JP3285383B2 - Liquid crystal display device and manufacturing method thereof - Google Patents
Liquid crystal display device and manufacturing method thereofInfo
- Publication number
- JP3285383B2 JP3285383B2 JP17767292A JP17767292A JP3285383B2 JP 3285383 B2 JP3285383 B2 JP 3285383B2 JP 17767292 A JP17767292 A JP 17767292A JP 17767292 A JP17767292 A JP 17767292A JP 3285383 B2 JP3285383 B2 JP 3285383B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode layer
- liquid crystal
- display device
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 229920002120 photoresistant polymer Polymers 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 11
- 239000010407 anodic oxide Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 6
- 239000012212 insulator Substances 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 17
- 239000001301 oxygen Substances 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 238000004544 sputter deposition Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000007743 anodising Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、マトリクス状に配置し
た非線形素子であるMIM(金属層−絶縁体層−金属
層)素子を制御して液晶を駆動する液晶表示装置の構造
と、この構造を形成するための製造方法とに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a liquid crystal display device which drives a liquid crystal by controlling MIM (metal layer-insulator layer-metal layer) elements which are non-linear elements arranged in a matrix, and this structure. And a manufacturing method for forming the same.
【0002】[0002]
【従来の技術】2枚のフォトマスクを用いて形成するM
IM素子を、スイッチング素子として用いたものが、1
991,SID DIGEST,p219に記載されて
いる。この文献に記載されているMIM素子を、図5の
断面図と、図6の回路図とを用いて説明する。2. Description of the Related Art M formed by using two photomasks
When the IM device is used as a switching device,
991, SID DIGEST, p219. The MIM element described in this document will be described with reference to the cross-sectional view of FIG. 5 and the circuit diagram of FIG.
【0003】これは図5と図6とにしめすように、一方
の基板12上に行電極13と、陽極酸化層14上に画素
電極15とを形成し、複数のMIM素子32を配置し、
他方の基板上に走査電極31を形成し、両基板間に液晶
33を注入して、スイッチング素子であるMIM素子3
2を制御し、画像表示を行う。As shown in FIGS. 5 and 6, a row electrode 13 is formed on one substrate 12, a pixel electrode 15 is formed on an anodic oxide layer 14, and a plurality of MIM elements 32 are arranged.
A scanning electrode 31 is formed on the other substrate, a liquid crystal 33 is injected between the two substrates, and a MIM element 3 serving as a switching element is formed.
2 to display an image.
【0004】この従来構造のMIM素子の製造方法を、
図5を用いて説明する。A method of manufacturing the MIM element having the conventional structure is described as follows.
This will be described with reference to FIG.
【0005】ガラスからなる基板12上にスパッタリン
グ法によりタンタル層を200nmの膜厚で形成し、第
1のフォトレジストを用いて乾式エッチング法により、
タンタル層のエッチングを行い、行電極13を形成す
る。[0005] A tantalum layer is formed to a thickness of 200 nm on a substrate 12 made of glass by a sputtering method, and is dried by a dry etching method using a first photoresist.
The row electrode 13 is formed by etching the tantalum layer.
【0006】その後この行電極13の表面に、陽極酸化
法により陽極酸化層14を80nmの膜厚で形成する。Thereafter, an anodic oxide layer 14 is formed on the surface of the row electrode 13 to a thickness of 80 nm by an anodic oxidation method.
【0007】さらにスパッタリング法により、たとえば
酸化インジウムスズからなる透明電極膜を膜厚50nm
形成し、第2のフォトレジストを用いて透明導電膜のエ
ッチングを行い、画素電極15を形成する。Further, a transparent electrode film made of, for example, indium tin oxide is formed to a thickness of 50 nm by sputtering.
The pixel electrode 15 is formed by etching the transparent conductive film using the second photoresist.
【0008】このようにしてMIM素子を2枚のフォト
マスクにより形成する。さらにその後、窒素雰囲気中で
熱処理を行うことにより、素子特性の安定化を行い、M
IM素子を形成する。[0008] In this way, the MIM element is formed using two photomasks. Thereafter, heat treatment is performed in a nitrogen atmosphere to stabilize the device characteristics.
An IM element is formed.
【0009】[0009]
【発明が解決しようとする課題】しかしながら上述した
従来のMIM構造の素子特性は、画素電極15となる透
明電極膜形成条件、およびその後の熱処理条件に大きく
依存し、MIM素子のしきい値電圧のばらつきが大きく
なる。このしきい値電圧のばらつきは、表示ムラを発生
し、表示品質の低下、およびMIM素子の動作寿命が短
くなる等の問題を有している。However, the device characteristics of the above-described conventional MIM structure largely depend on the conditions for forming the transparent electrode film to be the pixel electrode 15 and the heat treatment conditions thereafter. Variation increases. This variation in threshold voltage causes problems such as display unevenness, deterioration of display quality, and shortening of the operating life of the MIM element.
【0010】透明電極膜の形成条件、たとえばスパッタ
リング装置への酸素導入量を、3%〜15%変化させた
ときの、MIM素子のオン状態の電流値が10ー 8 A流
れるときの電圧値であるしきい値電圧のばらつきを図7
に示す。The voltage value when the current value in the ON state of the MIM element flows by 10-8 A when the conditions for forming the transparent electrode film, for example, the amount of oxygen introduced into the sputtering apparatus is changed by 3% to 15%. FIG. 7 shows the variation of a certain threshold voltage.
Shown in
【0011】図7のグラフは横軸が透明電極層を形成す
るときのスパッタリング装置内に導入する酸素量を示
し、縦軸がMIM素子のしきい値電圧のばらつきを示
す。図7の実線51は、しきい値電圧の最大値を示し、
破線52はしきい値電圧の最小値を示す。このときのス
パッタリングは、8%酸化スズを含む酸化インジウムタ
ーゲットを用いた。In the graph of FIG. 7, the horizontal axis shows the amount of oxygen introduced into the sputtering apparatus when forming the transparent electrode layer, and the vertical axis shows the variation in the threshold voltage of the MIM element. The solid line 51 in FIG. 7 indicates the maximum value of the threshold voltage,
A broken line 52 indicates the minimum value of the threshold voltage. At this time, an indium oxide target containing 8% tin oxide was used for sputtering.
【0012】図7の実線51および破線52に示すよう
に、酸素導入量が5%を越えるとしきい値電圧のばらつ
きが急激に増加することが判る。As shown by a solid line 51 and a dashed line 52 in FIG. 7, it can be seen that when the oxygen introduction amount exceeds 5%, the variation in the threshold voltage sharply increases.
【0013】さらに、前述の窒素雰囲気中での熱処理に
おいて、熱処理装置内の残留酸素濃度が500ppmを
越えた雰囲気で熱処理を行うと、図7に示すデータと同
様にしきい値電圧のばらつきを生じることが実験により
明かとなった。Further, in the above-described heat treatment in a nitrogen atmosphere, if the heat treatment is performed in an atmosphere in which the residual oxygen concentration exceeds 500 ppm in the heat treatment apparatus, the threshold voltage may vary as in the data shown in FIG. Was revealed by experiment.
【0014】これらの原因は、図5に示す陽極酸化層1
4と画素電極15との界面、あるいは行電極13と陽極
酸化層14との界面に、外部より酸素が拡散して、これ
らの界面に電気的バリヤー層を形成しているためである
と考える。[0014] These causes are caused by the anodic oxide layer 1 shown in FIG.
This is because oxygen diffuses from the outside to the interface between the pixel electrode 15 and the row electrode 13 or the interface between the row electrode 13 and the anodic oxide layer 14 to form an electrical barrier layer at these interfaces.
【0015】本発明の目的は、上記課題を解決して、M
IM素子のしきい値電圧のばらつきを抑えることが可能
な液晶表示装置の構成と、その製造方法とを提供するこ
とにある。[0015] An object of the present invention is to solve the above-mentioned problems and to achieve M
An object of the present invention is to provide a configuration of a liquid crystal display device capable of suppressing variation in threshold voltage of an IM element and a method of manufacturing the same.
【0016】[0016]
【課題を解決するための手段】上記目的を達成するため
に本発明においては、下記記載のMIM素子構造と、そ
の製造方法とを採用する。In order to achieve the above object, the present invention employs the following MIM element structure and a method of manufacturing the same.
【0017】本発明のMIM素子構造は、基板上に下部
電極層と絶縁体層と透明電極層とを形成してなるMIM
素子を用いた液晶表示装置において、絶縁体層と透明電
極層との間に中間金属層を設ける。The MIM element structure according to the present invention comprises an MIM element formed by forming a lower electrode layer, an insulator layer and a transparent electrode layer on a substrate.
In a liquid crystal display device using an element, an intermediate metal layer is provided between an insulator layer and a transparent electrode layer.
【0018】本発明のMIM素子の製造方法は、基板上
の全面に下部電極層を形成し、下部電極層上に第1のフ
ォトレジストを形成し、第1のフォトレジストをマスク
にして下部電極をパターニングし行電極を形成し、第1
のフォトレジストを除去する工程と、行電極表面を陽極
酸化処理して陽極酸化層を形成する工程と、全面に中間
金属層と透明電極層とを順次形成し、第2のフォトレジ
ストを形成し、第2のフォトレジストをマスクにして透
明電極と中間金属層とをエッチングし画素電極を形成
し、第2のフォトレジストを除去する工程とを有する。According to the method of manufacturing an MIM element of the present invention, a lower electrode layer is formed on the entire surface of a substrate, a first photoresist is formed on the lower electrode layer, and the lower electrode is formed using the first photoresist as a mask. Are patterned to form row electrodes,
Removing the photoresist, forming an anodized layer by anodizing the surface of the row electrode, sequentially forming an intermediate metal layer and a transparent electrode layer on the entire surface, and forming a second photoresist. Etching the transparent electrode and the intermediate metal layer using the second photoresist as a mask to form a pixel electrode, and removing the second photoresist.
【0019】[0019]
【実施例】以下に本発明の実施例を図面を用いて説明す
る。図1は本発明の液晶表示装置の構成とその製造工程
とを示す断面図であり、図2は本発明の液晶表示装置を
示す平面図である。まず本発明の液晶表示装置のMIM
素子構造を、図1(d)を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing the configuration of the liquid crystal display device of the present invention and the manufacturing process thereof, and FIG. 2 is a plan view showing the liquid crystal display device of the present invention. First, the MIM of the liquid crystal display device of the present invention
The element structure will be described with reference to FIG.
【0020】本発明におけるMIM素子構造は、図1
(d)に示すように、基板12上に行電極13と陽極酸
化層14と画素電極15とを順次設け、透明電極層から
なる画素電極15の下層に酸素拡散バリヤ層の役割を有
する中間金属層17を設ける。The MIM element structure according to the present invention is shown in FIG.
As shown in (d), a row electrode 13, an anodized layer 14, and a pixel electrode 15 are sequentially provided on a substrate 12, and an intermediate metal having a role of an oxygen diffusion barrier layer is provided below the pixel electrode 15 made of a transparent electrode layer. A layer 17 is provided.
【0021】本発明の酸素拡散バリヤ層の役割を備える
中間金属層17は、化学的活性度の高い金属、たとえば
インジウム、タンタル、クロム、あるいはチタンなどで
構成する。この中間金属層17を設けることにより、外
部からの酸素を中間金属層17がトラップして、酸素の
影響によるしきい値電圧のばらつきを、少なくすること
ができる。The intermediate metal layer 17 having the role of the oxygen diffusion barrier layer of the present invention is made of a metal having a high chemical activity, such as indium, tantalum, chromium, or titanium. By providing the intermediate metal layer 17, oxygen from the outside is trapped by the intermediate metal layer 17, and variation in threshold voltage due to the influence of oxygen can be reduced.
【0022】次に本発明の液晶表示装置の製造方法を、
図1(a)〜(d)と図2とを用いて説明する。Next, a method for manufacturing a liquid crystal display device of the present invention will be described.
This will be described with reference to FIGS. 1A to 1D and FIG.
【0023】まず図1(a)に示すように、ガラスから
なる基板12上に、下部電極層としてタンタル膜をスパ
ッタリング法により、200nmの厚さで形成する。First, as shown in FIG. 1A, a tantalum film having a thickness of 200 nm is formed as a lower electrode layer on a substrate 12 made of glass by a sputtering method.
【0024】その後フォトレジストを全面に塗布法によ
り形成し、第1のフォトマスクを用いて露光、現像処理
を行い、フォトレジストのパターンニングを行い第1の
フォトレジスト21を形成する。Thereafter, a photoresist is formed on the entire surface by a coating method, exposed and developed using a first photomask, and the photoresist is patterned to form a first photoresist 21.
【0025】その後、この第1フォトレジスト21をエ
ッチングマスクにして乾式エッチング法により、タンタ
ル膜のエッチングを行い、行電極13をパターニングす
る。この行電極13の平面パターン形状を、図2の実線
23に示す。Thereafter, the tantalum film is etched by dry etching using the first photoresist 21 as an etching mask, and the row electrodes 13 are patterned. The plane pattern shape of the row electrode 13 is shown by a solid line 23 in FIG.
【0026】その後エッチングマスクとして用いた第1
のフォトレジスト21を除去する。After that, the first
Of the photoresist 21 is removed.
【0027】次に図1(b)に示すように、0.1%ク
エン酸溶液中で行電極13表面を陽極酸化して、80n
mの厚さを有する陽極酸化層14である酸化タンタルを
形成する。Next, as shown in FIG. 1B, the surface of the row electrode 13 is anodized in a 0.1% citric acid solution,
A tantalum oxide, which is the anodic oxide layer 14 having a thickness of m, is formed.
【0028】次に図1(c)に示すように、100%ア
ルゴンガスをスパッタチャンバー内へ100cc/分導
入し、スパッタ圧力を1mTorrに制御するスパッタ
リング法により、中間金属層17であるインジウムを、
全面に5〜10nmの膜厚で形成し、さらに画素電極1
5材料として酸化インジウムスズからなる透明電極層を
50nmの膜厚で連続的に形成する。Next, as shown in FIG. 1C, 100% argon gas was introduced into the sputtering chamber at a rate of 100 cc / min.
A film is formed on the entire surface to a thickness of 5 to 10 nm.
A transparent electrode layer made of indium tin oxide as a material 5 is continuously formed with a thickness of 50 nm.
【0029】その後、フォトレジストを全面に塗布法に
より形成し、第2のフォトマスクを用いて露光、現像処
理を行い、フォトレジストのパターンニングを行い、第
2のフォトレジスト22を形成する。Thereafter, a photoresist is formed on the entire surface by a coating method, exposure and development are performed using a second photomask, and the photoresist is patterned to form a second photoresist 22.
【0030】中間電極層17としては、インジウムの他
に、タンタルや、クロムや、チタンや、あるいはこれら
の材料を主成分とする合金も適用できる。As the intermediate electrode layer 17, in addition to indium, tantalum, chromium, titanium, or an alloy mainly composed of these materials can be used.
【0031】その後、第2のフォトレジスト22をエッ
チングマスクにして、乾式エッチング法、あるいは湿式
エッチング法を用いて、透明電極層と中間金属層17と
のエッチングを行い、画素電極15を形成する。Thereafter, using the second photoresist 22 as an etching mask, the transparent electrode layer and the intermediate metal layer 17 are etched using a dry etching method or a wet etching method to form the pixel electrode 15.
【0032】画素電極15と中間金属層17との平面パ
ターン形状を、図2の一点鎖線25に示す。The dashed-dotted line 25 in FIG. 2 shows the planar pattern shape of the pixel electrode 15 and the intermediate metal layer 17.
【0033】その後、第2のフォトレジスト22を除去
する。さらにその後、窒素雰囲気中で温度350℃、時
間1時間の熱処理を行い、MIM素子特性の安定化を計
る。このようにしてMIM素子を2枚のフォトマスクに
より形成する。After that, the second photoresist 22 is removed. Thereafter, heat treatment is performed in a nitrogen atmosphere at a temperature of 350 ° C. for 1 hour to stabilize MIM element characteristics. Thus, the MIM element is formed using two photomasks.
【0034】図4の断面図に本発明の他の実施例におけ
る液晶表示装置を示す。FIG. 4 is a sectional view showing a liquid crystal display device according to another embodiment of the present invention.
【0035】この図4に示す構造と、図1(d)に示す
構造との違いは、中間金属層17のパターン形状の違い
にある。すなわち、図1(d)に示す第1の実施例にお
いては、中間金属層17は画素電極15と同一パターン
形状であるが、図4に示す第2の実施例においては、陽
極酸化層14と同一パターン形状としている。The difference between the structure shown in FIG. 4 and the structure shown in FIG. 1D lies in the pattern shape of the intermediate metal layer 17. That is, in the first embodiment shown in FIG. 1D, the intermediate metal layer 17 has the same pattern shape as the pixel electrode 15, but in the second embodiment shown in FIG. They have the same pattern shape.
【0036】本発明の製造方法により形成したMIM素
子の透明電極層である画素電極15形成時の酸素導入量
とMIM素子のしきい値電圧のばらつきとの関係を図3
のグラフに示す。FIG. 3 shows the relationship between the amount of oxygen introduced when the pixel electrode 15 which is a transparent electrode layer of the MIM element formed by the manufacturing method of the present invention and the variation in the threshold voltage of the MIM element.
Is shown in the graph.
【0037】図3のグラフの横軸が透明電極層形成時の
スパッタリング装置内に導入する酸素量を示し、縦軸が
MIM素子のしきい値電圧のばらつきを示す。さらに図
3のグラフの実線53はしきい値電圧の最大値、破線5
4はしきい値電圧の最小値を示す。The horizontal axis of the graph in FIG. 3 indicates the amount of oxygen introduced into the sputtering apparatus when forming the transparent electrode layer, and the vertical axis indicates the variation of the threshold voltage of the MIM element. Further, the solid line 53 in the graph of FIG.
4 indicates the minimum value of the threshold voltage.
【0038】図3のグラフから明らかなように、本発明
のMIM素子のしきい値電圧のばらつきは、従来と比較
して小さくなっている。As is clear from the graph of FIG. 3, the variation of the threshold voltage of the MIM element of the present invention is smaller than that of the conventional MIM element.
【0039】これは本発明のMIM素子は、中間金属層
17を設けることにより、外部雰囲気からの酸素を中間
金属層17がトラップし、陽極酸化層14中への酸素の
拡散が防止されるため、しきい値電圧のばらつきが小さ
くなっている。This is because, in the MIM element of the present invention, the provision of the intermediate metal layer 17 allows the intermediate metal layer 17 to trap oxygen from the external atmosphere and prevent diffusion of oxygen into the anodic oxide layer 14. In addition, the variation of the threshold voltage is reduced.
【0040】本発明のMIM素子構造は、透明電極層か
らなる画素電極15形成時の酸素分圧の影響を受けにく
く、酸素導入量が増えてもMIM素子のしきい値電圧の
ばらつきが少なくなり、MIM素子製造条件の余裕度、
すなわちプロセスウインドウを広げることができる。さ
らに書き込み時の電流値ばらつきが減少する効果も有す
る。The MIM element structure of the present invention is not easily affected by the partial pressure of oxygen when the pixel electrode 15 made of a transparent electrode layer is formed, and the variation in the threshold voltage of the MIM element is reduced even when the amount of introduced oxygen is increased. , The margin of the MIM element manufacturing conditions,
That is, the process window can be expanded. Further, there is an effect that the current value variation at the time of writing is reduced.
【0041】[0041]
【発明の効果】以上の説明で明らかなように、本発明の
液晶表示装置においては、陽極酸化層と透明電極層との
間に中間金属層を形成することにより、MIM素子のし
きい値電圧のばらつき、および書き込み時の電流値ばら
つきが減少する。さらに透明電極層形成条件、および熱
処理条件のプロセスウィンドウを大幅に広げることが可
能となり、液晶表示装置の表示品質が改善され、信頼性
が向上する。As is apparent from the above description, in the liquid crystal display device of the present invention, the threshold voltage of the MIM element is formed by forming the intermediate metal layer between the anodic oxide layer and the transparent electrode layer. And the variation in the current value at the time of writing is reduced. Further, it is possible to greatly widen the process window of the transparent electrode layer forming condition and the heat treatment condition, so that the display quality of the liquid crystal display device is improved and the reliability is improved.
【図1】本発明の実施例における液晶表示装置の構造
と、その製造方法とを示す断面図である。FIG. 1 is a cross-sectional view illustrating a structure of a liquid crystal display device according to an embodiment of the present invention and a manufacturing method thereof.
【図2】本発明の実施例における液晶表示装置を示す平
面図である。FIG. 2 is a plan view illustrating a liquid crystal display device according to an embodiment of the present invention.
【図3】本発明の実施例におけるMIM素子製造時の酸
素導入量としきい値電圧ばらつきとの関係を示すグラフ
である。FIG. 3 is a graph showing a relationship between an oxygen introduction amount and a variation in threshold voltage at the time of manufacturing an MIM element in an example of the present invention.
【図4】本発明の他の実施例における液晶表示装置を示
す断面図である。FIG. 4 is a sectional view showing a liquid crystal display device according to another embodiment of the present invention.
【図5】従来の液晶表示装置におけるMIM素子を示す
断面図である。FIG. 5 is a sectional view showing an MIM element in a conventional liquid crystal display device.
【図6】MIM素子を用いた液晶表示装置の等価回路を
示す回路図である。FIG. 6 is a circuit diagram showing an equivalent circuit of a liquid crystal display device using an MIM element.
【図7】従来のMIM素子製造時の酸素導入量としきい
値電圧ばらつきとの関係を示すグラフである。FIG. 7 is a graph showing a relationship between an oxygen introduction amount and a threshold voltage variation at the time of manufacturing a conventional MIM element.
12 基板 14 陽極酸化層 15 画素電極 17 中間金属層 12 Substrate 14 Anodized layer 15 Pixel electrode 17 Intermediate metal layer
Claims (2)
極層とを形成してなる金属層−絶縁体層−金属層構造を
有するMIM素子を用いた液晶表示装置であって、前 記透明電極層は、酸化インジウムスズからなり、前 記絶縁体層と前記透明電極層とのあいだにインジウ
ム、又は該インジウムを主成分とする合金からなる中間
金属層を設けることを特徴とする液晶表示装置。1. A metal layer obtained by forming a lower electrode layer insulation layer and the transparent electrode layer on a substrate - insulator layer - a liquid crystal display device using an MIM element having a metal layer structure, before serial transparent electrode layer, a liquid crystal, characterized in that an intermediate metal layer made of an alloy mainly of indium or the indium between the consists of indium tin oxide, before Symbol insulator layer and the transparent electrode layer Display device.
下部電極層上に第1のフォトレジストを形成し、該第1
のフォトレジストをマスクに用いて前記下部電極層をパ
ターニングして行電極を形成する工程と、前記行電極 を陽極酸化処理して陽極酸化膜を形成する工
程と、全面に 中間金属層と酸化インジウムスズからなる透明電
極層とを順次形成し、第2のフォトレジストを形成し、
該第2のフォトレジストをマスクに用いて前記透明電極
層と前記中間金属層とをエッチングし画素電極を形成す
る工程とを備える液晶表示装置の製造方法であって、前記中間電極層は、インジウム、又は該インジウムを主
成分とする合金で形成する ことを特徴とする液晶表示装
置の製造方法。Wherein the lower electrode layer is formed on the whole surface of the substrate, forming a first photoresist on the <br/> lower electrode layer, said first
Forming a row electrode by patterning the previous SL lower electrode layer using a photoresist mask, a step of forming an anodic oxide film of the row electrode anodized, and the entire surface to the intermediate metal layer oxide A transparent electrode layer made of indium tin is sequentially formed, a second photoresist is formed,
To form the intermediate metal layer and the etching pixel electrode and the transparent electrode layer by using the second photoresist mask
A method of manufacturing a that step and the liquid crystal display device Ru wherein the intermediate electrode layer is indium, or the indium main
A method for manufacturing a liquid crystal display device , comprising forming an alloy as a component .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17767292A JP3285383B2 (en) | 1992-06-12 | 1992-06-12 | Liquid crystal display device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17767292A JP3285383B2 (en) | 1992-06-12 | 1992-06-12 | Liquid crystal display device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05346593A JPH05346593A (en) | 1993-12-27 |
JP3285383B2 true JP3285383B2 (en) | 2002-05-27 |
Family
ID=16035093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17767292A Expired - Fee Related JP3285383B2 (en) | 1992-06-12 | 1992-06-12 | Liquid crystal display device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3285383B2 (en) |
-
1992
- 1992-06-12 JP JP17767292A patent/JP3285383B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05346593A (en) | 1993-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3360831B2 (en) | Active matrix display and manufacturing method thereof | |
JP3285383B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JPH0351823A (en) | Production of mim type nonlinear switching element | |
JPH07258826A (en) | Production of thin film semiconductor device | |
JPH08146466A (en) | Production of liquid crystal display device | |
KR100464632B1 (en) | Active matrix displays and method making | |
JP2845929B2 (en) | Manufacturing method of nonlinear element | |
JP3306986B2 (en) | Liquid crystal device manufacturing method | |
JPH06202161A (en) | Production of liquid crystal display device | |
JP3592411B2 (en) | Manufacturing method of thin film diode | |
JP3384118B2 (en) | Manufacturing method of nonlinear resistance element | |
JPH0466919A (en) | Production of liquid crystal display device | |
JPH07159812A (en) | Liquid crystal display device and its production | |
JPH05341328A (en) | Liquid crystal display device and its production | |
JPS60161686A (en) | Manufacture of thin film non-linear device | |
JPH07168208A (en) | Active matrix system liquid crystal display | |
JPH05297415A (en) | Liquid crystal display device and its production | |
JPH08220563A (en) | Manufacture of thin film diode | |
JPH06308539A (en) | Production of matrix array substrate | |
JPH05203989A (en) | Method for eliminating short circuit | |
JPH0348824A (en) | Production of mim type nonlinear switching element | |
JPH0351821A (en) | Production of mim type nonlinear switching element | |
JPH05196970A (en) | Liquid crystal display device | |
JPH0346633A (en) | Production of nonlinear element | |
JPH01281435A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |