via a gear.

燃料噴射カム軸11に燃料噴射ポンプ14を連
動し、当該ポンプ14を燃焼室に臨ませた燃料噴
射ノズルに接続する。
A fuel injection pump 14 is linked to the fuel injection camshaft 11, and the pump 14 is connected to a fuel injection nozzle facing the combustion chamber.

上記ガバナ軸12にウエイト基盤15を固定
し、ウエイト基盤15にフライトウエイト16を
揺動自在に枢支し、フライウエイトの出力端17
をガバナ軸12に摺動自在に挿嵌したガバナスリ
ーブ18の左端面19に接当する。
A weight base 15 is fixed to the governor shaft 12, a flight weight 16 is swingably supported on the weight base 15, and the output end 17 of the fly weight is
is brought into contact with the left end surface 19 of the governor sleeve 18 which is slidably fitted onto the governor shaft 12.

燃料噴射ポンプ室10に支点5を介して揺動自
在に枢支したガバナレバー1を主レバー1aと副
レバー1bから構成し、主レバー1aの下方を逆
U字状に分岐してガバナ軸12に股がらせ、当該
U字部21の先端に転動自在にローラ22を枢支
して、前記ガバナスリーブ18の右端面23に当
該ローラ22を接当可能に構成する。
A governor lever 1 is swingably supported in a fuel injection pump chamber 10 via a fulcrum 5, and is composed of a main lever 1a and a sub-lever 1b. A roller 22 is rotatably supported at the tip of the U-shaped portion 21 so that the roller 22 can come into contact with the right end surface 23 of the governor sleeve 18 .

上記主レバー1aの上端に係合溝24を切欠
き、燃料噴射ポンプ14の燃料噴射ラツクのラツ
クピン25をこの係合溝24に嵌合し、当該上端
部26の右端に始動スプリング27を懸架し、そ
の左端に被接当部28を設けて、副レバー1bの
接当部29を当該被接当部28に接当せしめる。
An engagement groove 24 is cut out in the upper end of the main lever 1a, a rack pin 25 of the fuel injection rack of the fuel injection pump 14 is fitted into the engagement groove 24, and a starting spring 27 is suspended on the right end of the upper end 26. , a contact portion 28 is provided at the left end thereof, and the contact portion 29 of the sub-lever 1b is brought into contact with the contact portion 28.

副レバー1bはその基端部30を支点5に枢支
し、その上端部31に係合孔32を空けて、ガバ
ナスプリング2の一端を当該係合孔32に懸架し
(この懸架部を従動側係合点6とする)、その他端
を燃料噴射ポンプ室10に枢支した調速レバー3
の先端に懸架する(この懸架部を主動側係合点7
とする)。
The sub-lever 1b has its base end 30 pivotally supported on the fulcrum 5, has an engagement hole 32 in its upper end 31, and suspends one end of the governor spring 2 in the engagement hole 32 (this suspension is driven side engagement point 6), and a speed regulating lever 3 whose other end is pivoted to the fuel injection pump chamber 10.
(This suspension part is connected to the driving side engagement point 7.
).

この場合、調速レバー3の支点4を、ガバナス
プリング2を中にしてガバナレバー1の支点5と
は反対側に位置させ、ガバナスプリング2がガバ
ナレバー1を引つ張る引き角(即ち、ガバナレバ
ー支点5と上記の従動側係合点6とを結ぶ仮想線
分と、ガバナスプリング2の中心軸線とで形成さ
れる夾角)θを鋭角に設定し、調速レバー3が低
速運転位置Bから高速運転位置Cに近づくにつれ
て前記引き角θの値が大きくなるように設定す
る。
In this case, the fulcrum 4 of the governor lever 3 is located on the opposite side from the fulcrum 5 of the governor lever 1 with the governor spring 2 inside, and the pulling angle at which the governor spring 2 pulls the governor lever 1 (i.e., The included angle (θ) formed by the imaginary line connecting the above-mentioned driven side engagement point 6 and the central axis of the governor spring 2 is set to an acute angle, and the governor lever 3 moves from the low speed operation position B to the high speed operation position C. The value of the pull angle θ is set to increase as it approaches .

また、調速レバー3の支点4が従動側係合点6
から離れる離間距離lを、調速レバー3の支点4
から主動側係合点7までの腕長さrと略等しく
し、調速レバー支点4と従動側係合点6とを結ぶ
仮想直線Pと直交し、且つ、調速レバー支点4を
通る仮想基準線Sに対して、調速レバー3の低速
運転位置Bと高速運転位置Cとの間の調速揺動領
域Tをまたがらせる。
Also, the fulcrum 4 of the speed regulating lever 3 is at the driven side engagement point 6.
The distance l away from the fulcrum 4 of the regulating lever 3 is
A virtual reference line that is approximately equal to the arm length r from to the driving side engagement point 7, is perpendicular to the imaginary straight line P connecting the speed governor lever fulcrum 4 and the driven side engagement point 6, and passes through the speed governor lever fulcrum 4. S is made to straddle the speed control swing region T between the low speed operation position B and the high speed operation position C of the speed control lever 3.

上記調速レバー3の一端から円柱状の支点4を
突出し、これを燃料噴射ポンプ室10に空けた調
整窓50からエンジン外方に臨ませる。
A cylindrical fulcrum 4 protrudes from one end of the speed regulating lever 3, and is exposed to the outside of the engine through an adjustment window 50 formed in the fuel injection pump chamber 10.

一方、調整基盤51の中央に嵌挿孔52を空
け、調速レバーの支点4をこの嵌挿孔52に回動
自在に挿通するとともに、当該嵌挿孔52から外
方に突き出た支点4の先端に外部操作レバー54
を固定する。
On the other hand, a fitting hole 52 is made in the center of the adjustment base 51, and the fulcrum 4 of the speed regulating lever is rotatably inserted into the fitting hole 52, and the fulcrum 4 protruding outward from the fitting hole 52 is inserted into the fitting hole 52. External control lever 54 at the tip
to be fixed.

上記調整基盤51の上部中央及び下部中央に垂
直方向に沿つた長孔55を空け、これらの長孔5
5を調整窓50の上・下に空けたネジ孔56に臨
ませ、固定ボルト58を介して調整基盤51を燃
料噴射ポンプ室10の側壁57に固定し、調整窓
50を覆う。
Elongated holes 55 are formed along the vertical direction in the upper center and lower center of the adjustment base 51, and these elongated holes 5
5 faces the screw holes 56 formed above and below the adjustment window 50, and the adjustment base 51 is fixed to the side wall 57 of the fuel injection pump chamber 10 via fixing bolts 58 to cover the adjustment window 50.

この場合、調整基盤51と固定ボルト58との
組み合わせは、調整レバー支点4の位置調整手段
8になり、第3図で示すように、長孔55の上端
を接当するようにして固定ボルト58を調整窓5
0の上・下のネジ孔56に締め付けた場合、当該
ボルト58に対して調整基盤51を上方にずらし
て長孔55の下端に接当するようにして固定ボル
ト58をネジ孔56に締め付けた場合とでは、ガ
バナレバー1(第3図では副レバー1b)に対す
る調速レバー支点4の位置が上下に移動する。
In this case, the combination of the adjustment base 51 and the fixing bolt 58 becomes the position adjustment means 8 for the adjustment lever fulcrum 4, and as shown in FIG. Adjust the window 5
0, the fixing bolt 58 is tightened into the screw hole 56 by shifting the adjustment base 51 upward with respect to the bolt 58 so that it comes into contact with the lower end of the elongated hole 55. In this case, the position of the speed-governing lever fulcrum 4 relative to the governor lever 1 (the sub-lever 1b in FIG. 3) moves up and down.

従つて、ガバナレバー1を引つ張るガバナスプ
リング2の引き角θが変動し、低速運転時におけ
るガバナスプリングの張力曲線の勾配をガバナフ
オース曲線のそれに対して所望に変移させてバガ
ナ差を選択でき、一つのエンジンを種々の作業機
に共通化することができる。
Therefore, the pull angle θ of the governor spring 2 that pulls the governor lever 1 is varied, and the slope of the tension curve of the governor spring during low-speed operation can be shifted as desired with respect to that of the governor force curve, so that the lever difference can be selected. One engine can be used in common with various work machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本考案の実施例を示すもの
で、第1図は調速レバーの位置調節手段の分解斜
視図、第2図は調速レバーの要部縦断右側面図、
第3図は位置調節手段の要部正面図、第4図はガ
バナの概略正面図、第5図はデイーゼルエンジン
のガバナ周辺の縦断正面図、第6図は進退調節を
行つた場合の調速レバー周辺の概略説明図、第7
図は従来技術1を示す第4図相当図、第8図はガ
バナフオース曲線図、第9図は従来技術2を示す
第4図相当図である。 1……ガバナレバー、2……ガバナスプリン
グ、3……調速レバー、4……調速レバー支点、
5……ガバナレバー支点、6……ガバナスプリン
グの従動側係合点、7……ガバナスプリングの主
動側係合点、8……位置調節手段、A……ガバナ
レバーの無負荷位置、B……調速レバーの低速運
転位置、C……調速レバーの高速運転位置、E…
…デイーゼルエンジン、G……ガバナ、P……調
速レバー支点と従動側係合点を結ぶ仮想直線、S
……仮想基準線、T……調速揺動領域、l……調
速レバー支点と従動側係合点との離間距離、r…
…調速レバー支点から主動側係合点までの腕長
さ、θ……ガバナスプリングのバガナレバーを引
つ張る引き角。
1 to 5 show an embodiment of the present invention, in which FIG. 1 is an exploded perspective view of the position adjustment means of the speed governor lever, FIG. 2 is a longitudinal sectional right side view of the main part of the speed governor lever,
Fig. 3 is a front view of the main parts of the position adjustment means, Fig. 4 is a schematic front view of the governor, Fig. 5 is a longitudinal cross-sectional front view of the area around the governor of the diesel engine, and Fig. 6 is the speed governor when adjusting forward and backward movement. Schematic diagram of the area around the lever, No. 7
The figures are a diagram equivalent to FIG. 4 showing the prior art 1, FIG. 8 is a governor force curve diagram, and FIG. 9 is a diagram equivalent to FIG. 4 showing the prior art 2. 1... Governor lever, 2... Governor spring, 3... Speed governor lever, 4... Speed governor lever fulcrum,
5...Governor lever fulcrum, 6...Driver side engagement point of governor spring, 7...Driver side engagement point of governor spring, 8...Position adjustment means, A...No-load position of governor lever, B...Governing lever Low speed operation position of C... High speed operation position of speed governor lever, E...
...Diesel engine, G...Governor, P...Virtual straight line connecting the governor lever fulcrum and the driven side engagement point, S
...Virtual reference line, T...Speed control swing area, l...Separation distance between speed control lever fulcrum and driven side engagement point, r...
...Arm length from the speed regulating lever fulcrum to the driving side engagement point, θ...The pulling angle of the governor spring to pull the baggana lever.

Claims (1)

【実用新案登録請求の範囲】 デイーゼルエンジンEのガバナGのガバナスプ
リング2の一端をガバナレバー1との従動側係合
点6に係合するとともに、他端を調速レバー3と
の主動側係合点7に係合してガバナレバー1を調
速レバー3に連動連結してなるデイーゼルエンジ
ンの調速装置において、 調速レバー3の支点4をガバナスプリング2を
中にしてガバナレバー1の支点5とは反対側に位
置させ、 このガバナレバー支点5と上記の従動側係合点
6とを結ぶ仮想線分と、ガバナスプリング2の中
心軸線との夾角に形成されるガバナスプリング2
のガバナレバー1を引つ張る引き角θを鋭角に設
定するとともに、調速レバー3が低速運転位置B
から高速運転位置Cに近づくにつれて前記引き角
θの値が大きくなるように設定し、 ガバナレバー1の無負荷位置Aに位置するとき
の上記の従動側係合点6と調速レバー支点4との
離間距離lを、調速レバー支点4から前記の主動
側係合点7までの腕長さrと略等しい寸法に設定
し、 調速レバー支点4と従動側係合点6とを結ぶ仮
想直線Pと直交し且つ調速レバー支点4を通る仮
想基準線Sを想定し、調速レバー3の低速運転位
置Bと高速運転位置Cとの間の調速揺動領域Tを
仮想基準線Sより低速側と高速側との両方にまた
がらせて位置させ、 調速レバー3の支点4を位置調節手段8により
前記引き角θが変る方向に進退調節可能に構成し
た事を特徴とするデイーゼルエンジンの調速装
置。
[Claims for Utility Model Registration] One end of the governor spring 2 of the governor G of the diesel engine E is engaged with the driven side engagement point 6 with the governor lever 1, and the other end is engaged with the driving side engagement point 7 with the speed governor lever 3. In a diesel engine speed governor device in which the governor lever 1 is interlocked and connected to the speed governor lever 3 by engaging with the speed governor lever 3, the fulcrum 4 of the speed governor lever 3 is placed on the opposite side from the fulcrum 5 of the governor lever 1 with the governor spring 2 inside. The governor spring 2 is located at an angle between an imaginary line connecting the governor lever fulcrum 5 and the driven side engagement point 6 and the central axis of the governor spring 2.
The pulling angle θ for pulling the governor lever 1 is set to an acute angle, and the speed governor lever 3 is moved to the low speed operation position B.
The pull angle θ is set to increase as it approaches the high-speed operation position C, and the distance between the driven side engagement point 6 and the governor lever fulcrum 4 when the governor lever 1 is at the no-load position A is set. The distance l is set to be approximately equal to the arm length r from the governor lever fulcrum 4 to the driving side engagement point 7, and is perpendicular to the imaginary straight line P connecting the governor lever fulcrum 4 and the driven side engagement point 6. Assuming a virtual reference line S that passes through the governor lever fulcrum 4, the governor swing region T between the low speed operation position B and the high speed operation position C of the governor lever 3 is set to the lower speed side than the virtual reference line S. The speed governor of a diesel engine is characterized in that the speed governor lever 3 is positioned astride both the high speed side and the fulcrum 4 of the speed governor lever 3 can be adjusted forward and backward in the direction in which the pulling angle θ is changed by means of a position adjustment means 8. Device.
JP1985180311U 1985-11-11 1985-11-22 Expired - Lifetime JPH0541242Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1985180311U JPH0541242Y2 (en) 1985-11-22 1985-11-22
KR1019860009473A KR940008268B1 (en) 1985-11-11 1986-11-10 Speed controlling apparatus for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985180311U JPH0541242Y2 (en) 1985-11-22 1985-11-22

Publications (2)

Publication Number Publication Date
JPS6288842U JPS6288842U (en) 1987-06-06
JPH0541242Y2 true JPH0541242Y2 (en) 1993-10-19

Family

ID=31471829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985180311U Expired - Lifetime JPH0541242Y2 (en) 1985-11-11 1985-11-22

Country Status (1)

Country Link
JP (1) JPH0541242Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521709Y2 (en) * 1988-02-05 1997-01-08 株式会社クボタ Mechanical governor for diesel engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185826A (en) * 1983-04-06 1984-10-22 Yanmar Diesel Engine Co Ltd Speed variation variable device of internal-combustion engine governor
JPS60204929A (en) * 1984-03-28 1985-10-16 Yanmar Diesel Engine Co Ltd Governor for internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185826A (en) * 1983-04-06 1984-10-22 Yanmar Diesel Engine Co Ltd Speed variation variable device of internal-combustion engine governor
JPS60204929A (en) * 1984-03-28 1985-10-16 Yanmar Diesel Engine Co Ltd Governor for internal-combustion engine

Also Published As

Publication number Publication date
JPS6288842U (en) 1987-06-06

Similar Documents

Publication Publication Date Title
JPH0541242Y2 (en)
JPH0511327Y2 (en)
JPH0234441Y2 (en)
JPH0526271Y2 (en)
JPH0511326Y2 (en)
JP2521709Y2 (en) Mechanical governor for diesel engine
JPS6228655Y2 (en)
JPH0144756Y2 (en)
JPS611830A (en) Speed adjustor for diesel engine
JPH0433388Y2 (en)
JPS6332348Y2 (en)
JPH0523792Y2 (en)
JPS591065Y2 (en) Mechanical simple output meter
JPH0513962Y2 (en)
JP2524130B2 (en) Governor device for internal combustion engine
JPS6228656Y2 (en)
JPH0144755Y2 (en)
JP2507070Y2 (en) Governor for fuel injection system for diesel engine
JPS5944493B2 (en) Centrifugal force governor for internal combustion engines
US4075906A (en) Variable speed governor
JP4393300B2 (en) diesel engine
JP2533412Y2 (en) Governor device for generator drive engine
JPS5822991Y2 (en) Centrifugal speed governor for internal combustion engines
JPS5913312Y2 (en) Governor for internal combustion engines
JPS6016746Y2 (en) Diesel engine partial performance compensation device