JPH0511326Y2 - - Google Patents

Info

Publication number
JPH0511326Y2
JPH0511326Y2 JP18031385U JP18031385U JPH0511326Y2 JP H0511326 Y2 JPH0511326 Y2 JP H0511326Y2 JP 18031385 U JP18031385 U JP 18031385U JP 18031385 U JP18031385 U JP 18031385U JP H0511326 Y2 JPH0511326 Y2 JP H0511326Y2
Authority
JP
Japan
Prior art keywords
governor
speed
fulcrum
lever
governor lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18031385U
Other languages
Japanese (ja)
Other versions
JPS6288844U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18031385U priority Critical patent/JPH0511326Y2/ja
Priority to KR1019860009473A priority patent/KR940008268B1/en
Publication of JPS6288844U publication Critical patent/JPS6288844U/ja
Application granted granted Critical
Publication of JPH0511326Y2 publication Critical patent/JPH0511326Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • High-Pressure Fuel Injection Pump Control (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、デイーゼルエンジンの調速装置に関
し、位置調節手段で調速レバー支点を変移するこ
とにより所望のガバナ差を選定できるとともに、
低速及び高速ストツパーの調節を調速レバーの支
点位置の調整に伴つて自動的に行なえるものを提
供する。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention relates to a speed governor for a diesel engine, and a desired governor difference can be selected by shifting the speed governor lever fulcrum using a position adjustment means.
To provide a device that can automatically adjust low speed and high speed stoppers in conjunction with adjusting the fulcrum position of a speed control lever.

<従来技術 1> 本考案の対象となるデイーゼルエンジンの調速
装置の基本構造は、例えば第7,9、又は11図
に示すように、デイーゼルエンジンEのガバナG
のガバナスプリング2の一端をガバナレバー1と
の従動側係合点6に係合するとともに、他端を調
速レバー3との主動側係合点7に係合してガバナ
レバー1を調速レバー3に連動連結してなる形式
のものである。
<Prior art 1> The basic structure of the speed governor of a diesel engine, which is the object of the present invention, is as shown in FIG.
One end of the governor spring 2 is engaged with the driven side engagement point 6 with the governor lever 1, and the other end is engaged with the driving side engagement point 7 with the speed regulating lever 3 to interlock the governor lever 1 with the speed regulating lever 3. It is in a connected format.

この形式の従来技術1としては、第9図に示す
ように、ガバナレバー1が無負荷位置Aに位置す
る状態において、調速レバー3の支点4をガバナ
スプリングの長手方向が区切る上・下空間に関し
ガバナレバー1の支点5と同じ側に位置させ、こ
のガバナレバー支点5と上記の従動側係合点6と
を結ぶ仮想線分と、ガバナスプリング2の中心軸
線との夾角で形成されるガバナスプリング2のガ
バナレバー1を引つ張る引き角θを低速運転位置
Bから高速運転位置Cにかけて略90度に設定した
ものがある。
As shown in FIG. 9, this type of prior art 1 relates to the upper and lower spaces in which the longitudinal direction of the governor spring separates the fulcrum 4 of the speed regulating lever 3 when the governor lever 1 is located at the no-load position A. The governor lever of the governor spring 2 is located on the same side as the fulcrum 5 of the governor lever 1 and is formed by the included angle between the central axis of the governor spring 2 and an imaginary line connecting the governor lever fulcrum 5 and the driven side engagement point 6. There is one in which the pulling angle θ for pulling 1 is set to approximately 90 degrees from the low-speed operating position B to the high-speed operating position C.

<従来技術1の問題点> 一般に、ガバナフオースは、横軸に回転数を、
また、縦軸に力を各々とる場合、第10図に示す
ように、二次曲線的に変化するが、一方のガバナ
スプリングはリニアー的にしか変化しないため、
ガバナフオース曲線の高速側の変化率に合致した
スプリングを選択して、高速回転側のガバナの応
答感度を高めている。
<Problems with Prior Art 1> Generally, the governor force has the rotational speed on the horizontal axis.
In addition, when the force is applied to the vertical axis, as shown in Fig. 10, it changes in a quadratic curve, but one governor spring changes only in a linear manner, so
A spring that matches the rate of change on the high-speed side of the governor force curve is selected to increase the response sensitivity of the governor on the high-speed rotation side.

従つて、低速側ではガバナフオース曲線の変化
率とスプリング直線の傾きとの間にずれを生じ、
所定の運転状態から負荷が軽減した場合、ガバナ
フオースに対してガバナスプリングの張力が強く
なりすぎ、速度変動率を大きくしてしまう。
Therefore, on the low speed side, a deviation occurs between the rate of change of the governor force curve and the slope of the spring straight line,
When the load is reduced from a predetermined operating state, the tension of the governor spring becomes too strong with respect to the governor force, increasing the rate of speed fluctuation.

逆に、負荷が増大した場合には、ガバナフオー
スに対してガバナスプリングの張力が弱くなりす
ぎて回転低下が大きく、出力を充分に発揮し得な
くなつてしまう。
Conversely, when the load increases, the tension of the governor spring with respect to the governor force becomes too weak, resulting in a large drop in rotation and an inability to produce sufficient output.

<従来技術 2> 第11図は、低速側での速度変動率の増大を抑
制できる従来技術2を示す。
<Prior Art 2> FIG. 11 shows a prior art 2 that can suppress an increase in speed fluctuation rate on the low speed side.

即ち、ガバナレバー1が無負荷位置Aに位置す
る状態において、調速レバー3の支点4をガバナ
スプリング2を中にしてガバナレバー1の支点5
とは反対側に位置させる。
That is, when the governor lever 1 is located at the no-load position A, the fulcrum 4 of the governor lever 3 is set to the fulcrum 5 of the governor lever 1 with the governor spring 2 inside.
Position it on the opposite side.

そして、ガバナスプリング2がガバナレバー1
を引つ張る前記の引き角θを鋭角に設定するとと
もに、調速レバー3が低速運転位置Bから高速運
転位置Cに近づくにつれてこの引き角θの値が大
きくなるように設定する。
Then, the governor spring 2 is connected to the governor lever 1.
The above-mentioned pull angle θ is set to be an acute angle, and the value of the pull angle θ is set to increase as the regulating lever 3 approaches the high speed operation position C from the low speed operation position B.

調速レバー3の支点4がガバナスプリング2と
ガバナレバー1との従動側係合点6から離れる離
間距離lを、調速レバー3の支点4からガバナス
プリング2と調速レバー3との主動側係合点7ま
での腕長さrよりも、可成り小さい寸法に設定す
る。
The distance l between the fulcrum 4 of the governor lever 3 and the engagement point 6 on the driven side between the governor spring 2 and the governor lever 1 is defined as the distance l from the fulcrum 4 of the governor lever 3 to the engagement point on the driving side between the governor spring 2 and the governor lever 3. The size is set to be considerably smaller than the arm length r up to 7.

そして、調速レバー支点4と従動側係合点6と
を結ぶ仮想直線Pと直交し且つ調速レバー支点4
を通る仮想基準線Sを想定し、調速レバーの低速
運転位置Bと高速運転位置Cとの間の調速揺動領
域Tを仮想基準線Sよりも高速側の領域に位置さ
せたものである。
The governor lever fulcrum 4 is perpendicular to the imaginary straight line P connecting the governor lever fulcrum 4 and the driven side engagement point 6.
Assuming a virtual reference line S that passes through the imaginary reference line S, the speed control swing region T between the low speed operation position B and the high speed operation position C of the speed control lever is located in an area on the high speed side than the virtual reference line S. be.

この構造によれば、ガバナスプリング2の張力
F0のうち、揺動運動に作用する分力F1は、ガバ
ナレバー1とガバナスプリング2とのガバナレバ
ー支点5側の挟角θを用いて表わせば、 F1=F0sinθ となる。
According to this structure, the tension of the governor spring 2
Of F 0 , the component force F 1 that acts on the rocking motion is expressed using the included angle θ between the governor lever 1 and the governor spring 2 on the side of the governor lever fulcrum 5, as follows: F 1 =F 0 sin θ.

従つて、この揺動分力F1は調速レバー3の設
定回転数に対し、sin曲線を描いて変化し、ガバ
ナフオースの二次曲線的な変化に近似する。
Therefore, this oscillating force F 1 changes in a sinusoidal curve with respect to the set rotational speed of the governor lever 3, and approximates a quadratic curve-like change in the governor force.

このため、調速レバー3が高速及び低速運転位
置のいずれに来ても、揺動分力F1の変化率はガ
バナフオースの変化率に近似するので、当該揺動
分力F1はガバナフオースに狭い回転領域で釣り
合うことができ、従来技術1の問題点であつた低
速運転時における速度変動率が大きくなる事を抑
制できる。
Therefore, regardless of whether the speed governor lever 3 is in the high-speed or low-speed operation position, the rate of change of the swinging force F1 approximates the rate of change of the governor force, so the swinging force F1 is narrower than the governor force. Balance can be achieved in the rotational range, and it is possible to suppress an increase in speed fluctuation rate during low-speed operation, which was a problem with Prior Art 1.

<従来技術2の問題点> その反面、ガバナスプリング2の張力F0のう
ち、揺動分力F1に直交する求心分力F2はF0cosθ
の値でガバナレバーを支点5に押付けるため、ガ
バナレバー1が揺動するのを妨げる摩擦抵抗とな
る。
<Problems with Prior Art 2> On the other hand, of the tension F 0 of the governor spring 2, the centripetal force F 2 perpendicular to the swing component F 1 is F 0 cosθ
Since the governor lever is pressed against the fulcrum 5 with a value of , a frictional resistance is generated that prevents the governor lever 1 from swinging.

上記従来技術2においては、離間距離lが小さ
いうえ、調速揺動領域Tが仮想基準線Sよりも高
速側に偏ることから、ガバナスプリング2は低速
運転位置Bと高速運転位置Cとの間での長さの変
化幅が小さくなるので、その張力の変化が少な
い。
In the above-mentioned prior art 2, since the separation distance l is small and the speed-governing swing region T is biased toward the high-speed side with respect to the virtual reference line S, the governor spring 2 is located between the low-speed operation position B and the high-speed operation position C. Since the width of change in length is small, the change in tension is small.

これにより、低速運転時には、ガバナスプリン
グ2の張力F0が高速運転時のときに近似した大
きい値になる。
As a result, during low-speed operation, the tension F 0 of the governor spring 2 becomes a large value similar to that during high-speed operation.

従つて、これに伴い求心分力F2が大きくなつ
て、ガバナレバー1はその支点5で大きな摩擦抵
抗を受けて揺動しにくくなる。
Accordingly, the centripetal force F 2 increases accordingly, and the governor lever 1 receives a large frictional resistance at its fulcrum 5, making it difficult to swing.

この結果、回転数のバラ付きが大きくなり、ハ
ンチングも起り易くなる。
As a result, variations in the number of rotations become large and hunting becomes more likely to occur.

<先行技術> そこで、この回転数のバラ付きを小さくすると
ともに、ハンチングを起りにくくする技術を、本
考案に先だつて開発した。
<Prior Art> Therefore, prior to the invention of the present invention, a technology was developed to reduce variations in the rotational speed and to make hunting less likely to occur.

即ち、第7図及び第8図を用いて以下に説明す
ると、ガバナレバー1が無負荷位置Aに位置する
ときの上記の従動側係合点6と調速レバー支点4
との離間距離lを、調速レバー支点4から前記の
主動側係合点7までの腕長さrと等しい寸法に設
定し、調速レバー支点4と従動側係合点6とを結
ぶ仮想直線Pと直交し、且つ、調速レバー支点4
を通る仮想基準線Sを想定し、調速レバー3の低
速運転位置Bと高速運転位置Cとの間の調速揺動
領域Tを仮想基準線Sより低速側と高速側との両
方にまたがらせて位置させたものである。
That is, to explain below using FIGS. 7 and 8, when the governor lever 1 is located at the no-load position A, the above-mentioned driven side engagement point 6 and the governor lever fulcrum 4
The separation distance l from the governor lever fulcrum 4 is set equal to the arm length r from the driving side engagement point 7, and an imaginary straight line P connecting the governor lever fulcrum 4 and the driven side engagement point 6 is set. and perpendicular to the speed control lever fulcrum 4
Assuming an imaginary reference line S that passes through the It was placed in a horizontal position.

この先行技術では、離間距離lを大きくして腕
長さrと等しくするうえ、調速揺動領域Tを仮想
基準線Sより低速側と高速側との両方にまたがら
せて位置させた事から、ガバナスプリング2は低
速運転位置Bと高速運転位置Cとの間での長さの
変化幅が大きくなり、その張力の変化が大きくな
る。
In this prior art, the separation distance l is increased to be equal to the arm length r, and the speed control swing region T is located so as to straddle both the low speed side and the high speed side of the virtual reference line S. Therefore, the range of change in length of the governor spring 2 between the low-speed operation position B and the high-speed operation position C becomes large, and the change in tension thereof becomes large.

また、離間距離lを腕長さrに比べて大きすぎ
る寸法に設定すると、ガバナ装置が大型化する欠
点があるうえ、ガバナスプリング2の全長が長く
なるため、低速運転位置Bと高速運転位置Cとの
間のガバナスプリングの長さ変化率が小さくな
り、離間距離が小さい場合と同様の張力変化が小
さくなる欠点があるが、この先行技術では離間距
離lと腕長さrとを等しい寸法に設定しているの
で、ガバナ装置をコンパクトに構成しながらもガ
バナスプリング2の長さ変化率が大きくなり、そ
の張力の変化が大きくなる。
Furthermore, if the separation distance l is set to be too large compared to the arm length r, there is a disadvantage that the governor device will become larger, and the overall length of the governor spring 2 will become longer, resulting in lower speed operation position B and higher speed operation position C. However, in this prior art, the separation distance l and the arm length r are made equal to each other. As a result, although the governor device is configured compactly, the rate of change in the length of the governor spring 2 becomes large, and the change in tension thereof becomes large.

これにより低速運転時には、ガバナスプリング
2の張力F0が高速運転のときよりも遥かに弱い
小さい値になる。
As a result, during low-speed operation, the tension F 0 of the governor spring 2 becomes a much weaker and smaller value than during high-speed operation.

従つて、これに伴い求心分力F2が小さくなる
ので、ガバナレバー1と支点5との摩擦抵抗を小
さくして、ガバナレバー1を軽く揺動できるよう
になる。
Accordingly, since the centripetal force F 2 becomes smaller, the frictional resistance between the governor lever 1 and the fulcrum 5 is reduced, and the governor lever 1 can be easily swung.

この結果、回転数のバラ付きが小さくなるう
え、ハンチングも起りにくくなる。
As a result, variations in the number of rotations become smaller, and hunting becomes less likely to occur.

<考案が解決しようとする問題点> 一般に、実際にエンジンでは、例えば、発動発
電機用にはヘルツの変動を小さくする必要から速
度変動率、即ち、ガバナ差の小さなものを使用せ
ねばならないが、逆に耕うん機等の農作業機で
は、ガバナの応答感度が高いと回転数を急速に調
整しようとして微妙なガタツキが出るので、安定
性を重視してガバナ差のある程度大きなものを使
用する方が好ましい。
<Problems to be solved by the invention> In general, in actual engines, for example, for a motor generator, it is necessary to reduce the Hertz fluctuation, so it is necessary to use an engine with a small speed fluctuation rate, that is, a small governor difference. On the other hand, with agricultural machinery such as tillers, if the governor's response sensitivity is high, subtle wobbles will occur as the governor attempts to rapidly adjust the rotation speed, so it is better to emphasize stability and use a governor with a somewhat larger difference. preferable.

そこで、上記先行技術においてが、調速レバー
3の支点4を位置調節手段8により引き角θが変
わる方向に進退調節可能にして、低速回転域での
速度変動率を変化せしめ、もつて、発電機用及び
農作業機用の各エンジンに対し、調速装置を共通
にして、生産性を高めることが考えられる。
Therefore, in the above-mentioned prior art, the fulcrum 4 of the speed governor lever 3 is made adjustable by the position adjustment means 8 in the direction in which the pull angle θ changes, thereby changing the speed fluctuation rate in the low speed rotation range, and thereby generating electricity. It is conceivable to increase productivity by using a common speed governor for each engine for aircraft and agricultural machinery.

しかしながら、引き角θを変えて調速レバー3
の支点4を進退調節すると、調速レバー3に対
し、エンジン本体側の低速ストツパー71及び高
速ストツパー72が位置ずれを起こして燃料噴射
ポンプの燃料調節ラツクの燃料制限位置が変わつ
てしまう。
However, by changing the pulling angle θ, the regulating lever 3
When the fulcrum 4 is adjusted forward or backward, the low-speed stopper 71 and high-speed stopper 72 on the engine body side become misaligned with respect to the speed control lever 3, and the fuel restriction position of the fuel adjustment rack of the fuel injection pump changes.

この位置ずれを補正するため、調速レバー支点
4の進退調節の度に、低速ストツパー71及び高
速ストツパー72の位置調整をエンジン本体側で
別途に行なわねばならず、この調整作業が煩瑣で
あつた。
In order to correct this positional deviation, the positions of the low-speed stopper 71 and the high-speed stopper 72 must be separately adjusted on the engine body side each time the speed governor lever fulcrum 4 is adjusted forward or backward, and this adjustment work is cumbersome. .

本考案は上記問題点を解決することを技術的課
題とする。
The technical objective of the present invention is to solve the above problems.

<問題点を解決するための手段> 上記課題を解決する手段を、実施例に対応する
第1図乃至第6図を用いて以下に説明する。
<Means for Solving the Problems> Means for solving the above problems will be described below using FIGS. 1 to 6, which correspond to embodiments.

即ち、調速レバー3の支点支持具60を位置調
節手段8により引き角θが変る方向に進退調節可
能に固定壁70に支持させ、調速レバー3の低速
ストツパー71と高速ストツパー72とを支点支
持具60に設けたものである。
That is, the fulcrum support 60 of the speed regulating lever 3 is supported by the fixed wall 70 so as to be adjustable forward and backward in the direction in which the pull angle θ changes by the position adjusting means 8, and the low speed stopper 71 and the high speed stopper 72 of the speed regulating lever 3 are supported as fulcrums. This is provided on the support 60.

<作用> まず、調速レバー支点4を進退調節方向に沿つ
て変化すると、変化の前・後によつて、スプリン
グの主動側係合点7はその従動側係合点6に対し
て方向を大きく変移できるので、ガバナスプリン
グ2がガバナレバー1を引つ張る引き角θを変化
させることができる。
<Function> First, when the speed governor lever fulcrum 4 is changed along the forward/backward adjustment direction, the driving side engagement point 7 of the spring can largely shift in direction with respect to the driven side engagement point 6 depending on before and after the change. Therefore, the pulling angle θ at which the governor spring 2 pulls the governor lever 1 can be changed.

例えば、第6図に示すように、調速レバー支点
4を位置調節手段8に沿つて進退移動すると、変
化の前・後によつて引き角θが増減し、下方位置
H1に支点4を設定すると、引き角θ1は小さくな
り、ガバナスプリングの張力曲線の勾配が低速運
動位置で小さくなり、ガバナフオース曲線とのズ
レが小さくなるので、ガバナ差は小さくなる。
For example, as shown in FIG. 6, when the speed governor lever fulcrum 4 is moved forward or backward along the position adjustment means 8, the pull angle θ increases or decreases depending on before or after the change, and the lower position
When the fulcrum 4 is set at H 1 , the pull angle θ 1 becomes smaller, the slope of the tension curve of the governor spring becomes smaller at the low speed motion position, the deviation from the governor force curve becomes smaller, and the governor difference becomes smaller.

また、上方位置H2に支点4を設定すると、引
き角θ2は大きくなり、ガバナスプリングの張力曲
線の勾配は逆に大きくなつて、ガバナフオースと
ガバナスプリングの張力との差異は拡がるので、
ガバナ差は大きくなり、運転の安定性が良くな
る。
Furthermore, when the fulcrum 4 is set at the upper position H 2 , the pull angle θ 2 increases, and the slope of the tension curve of the governor spring conversely increases, and the difference between the governor force and the tension of the governor spring increases.
The governor difference becomes larger and the stability of operation improves.

一方、支点支持具60に調速レバー3と低速及
び高速の両ストツパー71,72を共に取り付け
るので、支点支持具60を固定壁70に対して位
置調節手段8により進退調節しさえすれば、引き
角θを変化できるとともに、調速レバー3と上記
両ストツパー71,72との位置関係が変らない
ので、両ストツパー71,72は調節し直す必要
がない。
On the other hand, since the speed regulating lever 3 and both low-speed and high-speed stoppers 71 and 72 are attached to the fulcrum support 60, the fulcrum support 60 can be pulled forward or backward by the position adjustment means 8 with respect to the fixed wall 70. Since the angle θ can be changed and the positional relationship between the speed regulating lever 3 and the stoppers 71, 72 does not change, there is no need to readjust the stoppers 71, 72.

<考案の効果> 本考案は、第1図に揺動分力をsin曲線的に変
化させて、低速運転時での速度変動率を小さく抑
制して従来技術1の問題点を解消することができ
る。
<Effects of the invention> The present invention solves the problem of prior art 1 by changing the swing component force in a sinusoidal manner as shown in Fig. 1, suppressing the speed fluctuation rate during low-speed operation. can.

そして、調速レバー支点と従動側係合点との離
間距離を調速レバーから主動側係合点までの腕長
さと等しい寸法に設定し、調速レバーの調速揺動
領域を仮想基準線の低速側と高速側との両方にま
たがらせて位置させたので、低速運転時における
ガバナスプリングの長さが高速運転時のそれに比
べてかなり小さくなり、この結果、ガバナ装置を
大型化することなく、低速運転位置におけるガバ
ナスプリングの張力を小さくして揺動抵抗を抑制
しもつて回転数のバラ付きを小さくして従来技術
2の問題点をも解消することができる。
Then, the distance between the governor lever fulcrum and the driven side engagement point is set to a dimension equal to the arm length from the governor lever to the driving side engagement point, and the governor swing area of the governor lever is set to the low speed of the virtual reference line. Since the governor spring is located across both the side and the high speed side, the length of the governor spring during low speed operation is considerably smaller than that during high speed operation, and as a result, the governor device does not need to be enlarged. It is possible to reduce the tension of the governor spring at the low speed operating position to suppress rocking resistance and to reduce variations in rotational speed, thereby solving the problems of prior art 2.

第2に、位置調節手段により調速レバー支点を
進退調節すると、ガバナ差を増・減調節できるの
で、ガバナ差の小さいことが要求される発電機用
と安定性が重視される耕耘機等の農作業機用との
いずれのエンジンに対しても、調速装置を共通化
して、生産性を高めることができる。
Second, by adjusting the speed governor lever fulcrum forward or backward using the position adjustment means, the governor difference can be increased or decreased, so it can be used for generators that require a small governor difference, and power tillers where stability is important. It is possible to use a common speed governor for both engines for agricultural machinery and increase productivity.

第3に、調速レバー支点を進退調節して、ガバ
ナ差を増減調節したときに、調速レバーと低速及
び高速の両ストツパーとの位置関係が変らないの
で低速及び高速の両ストツパーを調整し直す操作
が不要になる。
Thirdly, when adjusting the governor lever fulcrum forward or backward to increase or decrease the governor difference, the positional relationship between the governor lever and both the low speed and high speed stoppers does not change, so both the low speed and high speed stoppers must be adjusted. There is no need to perform any corrections.

<実施例> 以下、本考案の実施例を図面に基いて説明す
る。
<Example> Hereinafter, an example of the present invention will be described based on the drawings.

第5図はデイーゼルエンジンの概略斜視図、第
8図はデイーゼルエンジンのガバナ周辺の縦断正
面図であつて、デイーゼルエンジンEのシリンダ
ブロツク80の右側壁にギヤケース81を、ま
た、前壁のギヤケース81寄りに燃料噴射ポンプ
収容室10を設け、当該ポンプ収容室10に燃料
噴射カム軸11及びガバナ軸12を上・下並列状
に軸架し、各々ギヤを介してクランク軸に連動す
る。
FIG. 5 is a schematic perspective view of the diesel engine, and FIG. 8 is a longitudinal sectional front view of the vicinity of the governor of the diesel engine. A fuel injection pump accommodating chamber 10 is provided nearby, and a fuel injection camshaft 11 and a governor shaft 12 are mounted on the pump accommodating chamber 10 in an upper and lower parallel manner, and each is interlocked with the crankshaft via a gear.

上記シリンダブロツク80の上方にシリンダヘ
ツド82及びヘツドカバー83を順次固定し、シ
リンダヘツド82に各シリンダ毎に燃料噴射ノズ
ル84を取り付け、前記燃料噴射カム軸11に連
動した燃料噴射ポンプ14を、当該燃料噴射ノズ
ル84に接続する。
A cylinder head 82 and a head cover 83 are sequentially fixed above the cylinder block 80, and a fuel injection nozzle 84 is attached to the cylinder head 82 for each cylinder. Connected to the injection nozzle 84.

上記ガバナ軸12にウエイト基盤15を固定
し、ウエイト基盤15にフライウエイト16を揺
動自在に枢支し、フライウエイトの出力端17を
ガバナ軸12に摺動自在に挿嵌したガバナスリー
ブ18の左端面19に接当する。
A governor sleeve 18 includes a weight base 15 fixed to the governor shaft 12, a fly weight 16 swingably supported on the weight base 15, and an output end 17 of the fly weight slidably inserted into the governor shaft 12. It comes into contact with the left end surface 19.

燃料噴射ポンプ室10に支点5を介して揺動自
在に枢支したガバナレバー1を主レバー1aと副
レバー1bから構成し、主レバー1aの下方を逆
U字状に分岐してガバナ軸12に股がらせ、当該
U字部21の先端に転動自在にローラ22を枢支
して、前記ガバナスリーブ18の右端面23に当
該ローラ22を接当可能に構成する。
A governor lever 1 is swingably supported in a fuel injection pump chamber 10 via a fulcrum 5, and is composed of a main lever 1a and a sub-lever 1b. A roller 22 is rotatably supported at the tip of the U-shaped portion 21 so that the roller 22 can come into contact with the right end surface 23 of the governor sleeve 18 .

上記主レバー1aの上端に係合溝24を切欠
き、燃料噴射ポンプ14の燃料噴射ラツクのラツ
クピン25をこの係合溝24に嵌合し、当該上端
部26の右端に始動スプリング27を懸架し、そ
の左端に被接当部28を設けて、副レバー1bの
接当部29を当該被接当部28に接当せしめる。
An engagement groove 24 is cut out in the upper end of the main lever 1a, a rack pin 25 of the fuel injection rack of the fuel injection pump 14 is fitted into the engagement groove 24, and a starting spring 27 is suspended on the right end of the upper end 26. , a contact portion 28 is provided at the left end thereof, and the contact portion 29 of the sub-lever 1b is brought into contact with the contact portion 28.

副レバー1bはその基端部30を支点5に枢支
し、その上端部31に係合孔32を空けて、ガバ
ナスプリング2の一端を当該係合孔32に懸架し
(この懸架部を従動側係合点6とする)、その他端
を燃料噴射ポンプ室10に枢支した調速レバー3
の先端に懸架する(この懸架部を主動側係合点7
とする)。
The sub-lever 1b has its base end 30 pivotally supported on the fulcrum 5, has an engagement hole 32 in its upper end 31, and suspends one end of the governor spring 2 in the engagement hole 32 (this suspension is driven side engagement point 6), and a speed regulating lever 3 whose other end is pivoted to the fuel injection pump chamber 10.
(This suspension part is connected to the driving side engagement point 7.
).

この場合、調速レバー3の支点4をガバナスプ
リング2を中心にしてガバナレバー1の支点5と
は反対側に位置させ、ガバナスプリング2がガバ
ナレバー1を引つ張る引き角(即ち、ガバナレバ
ー支点5と上記の従動側係合点6とを結ぶ仮想線
分と、ガバナスプリング2の中心軸線とで形成さ
れる夾角)θを鋭角に設定し、調速レバー3が低
速運転位置Bから高速運転位置Cに近づくにつれ
て前記引き角θの値が大きくなるように設定す
る。
In this case, the fulcrum 4 of the governor lever 3 is located on the opposite side of the governor spring 2 from the fulcrum 5 of the governor lever 1, and the pull angle at which the governor spring 2 pulls the governor lever 1 (i.e., the pull angle at which the governor spring 2 pulls the governor lever 1 (i.e., The included angle (θ) formed by the virtual line segment connecting the above driven side engagement point 6 and the central axis of the governor spring 2 is set to an acute angle, and the speed governor lever 3 is moved from the low speed operation position B to the high speed operation position C. The value of the pulling angle θ is set to increase as the distance approaches.

また、調速レバー3の支点4が従動側係合点6
から離れる離間距離lを、調速レバー3の支点4
から主動側係合点7までの腕長さrと等しくし、
調速レバー支点4と従動側係合点6とを結ぶ仮想
直線Pと直交し、且つ、調速レバー支点4を通る
仮想基準線Sに対して、調速レバー3の低速運転
位置Bと高速運転位置Cとの間の調速揺動領域T
をまたがらせる。
Also, the fulcrum 4 of the speed regulating lever 3 is at the driven side engagement point 6.
The distance l away from the fulcrum 4 of the regulating lever 3 is
be equal to the arm length r from to the driving side engagement point 7,
The low speed operation position B of the speed governor lever 3 and the high speed operation Controlling swing area T between position C
to straddle.

上記調速レバー3の一端から円柱状の支点4を
突出し、これを燃料噴射ポンプ室10の固定壁7
0に空けた調整窓50かデイーゼルエンジン外方
に突出する。
A cylindrical fulcrum 4 protrudes from one end of the speed regulating lever 3, and is attached to the fixed wall 7 of the fuel injection pump chamber 10.
The adjustment window 50 opened at 0 protrudes outward from the diesel engine.

一方、長手形板状の支点支持具60を調整基盤
51上に固定し、調整基盤51で調整窓50を覆
う。
On the other hand, a longitudinal plate-shaped fulcrum support 60 is fixed on the adjustment base 51, and the adjustment window 50 is covered with the adjustment base 51.

即ち、支点支持具60の右端中央付近にピン嵌
挿孔53を空け、その四隅に当該ピン嵌挿孔53
を中心とした短い円弧状の長溝54を形成し、そ
の中央に支点嵌挿孔52を空ける。
That is, a pin-fitting hole 53 is formed near the center of the right end of the fulcrum support 60, and the pin-fitting hole 53 is formed at each of the four corners of the pin-fitting hole 53.
A short arc-shaped long groove 54 centered at is formed, and a fulcrum insertion hole 52 is formed in the center thereof.

調整基盤51の上部中央及び下部中央に垂直方
向に沿つた長孔55を空け、支点支持具60の長
溝54に対応した4点にネジ孔56を刻む。
Long holes 55 are formed along the vertical direction in the upper center and lower center of the adjustment base 51, and screw holes 56 are cut at four points corresponding to the long grooves 54 of the fulcrum support 60.

尚、符号58は調整基盤51に突設したノツク
ピン、符号57は支点支持具60の傾動微調整ネ
ジである。
In addition, the reference numeral 58 is a knock pin protruding from the adjustment base 51, and the reference numeral 57 is a tilt fine adjustment screw of the fulcrum support 60.

そして、支点支持具60のピン嵌挿孔53にノ
ツクピン58を嵌挿した状態で、長溝54とネジ
孔56を合わせて固定ボルト63で支点支持具6
0を調整基盤51に固定する。
Then, with the dowel pin 58 inserted into the pin insertion hole 53 of the fulcrum support 60, the long groove 54 and the screw hole 56 are aligned, and the fixing bolt 63 is attached to the fulcrum support 60.
0 is fixed to the adjustment base 51.

前記調整窓50の上・下にネジ孔64を刻み、
調整基盤51の長孔55をこのネジ孔64に合わ
せたうえで調整ボルト65を当該ネジ孔64に螺
合して、調整基盤51を燃料噴射ポンプ室10の
外方固定壁70に上下摺動調整自在に固定する。
Screw holes 64 are carved at the top and bottom of the adjustment window 50,
After aligning the long hole 55 of the adjustment base 51 with this screw hole 64, the adjustment bolt 65 is screwed into the screw hole 64, and the adjustment base 51 is slid up and down on the outer fixed wall 70 of the fuel injection pump chamber 10. Fixed and adjustable.

他方、支点支持具60の支点嵌挿孔52に調速
レバー3の支点4を挿嵌し、当該支点嵌挿孔52
から外方に突出した支点先端部に速度制限具66
及び外部調速レバー67を順々に取り付ける。
On the other hand, insert the fulcrum 4 of the regulating lever 3 into the fulcrum insertion hole 52 of the fulcrum support 60, and
A speed limiter 66 is attached to the tip of the fulcrum protruding outward from the
and the external speed regulating lever 67 are installed one after another.

この場合、支点支持具60の左寄りに上下進退
可能に高速制限ネジ72、また、上寄りに左右進
退可能に低速制限ネジ71を各々固定し、上記速
度制限具66の回動範囲を当該低速及び高速制限
具71,72で限定する。
In this case, a high speed limit screw 72 is fixed to the left side of the fulcrum support 60 so that it can move up and down, and a low speed limit screw 71 is fixed to the top side so that it can move left and right. It is limited by high speed limiters 71 and 72.

斯くしてなる調速装置においては、調整基盤5
1の長孔55と調整ボルト65の組み合わせは調
速レバー3の位置調節手段8により、例えば、調
整ボルト65に沿つて長孔55の上端が当接する
ように調整基盤51の全体を下方に摺動すると、
調速レバー3の支点4が下方に移動し、ガバナス
プリング2がガバナレバー1を引つ張る引き角θ
を変化できる。
In the speed governor thus constructed, the adjustment base 5
The combination of the elongated hole 55 and the adjustment bolt 65 of 1 is made by sliding the entire adjustment base 51 downward along the adjustment bolt 65 so that the upper end of the elongated hole 55 comes into contact with the position adjustment means 8 of the speed regulating lever 3. When you move,
The pull angle θ at which the governor spring 2 pulls the governor lever 1 when the fulcrum 4 of the speed governor lever 3 moves downward
can change.

これにより、発動発電機或いは農作業機に適応
した所定のガバナ差に適速装置を切り換えること
ぎできる。
Thereby, the appropriate speed device can be switched to a predetermined governor difference suitable for the motor generator or the agricultural machine.

また、この場合、支点支持具60は調整基盤5
1上に固定されるので、調整基盤51が固定壁7
0に対して変移しても支点支持具60に設けた高
速制限具72及び低速制限具71は調速レバー3
に対する位置関係を変えず、調速レバー3の上限
及び下限揺動範囲は、位置ずれすることなく自動
的に設定できる。
Further, in this case, the fulcrum support 60 is the adjustment base 5
1, the adjustment base 51 is fixed on the fixed wall 7.
0, the high-speed limiter 72 and low-speed limiter 71 provided on the fulcrum support 60 keep the speed regulating lever 3
The upper and lower limit swing ranges of the speed regulating lever 3 can be automatically set without changing the positional relationship with respect to the speed control lever 3.

従つて、調速レバー支点4を進退調節操作する
たびに、調速レバー3の回動範囲を設定すべく高
速及び低速制限具72,71の位置調整作業を別
途行なう必要はない。
Therefore, there is no need to separately adjust the positions of the high speed and low speed limiters 72 and 71 to set the rotation range of the speed governor lever 3 each time the speed governor lever fulcrum 4 is adjusted forward or backward.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は調速レバー低速ストツパーに接当する
状態を示す支点支持具及び調整基盤の正面図、第
2図は調速レバーが高速ストツパーに接当する状
態を示す第1図相当図、第3図は支点支持具及び
調整基盤周辺の分解斜視図、第4図は調速装置の
縦断左側面図、第5図はデイーゼルエンジンの概
略斜視図、第6図は進退調整を行なつた場合の調
速レバー周辺の概略説明図、第7図は先行技術に
係るガバナの概略説明図、第8図はデイーゼルエ
ンジンのガバナ周辺の縦断正面図、第9図は従来
技術1を示す第7図相当図、第10図はガバナフ
オース曲線図、第11図は従来技術2を示す第7
図相当図である。 1……ガバナレバー、2……ガバナスプリン
グ、3……調速レバー、4……調速レバー支点、
5……ガバナレバー支点、6……ガバナスプリン
グの従動側係合点、7……ガバナスプリングの主
動側係合点、8……位置調節手段、60……支点
支持具、70……固定壁、71……低速ストツパ
ー(低速制限ネジ)、72……高速ストツパー
(高速制限ネジ)、A……ガバナレバーの無負荷位
置、B……調速レバーの低速運転位置、C……調
速レバーの高速運転位置、E……デイーゼルエン
ジン、G……ガバナ、P……調速レバー支点と従
動側係合点を結ぶ仮想直線、S……仮想基準線、
T……調速揺動領域、l……調速レバー支点と従
動側係合点との離間距離、r……調速レバー支点
から主動側係合点までの腕長さ、θ……ガバナス
プリングのガバナレバーを引つ張る引き角。
Figure 1 is a front view of the fulcrum support and adjustment base showing the state in which the speed regulating lever is in contact with the low speed stopper, Figure 2 is a view equivalent to Figure 1 showing the state in which the speed regulating lever is in contact with the high speed stopper; Figure 3 is an exploded perspective view of the fulcrum support and adjustment base, Figure 4 is a vertical left side view of the speed governor, Figure 5 is a schematic perspective view of the diesel engine, and Figure 6 is when adjusting forward and backward movement. 7 is a schematic explanatory diagram of the governor according to the prior art, FIG. 8 is a longitudinal sectional front view of the vicinity of the governor of a diesel engine, and FIG. 9 is a diagram 7 showing the prior art 1. The corresponding diagram, FIG. 10 is a governor force curve diagram, and FIG. 11 is a seventh diagram showing prior art 2.
It is a figure equivalent figure. 1... Governor lever, 2... Governor spring, 3... Speed governor lever, 4... Speed governor lever fulcrum,
5... Governor lever fulcrum, 6... Driven side engagement point of governor spring, 7... Drive side engagement point of governor spring, 8... Position adjustment means, 60... Fulcrum support, 70... Fixed wall, 71... ...Low speed stopper (low speed limiter screw), 72...High speed stopper (high speed limiter screw), A...No-load position of governor lever, B...Low speed operating position of governor lever, C...High speed operating position of governor lever , E... Diesel engine, G... Governor, P... Virtual straight line connecting the governor lever fulcrum and driven side engagement point, S... Virtual reference line,
T...Governing swing area, l...Separation distance between the governor lever fulcrum and driven side engagement point, r...Arm length from the governor lever fulcrum to the driving side engagement point, θ...Governor spring The pull angle to pull the governor lever.

Claims (1)

【実用新案登録請求の範囲】 デイーゼルエンジンEのガバナGのガバナスプ
リング2の一端をガバナレバー1との従動側係合
点6に係合するとともに、他端を調速レバー3と
の主動側係合点7に係合してガバナレバー1を調
速レバー3に連動連結してなるデイーゼルエンジ
ンの調速装置において、 調速レバー3の支点4をガバナスプリング2を
中にしてガバナレバー1の支点5とは反対側に位
置させ、 このガバナレバー支点5と上記の従動側係合点
6とを結ぶ仮想線分と、ガバナスプリング2の中
心軸線との夾角で形成されるガバナスプリング2
のガバナレバー1を引つ張る引き角θを鋭角に設
定するとともに、調速レバー3が低速運転位置B
から高速運転位置Cに近づくにつれて前記引き角
θの値が大きくなるように設定し、 ガバナレバー1が無負荷位置Aに位置するとき
の上記の従動側係合点6と調速レバー支点4との
離間距離lを、調速レバー支点4から前記の主動
側係合点7までの腕長さrと等しい寸法に設定
し、 調速レバー支点4と従動側係合点6とを結ぶ仮
想直線Pと直交し且つ調速レバー支点4を通る仮
想基準線Sを想定し、調速レバー3の低速運転位
置Bと高速運転位置Cとの間の調速揺動領域Tを
仮想基準線Sより低速側と高速側との両方にまた
がらせて位置させ、 調速レバー3の支点支持具60を位置調節手段
8により前記引き角θが変る方向に進退調節可能
に固定壁70に支持させ、 調速レバー3の低速ストツパー71と高速スト
ツパー72とを支点支持具60に設けた事を特徴
とするデイーゼルエンジンの調速装置。
[Claims for Utility Model Registration] One end of the governor spring 2 of the governor G of the diesel engine E is engaged with the driven side engagement point 6 with the governor lever 1, and the other end is engaged with the driving side engagement point 7 with the speed governor lever 3. In a diesel engine speed governor device in which the governor lever 1 is interlocked and connected to the speed governor lever 3 by engaging with the speed governor lever 3, the fulcrum 4 of the speed governor lever 3 is placed on the opposite side from the fulcrum 5 of the governor lever 1 with the governor spring 2 inside. The governor spring 2 is located at the central axis of the governor spring 2 and is formed by the included angle between the imaginary line segment connecting the governor lever fulcrum 5 and the driven side engagement point 6 and the central axis of the governor spring 2.
The pulling angle θ for pulling the governor lever 1 is set to an acute angle, and the speed governor lever 3 is moved to the low speed operation position B.
The pull angle θ is set to increase as it approaches the high-speed operation position C, and the distance between the driven side engagement point 6 and the governor lever fulcrum 4 when the governor lever 1 is at the no-load position A is set. The distance l is set equal to the arm length r from the governor lever fulcrum 4 to the driving side engagement point 7, and is perpendicular to the imaginary straight line P connecting the governor lever fulcrum 4 and the driven side engagement point 6. In addition, assuming a virtual reference line S passing through the governor lever fulcrum 4, the governor swing region T between the low-speed operation position B and the high-speed operation position C of the governor lever 3 is set to the lower speed side and the higher speed side than the virtual reference line S. The fulcrum support 60 of the speed governor lever 3 is supported by the fixed wall 70 so as to be adjustable forwards and backwards in the direction in which the pull angle θ is changed by the position adjusting means 8. A speed governor for a diesel engine, characterized in that a low speed stopper 71 and a high speed stopper 72 are provided on a fulcrum support 60.
JP18031385U 1985-11-11 1985-11-22 Expired - Lifetime JPH0511326Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18031385U JPH0511326Y2 (en) 1985-11-22 1985-11-22
KR1019860009473A KR940008268B1 (en) 1985-11-11 1986-11-10 Speed controlling apparatus for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18031385U JPH0511326Y2 (en) 1985-11-22 1985-11-22

Publications (2)

Publication Number Publication Date
JPS6288844U JPS6288844U (en) 1987-06-06
JPH0511326Y2 true JPH0511326Y2 (en) 1993-03-19

Family

ID=31471833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18031385U Expired - Lifetime JPH0511326Y2 (en) 1985-11-11 1985-11-22

Country Status (1)

Country Link
JP (1) JPH0511326Y2 (en)

Also Published As

Publication number Publication date
JPS6288844U (en) 1987-06-06

Similar Documents

Publication Publication Date Title
JPH0511326Y2 (en)
JPH0541242Y2 (en)
JPH0511327Y2 (en)
JPH0234441Y2 (en)
JPH0131014B2 (en)
JP2521709Y2 (en) Mechanical governor for diesel engine
JPS6228655Y2 (en)
JPH0526271Y2 (en)
KR940008268B1 (en) Speed controlling apparatus for diesel engine
JPS6233086Y2 (en)
JP2533412Y2 (en) Governor device for generator drive engine
JPS6332348Y2 (en)
JPH0513962Y2 (en)
KR900009307Y1 (en) Angleichen device of centrifugal pump for diesel engine
JPH0245481Y2 (en)
JPH0144756Y2 (en)
JPS6137047Y2 (en)
JP2762166B2 (en) Speed variation correction device for centrifugal governor of engine
JPS5913312Y2 (en) Governor for internal combustion engines
JPS5941308Y2 (en) Governor for internal combustion engines
JPS6032945A (en) Centrifugal governor for internal-combustion engine
JPH065045B2 (en) Fuel control device for the diesel engine
JPH064043Y2 (en) Governor device for internal combustion engine
JPH0429065Y2 (en)
JPH0720354Y2 (en) Fly weight mechanism of hydraulic speed governor