JPH05346593A - Liquid crystal display device and its production - Google Patents

Liquid crystal display device and its production

Info

Publication number
JPH05346593A
JPH05346593A JP17767292A JP17767292A JPH05346593A JP H05346593 A JPH05346593 A JP H05346593A JP 17767292 A JP17767292 A JP 17767292A JP 17767292 A JP17767292 A JP 17767292A JP H05346593 A JPH05346593 A JP H05346593A
Authority
JP
Japan
Prior art keywords
layer
liquid crystal
crystal display
display device
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17767292A
Other languages
Japanese (ja)
Other versions
JP3285383B2 (en
Inventor
Noboru Taguchi
昇 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16035093&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05346593(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP17767292A priority Critical patent/JP3285383B2/en
Publication of JPH05346593A publication Critical patent/JPH05346593A/en
Application granted granted Critical
Publication of JP3285383B2 publication Critical patent/JP3285383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the display quality of the liquid crystal display device and to improve its reliability by decreasing the variations in the threshold voltage of a MIM element and current value at the time of writing. CONSTITUTION:The liquid crystal display device and the process for production of the device consist in providing an intermediate layer 17 consisting of a simple substance metal, such as indium, tantalum, chromium or titnium, or the alloy thereof on the rear surface of the pixel electrode layer of the MIM (metallic layer-insulator layer-metallic layer) element formed with a line electrode 13, an anodically oxidized layer 14 and the pixel electrode 15 consisting of the transparent electrode layer on a substrate 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マトリクス状に配置し
た非線形素子であるMIM(金属層−絶縁体層−金属
層)素子を制御して液晶を駆動する液晶表示装置の構造
と、この構造を形成するための製造方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a liquid crystal display device for controlling liquid crystal by controlling MIM (metal layer-insulator layer-metal layer) elements, which are nonlinear elements arranged in a matrix, and a structure thereof. And a manufacturing method for forming.

【0002】[0002]

【従来の技術】2枚のフォトマスクを用いて形成するM
IM素子を、スイッチング素子として用いたものが、1
991,SID DIGEST,p219に記載されて
いる。この文献に記載されているMIM素子を、図5の
断面図と、図6の回路図とを用いて説明する。
2. Description of the Related Art M formed by using two photomasks
The one using the IM element as the switching element is 1
991, SID DIGEST, p219. The MIM element described in this document will be described with reference to the sectional view of FIG. 5 and the circuit diagram of FIG.

【0003】これは図5と図6とにしめすように、一方
の基板12上に行電極13と、陽極酸化層14上に画素
電極15とを形成し、複数のMIM素子32を配置し、
他方の基板上に走査電極31を形成し、両基板間に液晶
33を注入して、スイッチング素子であるMIM素子3
2を制御し、画像表示を行う。
As shown in FIGS. 5 and 6, a row electrode 13 is formed on one substrate 12, a pixel electrode 15 is formed on an anodized layer 14, and a plurality of MIM elements 32 are arranged.
The scanning electrode 31 is formed on the other substrate, and the liquid crystal 33 is injected between the two substrates, so that the MIM element 3 serving as a switching element is formed.
2 is controlled to display an image.

【0004】この従来構造のMIM素子の製造方法を、
図5を用いて説明する。
A method of manufacturing the MIM element having the conventional structure is described below.
This will be described with reference to FIG.

【0005】ガラスからなる基板12上にスパッタリン
グ法によりタンタル層を200nmの膜厚で形成し、第
1のフォトレジストを用いて乾式エッチング法により、
タンタル層のエッチングを行い、行電極13を形成す
る。
A tantalum layer having a thickness of 200 nm is formed on a substrate 12 made of glass by a sputtering method, and a dry etching method is performed by using a first photoresist.
The tantalum layer is etched to form the row electrode 13.

【0006】その後この行電極13の表面に、陽極酸化
法により陽極酸化層14を80nmの膜厚で形成する。
After that, an anodic oxide layer 14 having a film thickness of 80 nm is formed on the surface of the row electrode 13 by an anodic oxidation method.

【0007】さらにスパッタリング法により、たとえば
酸化インジウムスズからなる透明電極膜を膜厚50nm
形成し、第2のフォトレジストを用いて透明導電膜のエ
ッチングを行い、画素電極15を形成する。
Further, a transparent electrode film made of, for example, indium tin oxide having a film thickness of 50 nm is formed by a sputtering method.
After that, the transparent conductive film is etched using the second photoresist to form the pixel electrode 15.

【0008】このようにしてMIM素子を2枚のフォト
マスクにより形成する。さらにその後、窒素雰囲気中で
熱処理を行うことにより、素子特性の安定化を行い、M
IM素子を形成する。
In this way, the MIM element is formed by the two photomasks. After that, heat treatment is performed in a nitrogen atmosphere to stabilize the device characteristics, and M
Form an IM device.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上述した
従来のMIM構造の素子特性は、画素電極15となる透
明電極膜形成条件、およびその後の熱処理条件に大きく
依存し、MIM素子のしきい値電圧のばらつきが大きく
なる。このしきい値電圧のばらつきは、表示ムラを発生
し、表示品質の低下、およびMIM素子の動作寿命が短
くなる等の問題を有している。
However, the element characteristics of the above-described conventional MIM structure largely depend on the conditions for forming the transparent electrode film to be the pixel electrode 15 and the subsequent heat treatment conditions, and the threshold voltage of the MIM element is The variation becomes large. This variation in the threshold voltage causes problems such as display unevenness, deterioration of display quality, and shortened operating life of the MIM element.

【0010】透明電極膜の形成条件、たとえばスパッタ
リング装置への酸素導入量を、3%〜15%変化させた
ときの、MIM素子のオン状態の電流値が10ー 8 A流
れるときの電圧値であるしきい値電圧のばらつきを図7
に示す。
With respect to the conditions for forming the transparent electrode film, for example, the voltage value when the on-state current value of the MIM element is 10 −8 A when the amount of oxygen introduced into the sputtering apparatus is changed by 3% to 15%. Fig. 7 shows the variation of a certain threshold voltage.
Shown in.

【0011】図7のグラフは横軸が透明電極層を形成す
るときのスパッタリング装置内に導入する酸素量を示
し、縦軸がMIM素子のしきい値電圧のばらつきを示
す。図7の実線51は、しきい値電圧の最大値を示し、
破線52はしきい値電圧の最小値を示す。このときのス
パッタリングは、8%酸化スズを含む酸化インジウムタ
ーゲットを用いた。
In the graph of FIG. 7, the horizontal axis represents the amount of oxygen introduced into the sputtering apparatus when forming the transparent electrode layer, and the vertical axis represents the variation in the threshold voltage of the MIM element. A solid line 51 in FIG. 7 shows the maximum value of the threshold voltage,
The broken line 52 shows the minimum value of the threshold voltage. For the sputtering at this time, an indium oxide target containing 8% tin oxide was used.

【0012】図7の実線51および破線52に示すよう
に、酸素導入量が5%を越えるとしきい値電圧のばらつ
きが急激に増加することが判る。
As shown by the solid line 51 and the broken line 52 in FIG. 7, it can be seen that the variation of the threshold voltage sharply increases when the amount of oxygen introduced exceeds 5%.

【0013】さらに、前述の窒素雰囲気中での熱処理に
おいて、熱処理装置内の残留酸素濃度が500ppmを
越えた雰囲気で熱処理を行うと、図7に示すデータと同
様にしきい値電圧のばらつきを生じることが実験により
明かとなった。
Further, in the above-mentioned heat treatment in the nitrogen atmosphere, if the heat treatment is carried out in an atmosphere in which the residual oxygen concentration in the heat treatment apparatus exceeds 500 ppm, the threshold voltage varies as in the data shown in FIG. Was revealed by the experiment.

【0014】これらの原因は、図5に示す陽極酸化層1
4と画素電極15との界面、あるいは行電極13と陽極
酸化層14との界面に、外部より酸素が拡散して、これ
らの界面に電気的バリヤー層を形成しているためである
と考える。
These causes are caused by the anodized layer 1 shown in FIG.
It is considered that this is because oxygen diffuses from the outside to the interface between the pixel electrode 15 and the pixel electrode 15 or the interface between the row electrode 13 and the anodized layer 14 to form an electrical barrier layer at these interfaces.

【0015】本発明の目的は、上記課題を解決して、M
IM素子のしきい値電圧のばらつきを抑えることが可能
な液晶表示装置の構成と、その製造方法とを提供するこ
とにある。
The object of the present invention is to solve the above problems by
An object of the present invention is to provide a configuration of a liquid crystal display device capable of suppressing variations in threshold voltage of IM elements and a manufacturing method thereof.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に本発明においては、下記記載のMIM素子構造と、そ
の製造方法とを採用する。
In order to achieve the above object, the present invention employs the following MIM element structure and its manufacturing method.

【0017】本発明のMIM素子構造は、基板上に下部
電極層と絶縁体層と透明電極層とを形成してなるMIM
素子を用いた液晶表示装置において、絶縁体層と透明電
極層との間に中間金属層を設ける。
The MIM element structure of the present invention comprises a lower electrode layer, an insulator layer and a transparent electrode layer formed on a substrate.
In a liquid crystal display device using an element, an intermediate metal layer is provided between the insulating layer and the transparent electrode layer.

【0018】本発明のMIM素子の製造方法は、基板上
の全面に下部電極層を形成し、下部電極層上に第1のフ
ォトレジストを形成し、第1のフォトレジストをマスク
にして下部電極をパターニングし行電極を形成し、第1
のフォトレジストを除去する工程と、行電極表面を陽極
酸化処理して陽極酸化層を形成する工程と、全面に中間
金属層と透明電極層とを順次形成し、第2のフォトレジ
ストを形成し、第2のフォトレジストをマスクにして透
明電極と中間金属層とをエッチングし画素電極を形成
し、第2のフォトレジストを除去する工程とを有する。
According to the method of manufacturing an MIM element of the present invention, a lower electrode layer is formed on the entire surface of a substrate, a first photoresist is formed on the lower electrode layer, and the lower electrode is used as a mask. Patterning to form row electrodes, and
The step of removing the photoresist, the step of forming the anodized layer by anodizing the surface of the row electrode, the intermediate metal layer and the transparent electrode layer are sequentially formed on the entire surface to form the second photoresist. Etching the transparent electrode and the intermediate metal layer using the second photoresist as a mask to form a pixel electrode, and removing the second photoresist.

【0019】[0019]

【実施例】以下に本発明の実施例を図面を用いて説明す
る。図1は本発明の液晶表示装置の構成とその製造工程
とを示す断面図であり、図2は本発明の液晶表示装置を
示す平面図である。まず本発明の液晶表示装置のMIM
素子構造を、図1(d)を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of the liquid crystal display device of the present invention and the manufacturing process thereof, and FIG. 2 is a plan view showing the liquid crystal display device of the present invention. First, the MIM of the liquid crystal display device of the present invention
The element structure will be described with reference to FIG.

【0020】本発明におけるMIM素子構造は、図1
(d)に示すように、基板12上に行電極13と陽極酸
化層14と画素電極15とを順次設け、透明電極層から
なる画素電極15の下層に酸素拡散バリヤ層の役割を有
する中間金属層17を設ける。
The MIM element structure in the present invention is shown in FIG.
As shown in (d), a row electrode 13, an anodized layer 14, and a pixel electrode 15 are sequentially provided on a substrate 12, and an intermediate metal having a role of an oxygen diffusion barrier layer is formed under the pixel electrode 15 formed of a transparent electrode layer. The layer 17 is provided.

【0021】本発明の酸素拡散バリヤ層の役割を備える
中間金属層17は、化学的活性度の高い金属、たとえば
インジウム、タンタル、クロム、あるいはチタンなどで
構成する。この中間金属層17を設けることにより、外
部からの酸素を中間金属層17がトラップして、酸素の
影響によるしきい値電圧のばらつきを、少なくすること
ができる。
The intermediate metal layer 17 having the role of the oxygen diffusion barrier layer of the present invention is made of a metal having a high chemical activity, such as indium, tantalum, chromium or titanium. By providing this intermediate metal layer 17, the oxygen from the outside is trapped by the intermediate metal layer 17, and the variation of the threshold voltage due to the influence of oxygen can be reduced.

【0022】次に本発明の液晶表示装置の製造方法を、
図1(a)〜(d)と図2とを用いて説明する。
Next, a method for manufacturing the liquid crystal display device of the present invention will be described.
This will be described with reference to FIGS. 1 (a) to 1 (d) and FIG.

【0023】まず図1(a)に示すように、ガラスから
なる基板12上に、下部電極層としてタンタル膜をスパ
ッタリング法により、200nmの厚さで形成する。
First, as shown in FIG. 1A, a tantalum film having a thickness of 200 nm is formed as a lower electrode layer on a substrate 12 made of glass by a sputtering method.

【0024】その後フォトレジストを全面に塗布法によ
り形成し、第1のフォトマスクを用いて露光、現像処理
を行い、フォトレジストのパターンニングを行い第1の
フォトレジスト21を形成する。
After that, a photoresist is formed on the entire surface by a coating method, exposed and developed using a first photomask, and the photoresist is patterned to form a first photoresist 21.

【0025】その後、この第1フォトレジスト21をエ
ッチングマスクにして乾式エッチング法により、タンタ
ル膜のエッチングを行い、行電極13をパターニングす
る。この行電極13の平面パターン形状を、図2の実線
23に示す。
Then, using the first photoresist 21 as an etching mask, the tantalum film is etched by a dry etching method to pattern the row electrodes 13. The plane pattern shape of the row electrode 13 is shown by the solid line 23 in FIG.

【0026】その後エッチングマスクとして用いた第1
のフォトレジスト21を除去する。
Then, the first used as an etching mask
The photoresist 21 is removed.

【0027】次に図1(b)に示すように、0.1%ク
エン酸溶液中で行電極13表面を陽極酸化して、80n
mの厚さを有する陽極酸化層14である酸化タンタルを
形成する。
Next, as shown in FIG. 1 (b), the surface of the row electrode 13 was anodized in a 0.1% citric acid solution to obtain 80 n.
Tantalum oxide, which is the anodized layer 14 having a thickness of m, is formed.

【0028】次に図1(c)に示すように、100%ア
ルゴンガスをスパッタチャンバー内へ100cc/分導
入し、スパッタ圧力を1mTorrに制御するスパッタ
リング法により、中間金属層17であるインジウムを、
全面に5〜10nmの膜厚で形成し、さらに画素電極1
5材料として酸化インジウムスズからなる透明電極層を
50nmの膜厚で連続的に形成する。
Next, as shown in FIG. 1 (c), 100% argon gas was introduced into the sputtering chamber at 100 cc / min, and indium as the intermediate metal layer 17 was removed by a sputtering method in which the sputtering pressure was controlled to 1 mTorr.
It is formed on the entire surface with a film thickness of 5 to 10 nm, and the pixel electrode 1
As a fifth material, a transparent electrode layer made of indium tin oxide is continuously formed with a film thickness of 50 nm.

【0029】その後、フォトレジストを全面に塗布法に
より形成し、第2のフォトマスクを用いて露光、現像処
理を行い、フォトレジストのパターンニングを行い、第
2のフォトレジスト22を形成する。
After that, a photoresist is formed on the entire surface by a coating method, exposed and developed using a second photomask, and the photoresist is patterned to form a second photoresist 22.

【0030】中間電極層17としては、インジウムの他
に、タンタルや、クロムや、チタンや、あるいはこれら
の材料を主成分とする合金も適用できる。
As the intermediate electrode layer 17, in addition to indium, tantalum, chromium, titanium, or an alloy containing these materials as a main component can be applied.

【0031】その後、第2のフォトレジスト22をエッ
チングマスクにして、乾式エッチング法、あるいは湿式
エッチング法を用いて、透明電極層と中間金属層17と
のエッチングを行い、画素電極15を形成する。
After that, the transparent electrode layer and the intermediate metal layer 17 are etched by dry etching or wet etching using the second photoresist 22 as an etching mask to form the pixel electrode 15.

【0032】画素電極15と中間金属層17との平面パ
ターン形状を、図2の一点鎖線25に示す。
A plane pattern shape of the pixel electrode 15 and the intermediate metal layer 17 is shown by a chain line 25 in FIG.

【0033】その後、第2のフォトレジスト22を除去
する。さらにその後、窒素雰囲気中で温度350℃、時
間1時間の熱処理を行い、MIM素子特性の安定化を計
る。このようにしてMIM素子を2枚のフォトマスクに
より形成する。
After that, the second photoresist 22 is removed. After that, heat treatment is performed in a nitrogen atmosphere at a temperature of 350 ° C. for 1 hour to stabilize the MIM element characteristics. In this way, the MIM element is formed by the two photomasks.

【0034】図4の断面図に本発明の他の実施例におけ
る液晶表示装置を示す。
A sectional view of FIG. 4 shows a liquid crystal display device according to another embodiment of the present invention.

【0035】この図4に示す構造と、図1(d)に示す
構造との違いは、中間金属層17のパターン形状の違い
にある。すなわち、図1(d)に示す第1の実施例にお
いては、中間金属層17は画素電極15と同一パターン
形状であるが、図4に示す第2の実施例においては、陽
極酸化層14と同一パターン形状としている。
The difference between the structure shown in FIG. 4 and the structure shown in FIG. 1D lies in the pattern shape of the intermediate metal layer 17. That is, in the first embodiment shown in FIG. 1D, the intermediate metal layer 17 has the same pattern shape as the pixel electrode 15, but in the second embodiment shown in FIG. It has the same pattern shape.

【0036】本発明の製造方法により形成したMIM素
子の透明電極層である画素電極15形成時の酸素導入量
とMIM素子のしきい値電圧のばらつきとの関係を図3
のグラフに示す。
FIG. 3 shows the relationship between the amount of oxygen introduced and the variation in the threshold voltage of the MIM element when the pixel electrode 15 which is the transparent electrode layer of the MIM element formed by the manufacturing method of the present invention is formed.
Is shown in the graph.

【0037】図3のグラフの横軸が透明電極層形成時の
スパッタリング装置内に導入する酸素量を示し、縦軸が
MIM素子のしきい値電圧のばらつきを示す。さらに図
3のグラフの実線53はしきい値電圧の最大値、破線5
4はしきい値電圧の最小値を示す。
The horizontal axis of the graph of FIG. 3 represents the amount of oxygen introduced into the sputtering apparatus when the transparent electrode layer is formed, and the vertical axis represents the variation of the threshold voltage of the MIM element. Furthermore, the solid line 53 in the graph of FIG.
4 indicates the minimum value of the threshold voltage.

【0038】図3のグラフから明らかなように、本発明
のMIM素子のしきい値電圧のばらつきは、従来と比較
して小さくなっている。
As is clear from the graph of FIG. 3, the variation in the threshold voltage of the MIM element of the present invention is smaller than that of the conventional one.

【0039】これは本発明のMIM素子は、中間金属層
17を設けることにより、外部雰囲気からの酸素を中間
金属層17がトラップし、陽極酸化層14中への酸素の
拡散が防止されるため、しきい値電圧のばらつきが小さ
くなっている。
This is because, in the MIM element of the present invention, by providing the intermediate metal layer 17, the oxygen from the external atmosphere is trapped by the intermediate metal layer 17 and the diffusion of oxygen into the anodized layer 14 is prevented. The variation in threshold voltage is small.

【0040】本発明のMIM素子構造は、透明電極層か
らなる画素電極15形成時の酸素分圧の影響を受けにく
く、酸素導入量が増えてもMIM素子のしきい値電圧の
ばらつきが少なくなり、MIM素子製造条件の余裕度、
すなわちプロセスウインドウを広げることができる。さ
らに書き込み時の電流値ばらつきが減少する効果も有す
る。
The MIM element structure of the present invention is not easily affected by the oxygen partial pressure when the pixel electrode 15 made of the transparent electrode layer is formed, and the variation in the threshold voltage of the MIM element is reduced even if the amount of oxygen introduced increases. , Margin of MIM element manufacturing conditions,
That is, the process window can be widened. Further, it also has an effect of reducing variations in current value at the time of writing.

【0041】[0041]

【発明の効果】以上の説明で明らかなように、本発明の
液晶表示装置においては、陽極酸化層と透明電極層との
間に中間金属層を形成することにより、MIM素子のし
きい値電圧のばらつき、および書き込み時の電流値ばら
つきが減少する。さらに透明電極層形成条件、および熱
処理条件のプロセスウィンドウを大幅に広げることが可
能となり、液晶表示装置の表示品質が改善され、信頼性
が向上する。
As is apparent from the above description, in the liquid crystal display device of the present invention, by forming an intermediate metal layer between the anodized layer and the transparent electrode layer, the threshold voltage of the MIM element is increased. Variation and current value variation during writing are reduced. Further, it becomes possible to significantly widen the process window of the transparent electrode layer forming condition and the heat treatment condition, the display quality of the liquid crystal display device is improved, and the reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における液晶表示装置の構造
と、その製造方法とを示す断面図である。
FIG. 1 is a cross-sectional view showing a structure of a liquid crystal display device and a manufacturing method thereof according to an embodiment of the present invention.

【図2】本発明の実施例における液晶表示装置を示す平
面図である。
FIG. 2 is a plan view showing a liquid crystal display device in an example of the present invention.

【図3】本発明の実施例におけるMIM素子製造時の酸
素導入量としきい値電圧ばらつきとの関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the amount of oxygen introduced and the variation in threshold voltage when manufacturing an MIM element in an example of the present invention.

【図4】本発明の他の実施例における液晶表示装置を示
す断面図である。
FIG. 4 is a sectional view showing a liquid crystal display device according to another embodiment of the present invention.

【図5】従来の液晶表示装置におけるMIM素子を示す
断面図である。
FIG. 5 is a cross-sectional view showing an MIM element in a conventional liquid crystal display device.

【図6】MIM素子を用いた液晶表示装置の等価回路を
示す回路図である。
FIG. 6 is a circuit diagram showing an equivalent circuit of a liquid crystal display device using MIM elements.

【図7】従来のMIM素子製造時の酸素導入量としきい
値電圧ばらつきとの関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the amount of oxygen introduced and variation in threshold voltage when manufacturing a conventional MIM element.

【符号の説明】[Explanation of symbols]

12 基板 14 陽極酸化層 15 画素電極 17 中間金属層 12 Substrate 14 Anodized Layer 15 Pixel Electrode 17 Intermediate Metal Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に下部電極層と絶縁体層と透明電
極層とを形成してなる金属層−絶縁体層−金属構造を有
するMIM素子を用いた液晶表示装置の絶縁体層と透明
電極層との間に中間金属層を設けることを特徴とする液
晶表示装置。
1. A metal layer formed by forming a lower electrode layer, an insulator layer, and a transparent electrode layer on a substrate-insulator layer-insulator layer of a liquid crystal display device using a MIM element having a metal structure and transparent. A liquid crystal display device comprising an intermediate metal layer provided between the electrode layer and the electrode layer.
【請求項2】 請求項1記載の中間電極層は、インジウ
ム、タンタル、クロム、あるいはチタンからなる単一金
属、もしくはこれらの物質を主成分とする合金で形成す
ることを特徴とする液晶表示装置。
2. The liquid crystal display device according to claim 1, wherein the intermediate electrode layer is formed of a single metal made of indium, tantalum, chromium, or titanium, or an alloy containing these substances as a main component. ..
【請求項3】 基板上の全面に下部電極層を形成し、下
部電極層上に第1のフォトレジストを形成し、第1のフ
ォトレジストをマスクに用いて下部電極層をパターニン
グして行電極を形成し、第1のフォトレジストを除去す
る工程と、行電極表面を陽極酸化処理して陽極酸化膜を
形成する工程と、全面に中間金属層と透明電極層とを順
次形成し、第2のフォトレジストを形成し、第2のフォ
トレジストをマスクに用いて透明電極層と中間金属層と
をエッチングし画素電極を形成し、第2のフォトレジス
トを除去する工程とを有することを特徴とする液晶表示
装置の製造方法。
3. A row electrode in which a lower electrode layer is formed on the entire surface of a substrate, a first photoresist is formed on the lower electrode layer, and the lower electrode layer is patterned using the first photoresist as a mask. And removing the first photoresist, a step of anodizing the surface of the row electrode to form an anodized film, an intermediate metal layer and a transparent electrode layer are sequentially formed on the entire surface, and Forming a photoresist, forming a pixel electrode by etching the transparent electrode layer and the intermediate metal layer using the second photoresist as a mask, and removing the second photoresist. Method for manufacturing liquid crystal display device.
JP17767292A 1992-06-12 1992-06-12 Liquid crystal display device and manufacturing method thereof Expired - Fee Related JP3285383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17767292A JP3285383B2 (en) 1992-06-12 1992-06-12 Liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17767292A JP3285383B2 (en) 1992-06-12 1992-06-12 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05346593A true JPH05346593A (en) 1993-12-27
JP3285383B2 JP3285383B2 (en) 2002-05-27

Family

ID=16035093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17767292A Expired - Fee Related JP3285383B2 (en) 1992-06-12 1992-06-12 Liquid crystal display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3285383B2 (en)

Also Published As

Publication number Publication date
JP3285383B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
JPH0341986B2 (en)
JP3285383B2 (en) Liquid crystal display device and manufacturing method thereof
JP2795883B2 (en) Nonlinear element in liquid crystal display
JP2752983B2 (en) Method of manufacturing thin film transistor for liquid crystal display
JPH07258826A (en) Production of thin film semiconductor device
KR100372305B1 (en) Thin film transistor substrate of liquid crystal display and method for fabricating the same
JPH07325321A (en) Production of liquid crystal display device
JP3592411B2 (en) Manufacturing method of thin film diode
JPH07311393A (en) Liquid crystal display device using nonlinear driving element
JPH0466919A (en) Production of liquid crystal display device
JPH08146466A (en) Production of liquid crystal display device
KR100464632B1 (en) Active matrix displays and method making
JPH0348824A (en) Production of mim type nonlinear switching element
JPH06202161A (en) Production of liquid crystal display device
JPH0254577A (en) Manufacture of thin film transistor
JPH05341328A (en) Liquid crystal display device and its production
JP2845929B2 (en) Manufacturing method of nonlinear element
JPH08220563A (en) Manufacture of thin film diode
JPH05210122A (en) Structure of nonlinear active element of liquid crystal display device and production thereof
JPH07159812A (en) Liquid crystal display device and its production
JPH0342631A (en) Production of mim type nonlinear switching element
JPH05196970A (en) Liquid crystal display device
JPH05297415A (en) Liquid crystal display device and its production
JPH05203989A (en) Method for eliminating short circuit
JP2002229481A (en) Picture display device and manufacturing method for semiconductor device for the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees