JPH0234441Y2 - - Google Patents

Info

Publication number
JPH0234441Y2
JPH0234441Y2 JP17323085U JP17323085U JPH0234441Y2 JP H0234441 Y2 JPH0234441 Y2 JP H0234441Y2 JP 17323085 U JP17323085 U JP 17323085U JP 17323085 U JP17323085 U JP 17323085U JP H0234441 Y2 JPH0234441 Y2 JP H0234441Y2
Authority
JP
Japan
Prior art keywords
governor
lever
speed
fulcrum
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17323085U
Other languages
Japanese (ja)
Other versions
JPS6282345U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17323085U priority Critical patent/JPH0234441Y2/ja
Priority to KR1019860009473A priority patent/KR940008268B1/en
Publication of JPS6282345U publication Critical patent/JPS6282345U/ja
Application granted granted Critical
Publication of JPH0234441Y2 publication Critical patent/JPH0234441Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • High-Pressure Fuel Injection Pump Control (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、デイーゼルエンジンの調速装置に関
し、低速運転時における速度変動率を小さくする
とともに、回転のバラ付きをも小さくするものを
提供する。
[Detailed description of the invention] <Industrial application field> The present invention relates to a speed governor for a diesel engine, and provides a device that reduces speed fluctuation rate during low-speed operation and also reduces variation in rotation. .

〈従来技術1〉 本考案の特徴となるデイーゼルエンジンの調速
装置の基本構造は、例えば第1,3、又は5図に
示すように、デイーゼルエンジンEのガバナGの
ガバナレバー1をガバナスプリング2を介して調
速レバー3に連動連結してなる形式のものであ
る。
<Prior art 1> The basic structure of the speed governor of a diesel engine, which is a feature of the present invention, is as shown in FIGS. 1, 3, or 5, for example, as shown in FIG. It is of a type in which it is interlocked and connected to the speed regulating lever 3 via the speed regulating lever 3.

この形式の従来技術1としては、第3図に示す
ように、ガバナレバー1が無負荷位置Aに位置す
る状態において、調速レバー3の支点4をガバナ
スプリング2の長手方向が区切る上・下空間に関
しガバナレバー1の支点5と同じ側に位置させ、
ガバナスプリング2がガバナレバー1を引つ張る
引き角θを低速運転位置Bから高速運転位置Cに
かけて略90度に設定したものがある。
As shown in FIG. 3, in this type of prior art 1, when the governor lever 1 is located at the no-load position A, the upper and lower spaces are separated by the longitudinal direction of the governor spring 2 and the fulcrum 4 of the speed regulating lever 3. with respect to the fulcrum 5 of the governor lever 1,
There is one in which the pull angle θ at which the governor spring 2 pulls the governor lever 1 is set to approximately 90 degrees from the low speed operating position B to the high speed operating position C.

〈従来技術1の問題点〉 一般に、ガバナフオースは、横軸に回転数を、
また、縦軸に力を各々とる場合、第4図に示すよ
うに、二次曲線的に変化するが、一方のガバナス
プリングはリニアー的にしか変化しないため、ガ
バナフオース曲線の高速側の変化率に合致したス
プリングを選択して、高速回転側のガバナの応答
感度を高めている。
<Problems with Prior Art 1> In general, the governor force has the rotational speed on the horizontal axis.
In addition, when the force is applied to the vertical axis, as shown in Figure 4, it changes in a quadratic curve, but one governor spring changes only linearly, so the rate of change on the high-speed side of the governor force curve Matching springs are selected to increase the response sensitivity of the governor on the high-speed rotation side.

従つて、低速側ではガバナフオース曲線の変化
率とスプリング直線の傾きとの間にずれを生じ、
所定の運転状態から負荷が軽減した場合、ガバナ
フオースに対してガバナスプリングの張力が強く
なりすぎ、速度変動率を大きくしてしまう。
Therefore, on the low speed side, a deviation occurs between the rate of change of the governor force curve and the slope of the spring straight line,
When the load is reduced from a predetermined operating state, the tension of the governor spring becomes too strong with respect to the governor force, increasing the rate of speed fluctuation.

逆に、負荷が増大した場合には、ガバナフオー
スに対してガバナスプリングの張力が弱くなりす
ぎて回転低下が大きく、出力を充分に発揮し得な
くなつてしまう。
Conversely, when the load increases, the tension of the governor spring with respect to the governor force becomes too weak, resulting in a large drop in rotation and an inability to produce sufficient output.

〈従来技術2〉 第5図は、低速側での速度変動率の増大を抑制
できる従来技術2を示す。
<Prior Art 2> FIG. 5 shows a prior art 2 that can suppress an increase in speed fluctuation rate on the low speed side.

即ち、ガバナレバー1が無負荷位置Aに位置す
る状態において、調速レバー3の支点4をガバナ
スプリング2を中にしてガバナレバー1の支点5
とは反対側に位置させる。
That is, when the governor lever 1 is located at the no-load position A, the fulcrum 4 of the governor lever 3 is set to the fulcrum 5 of the governor lever 1 with the governor spring 2 inside.
Position it on the opposite side.

そして、ガバナスプリング2がガバナレバー1
を引つ張る引き角θを鋭角に設定するとともに、
調速レバー3が低速運転位置Bから高速運転位置
Cに近づくにつれて前記引き角θの値が大きくな
るように設定する。
Then, the governor spring 2 is connected to the governor lever 1.
While setting the pulling angle θ to be acute,
The pull angle θ is set to increase as the regulating lever 3 approaches the high speed operation position C from the low speed operation position B.

調速レバー3の支点がガバナスプリング2とガ
バナレバー1との従動側係合点6から離れる離間
距離lを、調速レバー3の支点4からガバナスプ
リング2と調速レバー3との主動側係合点7まで
の腕長さrよりも、可成り小さい寸法に設定す
る。
The distance l between the fulcrum of the governor lever 3 and the driven side engagement point 6 between the governor spring 2 and the governor lever 1 is calculated from the fulcrum 4 of the governor lever 3 to the main drive side engagement point 7 between the governor spring 2 and the governor lever 3. Set the dimension to be considerably smaller than the arm length r up to.

そして、調速レバー支点4と従動側係合点6と
を結ぶ仮想直線Pと直交し且つ調速レパー支点4
を通る仮想基準線Sを想定し、調速レバーの低速
運転位置Bと高速運転位置Cとの間の調速揺動全
領域Tを仮想基準線Sよりも高速側の領域に位置
させたものである。
Then, the speed-governing lever fulcrum 4 is perpendicular to the imaginary straight line P connecting the speed-governing lever fulcrum 4 and the driven side engagement point 6.
Assuming an imaginary reference line S that passes through the imaginary reference line S, the entire region T of the speed governor swing between the low-speed operation position B and the high-speed operation position C of the speed governor lever is located in an area on the high-speed side than the virtual reference line S. It is.

この構造によれば、ガバナスプリング2の張力
F0のうち、揺動運動に作用する分力F1は、ガバ
ナレバー1とガバナスプリング3との挟角θを用
いて表わせば、 F1=F0sinθ となる。
According to this structure, the tension of the governor spring 2
Of F 0 , the component force F 1 that acts on the rocking motion is expressed using the included angle θ between the governor lever 1 and the governor spring 3, as follows: F 1 =F 0 sin θ.

従つて、この揺動分力F1は調速レバー3の設
定回転数に対し、sin曲線を描いて変化し、ガバ
ナフオースの二次曲線的な変化に近似する。
Therefore, this oscillating force F 1 changes in a sinusoidal curve with respect to the set rotational speed of the governor lever 3, and approximates a quadratic curve-like change in the governor force.

このため、調速レバー3が高速及び低速運転位
置のいずれに来ても、揺動分力F1の変化率はガ
バナフオースの変化率に近似するので、当該揺動
分力F1はガバナフオースに狭い回転領域で釣り
合うことができ、従来技術1の問題点であつた低
速運転時における速度変動率が大きくなる事を抑
制できる。
Therefore, regardless of whether the speed governor lever 3 is in the high-speed or low-speed operation position, the rate of change of the swinging force F1 approximates the rate of change of the governor force, so the swinging force F1 is narrower than the governor force. Balance can be achieved in the rotational range, and it is possible to suppress an increase in speed fluctuation rate during low-speed operation, which was a problem with Prior Art 1.

〈従来技術2の問題点〉 その反面、ガバナスプリング2の張力のうち、
揺動分力F1に直交する求心分力F2はF0cosθの値
でガバナレバーを支点5に押付けるため、ガバナ
レバー1が揺動するのを妨げる摩擦抵抗となる。
<Problems with Prior Art 2> On the other hand, of the tension of the governor spring 2,
Since the centripetal force F 2 orthogonal to the swinging force F 1 presses the governor lever against the fulcrum 5 with a value of F 0 cosθ, it becomes a frictional resistance that prevents the governor lever 1 from swinging.

上記従来技術2においては、離間距離lが小さ
いうえ、調速揺動領域Tが仮想基準線Sよりも高
速側に偏ることから、ガバナスプリング2は低速
運転位置Bと高速運転位置Cとの間での長さの変
化幅が小さくなるので、その張力の変化が少な
い。
In the above-mentioned prior art 2, since the separation distance l is small and the speed control swing region T is biased toward the high speed side with respect to the virtual reference line S, the governor spring 2 is located between the low speed operation position B and the high speed operation position C. Since the width of change in length is small, the change in tension is small.

これにより、低速運転時には、ガバナスプリン
グ2の張力F0が高速運転時のときに近似した大
きい値になる。
As a result, during low-speed operation, the tension F 0 of the governor spring 2 becomes a large value similar to that during high-speed operation.

従つて、これに伴い求心分力F2が大きくなつ
て、ガバナレバー1はその支点5で大きな摩擦抵
抗を受けて揺動しにくくなる。
Accordingly, the centripetal force F 2 increases accordingly, and the governor lever 1 receives a large frictional resistance at its fulcrum 5, making it difficult to swing.

この結果、回転数のバラ付きが大きくなり、ハ
ンチングも起り易くなる。
As a result, variations in the number of rotations become large and hunting becomes more likely to occur.

本考案は、この回転数のバラ付きを小さくする
とともに、ハンチングを起りにくくすることを技
術的課題とする。
The technical objective of the present invention is to reduce this variation in rotational speed and to make hunting less likely to occur.

〈問題点を解決するための手段〉 上記課題を解消する手段を、実施例に対応する
第1図及び第2図を用いて以下に説明する。
<Means for solving the problems> Means for solving the above problems will be explained below using FIG. 1 and FIG. 2 corresponding to the embodiment.

即ち、前記従来技術2の基本構造に加えて、調
速レバー3の支点4がガバナスプリング2とガバ
ナレバー1との従動側係合点6から離れる離間距
離lを、調速レバー3の支点4からガバナスプリ
ング2と調速レバー3との主動側係合点7までの
腕長さrと略等しい寸法に設定し、調速レバー支
点4と従動側係合点6とを結ぶ仮想直線Pと直交
し、且つ、調速レバー支点4を通る仮想基準線S
を想定し、調速レバー3の低速運転位置Bと高速
運転位置Cとの間の調速揺動領域Tを仮想基準線
Sより低速側と高速側との両方にまたがらせて位
置させたものである。
That is, in addition to the basic structure of the prior art 2, the separation distance l between the fulcrum 4 of the governor lever 3 and the driven side engagement point 6 between the governor spring 2 and the governor lever 1 is changed from the fulcrum 4 of the governor lever 3 to the governor. The length is set to be approximately equal to the arm length r between the spring 2 and the regulating lever 3 up to the engagement point 7 on the driving side, and perpendicular to the imaginary straight line P connecting the regulating lever fulcrum 4 and the engagement point 6 on the driven side. , virtual reference line S passing through the regulating lever fulcrum 4
Assuming that, the speed control swing region T between the low speed operation position B and the high speed operation position C of the speed control lever 3 is positioned so as to straddle both the low speed side and the high speed side with respect to the virtual reference line S. It is something.

〈作用〉 本考案では、離間距離lを大きくするうえ、調
速揺動領域Tを仮想基準線Sより低速側と高速側
との両方にまたがらせて位置させた事から、ガバ
ナスプリング2は低速運転位置Bと高速運転位置
Cとの間での長さの変化幅が大きくなり、その張
力の変化が大きくなる。
<Function> In the present invention, in addition to increasing the separation distance l, the governor spring 2 is positioned so as to straddle both the low speed side and the high speed side of the virtual reference line S. The range of change in length between the low-speed operation position B and the high-speed operation position C becomes large, and the change in tension becomes large.

これにより、低速運転時には、ガバナスプリン
グ2の張力F0が高速運転のときよりも遥かに弱
い小さい値になる。
As a result, during low-speed operation, the tension F 0 of the governor spring 2 becomes a much weaker and smaller value than during high-speed operation.

従つて、これに伴い求心分力F2が小さくなり、
ガバナレバー1と支点5との摩擦抵抗を小さくし
て、ガバナレバー1が軽く揺動できるようにな
る。
Therefore, the centripetal force F 2 decreases accordingly,
By reducing the frictional resistance between the governor lever 1 and the fulcrum 5, the governor lever 1 can be lightly swung.

この結果、回転数のバラ付きが小さくなるう
え、ハンチングも起りにくくなる。
As a result, variations in the number of rotations become smaller, and hunting becomes less likely to occur.

〈考案の効果〉 本考案は、揺動分力をsin曲線的に変化させて、
低速運転時での速度変動率を小さく抑制するとと
もに、低速運転位置におけるガバナスプリングの
張力を小さくして揺動抵抗を減少させ、回転数の
バラ付きを小さくすることにより、従来技術の全
ての問題点を一挙に解消し、高精度のガバナを得
ることができる。
<Effect of the invention> The invention changes the swing component force in a sinusoidal manner,
By suppressing the speed fluctuation rate during low-speed operation, and reducing the tension of the governor spring at the low-speed operation position to reduce rocking resistance and the variation in rotation speed, all of the problems of the conventional technology have been solved. It is possible to eliminate all points at once and obtain a highly accurate governor.

〈実施例〉 以下、本考案の実施例を図面に基いて説明す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第1図はガバナの概略説明図、第2図はデイー
ゼルエンジンのガバナ周辺の縦断正面図であつ
て、デイーゼルエンジンEの燃料噴射ポンプ収容
室10に燃料噴射カム軸11及びガバナ軸12を
上・下並列状に軸架し、各々ギヤを介してクラン
ク軸に連動する。
FIG. 1 is a schematic explanatory diagram of the governor, and FIG. 2 is a longitudinal sectional front view of the vicinity of the governor of the diesel engine, in which the fuel injection camshaft 11 and the governor shaft 12 are placed in the fuel injection pump housing chamber 10 of the diesel engine E. The shafts are mounted in parallel at the bottom, and each is linked to the crankshaft via a gear.

燃料噴射カム軸11に燃料噴射ポンプ14を連
動し、当該ポンプ14を燃焼室に臨ませた燃料噴
射ノズルに接続する。
A fuel injection pump 14 is linked to the fuel injection camshaft 11, and the pump 14 is connected to a fuel injection nozzle facing the combustion chamber.

上記ガバナ軸12にウエイト基盤15を固定
し、ウエイト基盤15にフライウエイト16を揺
動自在に枢支し、フライウエイトの出力端17を
ガバナ軸12に摺動自在に挿嵌したガバナスリー
ブ18の左端面19に接当する。
A governor sleeve 18 includes a weight base 15 fixed to the governor shaft 12, a fly weight 16 swingably supported on the weight base 15, and an output end 17 of the fly weight slidably inserted into the governor shaft 12. It comes into contact with the left end surface 19.

燃料噴射ポンプ室10に支点5を介して揺動自
在に枢支したガバナレバー1を主レバー1aと副
レバー1bから構成し、主レバー1aの下方を逆
U字状に分岐してガバナ軸12に股がらせ、当該
U字部21の先端に転動自在にローラ22を枢支
して、前記ガバナスリーブ18の右端面23に当
該ローラ22を接当可能に構成する。
A governor lever 1 is swingably supported in a fuel injection pump chamber 10 via a fulcrum 5, and is composed of a main lever 1a and a sub-lever 1b. A roller 22 is rotatably supported at the tip of the U-shaped portion 21 so that the roller 22 can come into contact with the right end surface 23 of the governor sleeve 18 .

上記主レバー1aの上端に係合溝24を切欠
き、燃料噴射ポンプ14の燃料噴射ラツクのラツ
クピン25をこの係合溝24に嵌合し、当該上端
部26の右端に始動スプリング27を懸架し、そ
の左端に被接当部28を設けて、副レバー1bの
接当部29を当該被接当部28に接当せしめる。
An engagement groove 24 is cut out in the upper end of the main lever 1a, a rack pin 25 of the fuel injection rack of the fuel injection pump 14 is fitted into the engagement groove 24, and a starting spring 27 is suspended on the right end of the upper end 26. , a contact portion 28 is provided at the left end thereof, and the contact portion 29 of the sub-lever 1b is brought into contact with the contact portion 28.

副レバー1bはその基端部30を支点5に枢支
し、その上端部31に係合孔32を空けて、ガバ
ナスプリング2の一端を当該係合孔32に懸架し
(この懸架部を従動側係合点6とする)、その他端
を燃料噴射ポンプ室10に枢支した調速レバー3
の先端に懸架する(この懸架部を主動側係合点7
とする)。
The sub-lever 1b has its base end 30 pivotally supported on the fulcrum 5, has an engagement hole 32 in its upper end 31, and suspends one end of the governor spring 2 in the engagement hole 32 (this suspension is driven side engagement point 6), and a speed regulating lever 3 whose other end is pivoted to the fuel injection pump chamber 10.
(This suspension part is connected to the driving side engagement point 7.
).

この場合、調速レバー3の支点4を、ガバナス
プリング2を中にしてガバナレバー1の支点5と
は反対側に位置させ、ガバナスプリング2をガバ
ナレバー1を引つ張る引き角θを鋭角に設定し、
調速レバー3が低速運転位置Bから高速運転位置
Cに近づくにつれて前記引き角θの値が大きくな
るように設定する。
In this case, the fulcrum 4 of the speed regulating lever 3 is located on the opposite side from the fulcrum 5 of the governor lever 1 with the governor spring 2 inside, and the pull angle θ at which the governor spring 2 pulls the governor lever 1 is set to an acute angle. ,
The pull angle θ is set to increase as the regulating lever 3 approaches the high speed operation position C from the low speed operation position B.

また、調速レバー3の支点4が従動側係合点6
から離れる離間距離lを、調度レバー3の支点4
から主動側係合点7までの腕長さrと略等しく
し、調速レバー支点4と従動側係合点6とを結ぶ
仮想直線Pと直交し、且つ、調速レバー支点4を
通る仮想基準線Sに対して、調速レバー3の低速
運転位置Bと高速運転位置Cとの間の調速揺動領
域Tをまたがらせる。
Also, the fulcrum 4 of the speed regulating lever 3 is at the driven side engagement point 6.
The distance l away from the fulcrum 4 of the adjustment lever 3
A virtual reference line that is approximately equal to the arm length r from to the driving side engagement point 7, is perpendicular to the imaginary straight line P connecting the speed governor lever fulcrum 4 and the driven side engagement point 6, and passes through the speed governor lever fulcrum 4. S is made to straddle the speed control swing region T between the low speed operation position B and the high speed operation position C of the speed control lever 3.

斯くしてなるガバナにおいては、エンジン回転
数が上昇すると、フライウエイト16が遠心力を
受けて外方に揺動し、ガバナスリーブ18を右方
に摺動させて、ガバナレバー1にガバナフオース
GFを付与する。
In the governor configured in this way, when the engine speed increases, the flyweight 16 swings outward under centrifugal force, slides the governor sleeve 18 to the right, and causes the governor lever 1 to engage the governor force.
Grant GF.

ガバナフオースGFを受けたガバナレバー1は
支点5を中心として反時計廻りに揺動し、燃料噴
射ポンプ14のラツクピン25を燃料減量側にス
ライドせしめる。
The governor lever 1, which receives the governor force GF, swings counterclockwise about the fulcrum 5, and slides the rack pin 25 of the fuel injection pump 14 toward the fuel reduction side.

逆に、回転数が低下するとフライウエイト16
からのガバナフオースGFが減り、ガバナスプリ
ング2の張力が勝つてガバナレバー1を時計廻り
に揺動させ、上記ラツクピン25を燃料増量側に
スライドせしめる。
Conversely, when the rotation speed decreases, the fly weight decreases to 16
The governor force GF decreases, the tension of the governor spring 2 overcomes, and the governor lever 1 is swung clockwise, causing the rack pin 25 to slide toward the fuel increase side.

そして、調速レバー3を低速運転位置Bから高
速運転位置Cまで移動させると、エンジン回転数
に対して2次曲線的に変化するガバナフオース
GFに見合つて、ガバナスプリング2の張力もsin
曲線的に変化して、ガバナ差を小さく抑えるとと
もに、低速運転位置におけるガバナスプリング2
の張力を抑えて、回転のバラ付きを抑制できる。
When the governor lever 3 is moved from the low-speed operation position B to the high-speed operation position C, the governor force changes quadratically with respect to the engine speed.
In line with GF, the tension of governor spring 2 is also sin
The governor spring 2 changes in a curve to keep the governor difference small, and the governor spring 2 at the low speed operating position.
By suppressing the tension, variations in rotation can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本考案の実施例を示し、第
1図はガバナの概略説明図、第2図はデイーゼル
エンジンのガバナ周辺の縦断正面図、第3図は従
来技術1を示す第1図相当図、第4図はガバナフ
オース曲線図、第5図は従来技術2を示す第1図
相当図である。 1……ガバナレバー、2……ガバナスプリン
グ、3……調速レバー、4……3の支点、5……
1の支点、6……2と1との従動側係合点、7…
…2と3との主動側係合点、A……1の無負荷位
置、B……1の低速運転位置、C……1の高速運
転位置、E……デイーゼルエンジン、G……ガバ
ナ、P……4と6を結ぶ仮想直線、S……仮想基
準線、T……調速揺動領域、l……4と6との離
間距離、r……4から7までの腕長さ、θ……2
が1を引つ張る引き角。
1 and 2 show an embodiment of the present invention, FIG. 1 is a schematic explanatory diagram of the governor, FIG. 2 is a longitudinal sectional front view of the vicinity of the governor of a diesel engine, and FIG. 3 is a diagram showing the prior art 1. 1 is a diagram corresponding to FIG. 1, FIG. 4 is a governor force curve diagram, and FIG. 5 is a diagram corresponding to FIG. 1 showing Prior Art 2. 1...Governor lever, 2...Governor spring, 3...Governing lever, 4...3's fulcrum, 5...
1 fulcrum, 6... Driven side engagement point between 2 and 1, 7...
...Movement side engagement point between 2 and 3, A...1 no-load position, B...1 low speed operating position, C...1 high speed operating position, E...diesel engine, G...governor, P ...Virtual straight line connecting 4 and 6, S...Virtual reference line, T...Speed control swing area, l...Separation distance between 4 and 6, r...Arm length from 4 to 7, θ ...2
is the pulling angle that pulls 1.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] デイーゼルエンジンEのガバナGのガバナレバ
ー1をガバナスプリング2を介して調速レバー3
に連動連結してなるデイーゼルエンジンの調速装
置において、調速レバー3の支点4をガバナスプ
リング2を中にしてガバナレバー1の支点5とは
反対側に位置させ、ガバナスプリング2がガバナ
レバー1を引つ張る引き角θを鋭角に設定すると
ともに、調速レバー3が低速運転位置Bから高速
運転位置Cに近づくにつれて前記引き角θの値が
大きくなるように設定し、ガバナレバー1が無負
荷位置Aに位置する状態において、調速レバー3
の支点4がガバナスプリング2とガバナレバー1
との従動側係合点6から離れる離間距離lを、調
速レバー3の支点4からガバナスプリング2と調
速レバー3との主動側係合点7までの腕長さrと
略等しい寸法に設定し、調速レバー支点4と従動
側係合点6とを結ぶ仮想直線Pと直交し、且つ、
調速レバー支点4を通る仮想基準線Sを想定し、
調速レバー3の低速運転位置Bと高速運転位置C
との間の調速揺動領域Tを仮想基準線Sより低速
側と高速側との両方にまたがらせて位置させた事
を特徴とするデイーゼルエンジンの調速装置。
The governor lever 1 of the governor G of the diesel engine E is connected to the speed regulating lever 3 via the governor spring 2.
In the speed governor of a diesel engine, the fulcrum 4 of the speed governor lever 3 is located on the opposite side of the fulcrum 5 of the governor lever 1 with the governor spring 2 inside, and the governor spring 2 pulls the governor lever 1. The tightening pull angle θ is set to an acute angle, and the value of the pull angle θ is set to increase as the governor lever 3 approaches the high speed operation position C from the low speed operation position B, and the governor lever 1 is set to the no-load position A. In the state where the regulating lever 3
The fulcrum 4 is the governor spring 2 and the governor lever 1.
The separation distance l from the driven side engagement point 6 with the governor spring 2 and the speed regulating lever 3 is set to be approximately equal to the arm length r from the fulcrum 4 of the governor spring 2 to the driving side engagement point 7 of the governor spring 2 and the speed regulating lever 3. , is orthogonal to the virtual straight line P connecting the regulating lever fulcrum 4 and the driven side engagement point 6, and
Assuming a virtual reference line S passing through the regulating lever fulcrum 4,
Low speed operation position B and high speed operation position C of speed regulating lever 3
A speed governor for a diesel engine, characterized in that a speed governing swing region T between the two is located across both a low speed side and a high speed side from a virtual reference line S.
JP17323085U 1985-11-11 1985-11-11 Expired JPH0234441Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17323085U JPH0234441Y2 (en) 1985-11-11 1985-11-11
KR1019860009473A KR940008268B1 (en) 1985-11-11 1986-11-10 Speed controlling apparatus for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17323085U JPH0234441Y2 (en) 1985-11-11 1985-11-11

Publications (2)

Publication Number Publication Date
JPS6282345U JPS6282345U (en) 1987-05-26
JPH0234441Y2 true JPH0234441Y2 (en) 1990-09-17

Family

ID=31110496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17323085U Expired JPH0234441Y2 (en) 1985-11-11 1985-11-11

Country Status (1)

Country Link
JP (1) JPH0234441Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521709Y2 (en) * 1988-02-05 1997-01-08 株式会社クボタ Mechanical governor for diesel engine
ES2065498T3 (en) * 1989-11-07 1995-02-16 Kubota Kk DIESEL ENGINE REGULATOR DEVICE.

Also Published As

Publication number Publication date
JPS6282345U (en) 1987-05-26

Similar Documents

Publication Publication Date Title
JPH0234441Y2 (en)
JPH0541242Y2 (en)
JPS595157Y2 (en) Centrifugal force governor for diesel engines
JPH0526271Y2 (en)
JPH0511327Y2 (en)
JPH0511326Y2 (en)
KR890010406A (en) Governors for fuel injection pumps
JPS6228655Y2 (en)
JP2521709Y2 (en) Mechanical governor for diesel engine
JPS6137047Y2 (en)
JPS591065Y2 (en) Mechanical simple output meter
JPH0144755Y2 (en)
JPH0444822Y2 (en)
JPH0144756Y2 (en)
JPH0245481Y2 (en)
JP2507070Y2 (en) Governor for fuel injection system for diesel engine
JPH044245Y2 (en)
JP2564188B2 (en) Fuel injection timing control device for fuel injection pump
JPS581632Y2 (en) Mechanical all speed governor
KR900009307Y1 (en) Angleichen device of centrifugal pump for diesel engine
JPH0523792Y2 (en)
JPH0426676Y2 (en)
JPS5941308Y2 (en) Governor for internal combustion engines
JPS6385229A (en) Governor device for internal combustion engine
KR900010224Y1 (en) Centrifugal governor of fuel indjection pump for diesel engine