JPH0531674A - Water permeable grinding wheel and manufacture thereof - Google Patents

Water permeable grinding wheel and manufacture thereof

Info

Publication number
JPH0531674A
JPH0531674A JP33362891A JP33362891A JPH0531674A JP H0531674 A JPH0531674 A JP H0531674A JP 33362891 A JP33362891 A JP 33362891A JP 33362891 A JP33362891 A JP 33362891A JP H0531674 A JPH0531674 A JP H0531674A
Authority
JP
Japan
Prior art keywords
water
permeable
porous body
abrasive grain
grain layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33362891A
Other languages
Japanese (ja)
Inventor
Tsutomu Takahashi
務 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JPH0531674A publication Critical patent/JPH0531674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To prevent the occurrence of choking and overheating of a rinding grain layer by uniformly feeding grinding liquid to the grinding surface of the grinding grain layer. CONSTITUTION:A water permeable grinding wheel comprises a base metal 10 having a grinding grain layer forming surface and a grinding liquid feed surface, a grinding liquid dispersion layer 11 formed on the grinding grain layer forming surface and having a communicating hole for dispersion of non- oriented three-dimensional structure formed throughout the whole area of the interior, and a water permeable grinding grain layer 12 formed on the grinding liquid dispersion layer 11 and having a number of water permeation pores communicated at least in the direction of thickness. A feed liquid passage 13 having its one end opened to the grinding liquid feed surface and the other end opened to the grinding grain layer forming surface is formed in the base metal 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は砥粒層を多孔質とした通
水性砥石およびその製造方法に係わり、特に、砥粒層の
目詰まりを防止するとともに、研削液の供給効率を高
め、切れ味を向上するための改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-passing grindstone having a porous abrasive grain layer and a method for producing the same, and particularly to prevent clogging of the abrasive grain layer, enhance the efficiency of supplying a grinding fluid, and improve sharpness. Related to improvements to improve.

【0002】[0002]

【従来の技術】図13は、従来の電着砥石の一例を示す
砥粒層の断面拡大図である。図中符号1は各種形状の金
属製台金であり、この台金1の砥粒層形成面1Aには、
金属めっき相3を介して単層状に多数の超砥粒2が固着
されている。
2. Description of the Related Art FIG. 13 is an enlarged sectional view of an abrasive grain layer showing an example of a conventional electrodeposition grindstone. In the figure, reference numeral 1 is a metal base metal of various shapes, and the abrasive grain layer forming surface 1A of the base metal 1 is
A large number of superabrasive grains 2 are fixed in a single layer via a metal plating phase 3.

【0003】この種の電着砥石では、超砥粒2が緻密か
つ硬質の金属めっき相3で強固に固定されているため、
特に硬質で脆い被削材の研削に使用すると、個々の超砥
粒2が被削材に食い込む時点での衝撃が大きく、被削面
に微細な欠け(チッピング)が生じて、表面粗さおよび加
工精度が低下する欠点があった。また、金属めっき相3
の表面が緻密かつ平坦であるため、研削中に生じた切粉
を砥石の運動につれて研削部分から排出する効果(切粉
排出性)が小さいうえ、研削液が研削部に供給されにく
く、研削液による冷却および潤滑効果が低い。したがっ
て、目詰まりしやすく、切れ味の低下が早い。さらに、
通常の電着法では超砥粒2を多層状かつ均一に電着する
ことは困難で、単層状であるから砥石の寿命が限られる
という欠点もあった。
In this type of electrodeposition grindstone, since the superabrasive grains 2 are firmly fixed by the dense and hard metal plating phase 3,
Especially when it is used for grinding hard and brittle work materials, the impact at the time when each superabrasive grain 2 bites into the work material is large, and minute chipping (chipping) occurs on the work surface, resulting in surface roughness and processing. There was a drawback that the accuracy decreased. Also, metal plating phase 3
Since the surface of the is fine and flat, the effect of discharging the chips generated during grinding from the grinding part with the movement of the grindstone (chip discharging property) is small, and the grinding liquid is difficult to be supplied to the grinding part, Cooling and lubrication effect due to. Therefore, it is likely to be clogged and the sharpness is reduced quickly. further,
It is difficult to electrodeposit the superabrasive grains 2 in a multi-layered and uniform manner by the ordinary electrodeposition method, and there is also a drawback that the life of the grindstone is limited due to the single layered form.

【0004】そこで、これらの問題を解決しうる砥石と
して、特公昭58−2034号公報においては、樹脂発
泡体等の多孔質体に無電解めっきで導電性被覆を形成し
たのち、この多孔質体の表面および内部に、電解めっき
法を用いて超砥粒を電着して多孔質砥粒層を形成し、こ
の多孔質砥粒層を裁断して台金に固定する構成が開示さ
れている。
Therefore, as a grindstone capable of solving these problems, in JP-B-58-2034, a porous body such as a resin foam is formed with a conductive coating by electroless plating, and then the porous body is formed. There is disclosed a structure in which a superabrasive grain is electrodeposited on the surface and inside of the to form a porous abrasive grain layer by electroplating, and the porous abrasive grain layer is cut and fixed to a base metal. .

【0005】図14は、その明細書に記載された一実施
例を示し、ホイール型台金1の外周に前記のような多孔
質砥粒層4を固定するとともに、台金1の内部には一端
が外周面に開口し、他端が側面に開口する複数の給液路
5が形成されている。この例では、多孔質砥粒層4の全
体が適度の弾性を有するため、被削材への超砥粒の食い
込み衝撃を低減し、チッピングが低減できる。また、多
孔質砥粒層4の表面に多数の気孔が開口しているため、
これらがチップポケットによって切粉排出性を高めるこ
とができるうえ、使用時には図示のように台金1の側面
にノズル6で研削液を吹き付けることにより、各給液路
5を通じて多孔質砥粒層4の内部に強制的に研削液を導
入することができ、切粉排出性および冷却性を一層向上
する効果を得ている。
FIG. 14 shows an embodiment described in the specification, in which the above-mentioned porous abrasive grain layer 4 is fixed to the outer periphery of the wheel type base metal 1 and the inside of the base metal 1 is fixed. Plural liquid supply paths 5 are formed, one end of which opens to the outer peripheral surface and the other end of which opens to the side surface. In this example, since the entire porous abrasive grain layer 4 has an appropriate elasticity, it is possible to reduce the impact of the superabrasive grains biting into the work material and reduce chipping. Further, since many pores are opened on the surface of the porous abrasive grain layer 4,
These chips can enhance the chip discharge performance by the chip pockets, and at the time of use, by spraying the grinding liquid with the nozzle 6 on the side surface of the base metal 1 as shown in the figure, the porous abrasive grain layer 4 is passed through each liquid supply path 5. The grinding liquid can be forcibly introduced into the inside of the, and the effect of further improving the chip discharging property and cooling property is obtained.

【0006】[0006]

【発明が解決しようとする課題】しかし、図14の砥石
では、給液路5を通じて供給された研削液が、気孔率の
大きい多孔質砥粒層4を厚さ方向に素通りして給液路5
に対向した箇所からのみ流出し、その他の部分には研削
液が供給されにくい傾向を有する。このため、研削液供
給が不十分な箇所に部分的な目詰まりや発熱が生じやす
く、砥石の切れ味が不安定になる問題があった。
However, in the grindstone of FIG. 14, the grinding fluid supplied through the liquid supply passage 5 passes through the porous abrasive grain layer 4 having a large porosity in the thickness direction, and the supply passage 5
Has a tendency to flow out only from a portion opposed to, and it is difficult to supply the grinding liquid to the other portions. For this reason, there is a problem in that partial clogging or heat generation is likely to occur at a location where the grinding fluid supply is insufficient and the sharpness of the grindstone becomes unstable.

【0007】[0007]

【課題を解決するための手段】本発明は前記課題を解決
するためになされたもので、本発明に係わる通水性砥石
は、砥粒層形成面および研削液供給面を有する台金と、
前記砥粒層形成面に設けられ、内部全域に亙って無方向
性の3次元構造をなす分散用連通気孔が形成された研削
液分散層と、この研削液分散層上に設けられ、少なくと
もその厚さ方向に連通する多数の通水気孔を有する通水
性砥粒層とを具備し、前記台金の内部には、一端が前記
研削液供給面に開口し、他端が前記砥粒層形成面に開口
する給液路が形成されていることを特徴とする。
The present invention has been made to solve the above problems, and a water-permeable whetstone according to the present invention comprises a base metal having an abrasive grain layer forming surface and a grinding liquid supply surface,
A grinding liquid dispersion layer provided on the abrasive grain layer forming surface, and having a continuous ventilation hole for dispersion having a non-directional three-dimensional structure formed all over the inside, and at least a grinding liquid dispersion layer provided on the grinding liquid dispersion layer. And a water-permeable abrasive grain layer having a large number of water-permeable pores communicating in the thickness direction, one end of the base metal is opened to the grinding liquid supply surface, the other end is the abrasive grain layer. It is characterized in that a liquid supply path opening to the forming surface is formed.

【0008】なお、前記通水性砥粒層は、無方向性の3
次元網目構造をなし網目の平均セル径が前記超砥粒の平
均粒径の3〜100倍である粗目多孔質体の表面および
内部に、前記超砥粒を金属めっき相で多数固着したもの
であってもよく、その場合、前記分散用連通気孔の平均
径は、前記粗目多孔質体の平均セル径の1/2倍以下で
あることが望ましい。
The water-permeable abrasive grain layer has a non-directional 3
A large number of the above-mentioned superabrasive grains are fixed to the surface and inside of a coarse porous body having a three-dimensional mesh structure and an average cell diameter of the mesh of 3 to 100 times the average grain size of the superabrasive grains by a metal plating phase. It may be present, and in that case, it is preferable that the average diameter of the dispersion communicating vents is not more than 1/2 times the average cell diameter of the coarse porous body.

【0009】また、前記通水性砥粒層は、金属めっき相
中に超砥粒が分散されるとともに、この金属めっき相の
内部に無方向性の3次元網目構造をなす前記通水気孔が
形成され、通水気孔の網目の平均セル径は、前記超砥粒
の平均粒径の3〜100倍とされていてもよい。その場
合、前記分散用連通気孔の平均径は、前記通水気孔の網
目の平均セル径の1/2倍以下とされることが望まし
い。
In the water-permeable abrasive grain layer, superabrasive grains are dispersed in the metal plating phase, and the water-permeable pores having a non-directional three-dimensional network structure are formed in the metal plating phase. The average cell diameter of the mesh of the water-permeable pores may be 3 to 100 times the average particle diameter of the superabrasive grains. In that case, it is desirable that the average diameter of the dispersion communicating vents is not more than 1/2 times the average cell diameter of the mesh of the water-permeable pores.

【0010】一方、本発明の通水性砥石の製造方法は、
無方向性の3次元網目構造をなし、網目の平均セル径が
超砥粒の平均粒径の3〜100倍である平板状の粗目多
孔質体に導電性金属層を形成したうえ、この粗目多孔質
体に、無方向性の3次元多孔構造をなし、孔の平均径が
前記平均粒径の3/4倍以下である平板状の細目多孔質
体を配置して複合多孔質体を構成し、この複合多孔質体
に、前記粗目多孔質体の内部に前記超砥粒を分散させつ
つ、粗目多孔質体側から細目多孔質体側へ分散めっき液
を通し、粗目多孔質体の表面および内部に無電解めっき
および/または電気めっきにより超砥粒を金属めっき相
で固着させた後、複合多孔質体より、超砥粒が固着され
た粗目多孔質体を取り外し、これを通水性砥粒層とする
ことを特徴とする。
On the other hand, the method for producing a water-permeable grindstone of the present invention is
A conductive metal layer is formed on a flat plate-like coarse porous body having a non-directional three-dimensional mesh structure and having an average cell diameter of the mesh of 3 to 100 times the average particle diameter of superabrasive grains, and further, this coarse mesh is formed. A non-directional three-dimensional porous structure is formed in the porous body, and a flat plate-like fine porous body having an average pore diameter of 3/4 times or less of the average particle diameter is arranged to form a composite porous body. Then, in this composite porous body, while dispersing the superabrasive grains inside the coarse porous body, the dispersion plating solution is passed from the coarse porous body side to the fine porous body side, and the surface and the inside of the coarse porous body are After the superabrasive grains are fixed to the metal plating phase by electroless plating and / or electroplating, the coarse porous body to which the superabrasive grains are fixed is removed from the composite porous body, and the water-permeable abrasive grain layer is formed. It is characterized by

【0011】なお、超砥粒を固着させた前記粗目多孔質
体を前記複合多孔質体から取り外した後に、この粗目多
孔質体を、内部全域に亙って無方向性の3次元構造をな
す分散用連通気孔が形成された研削液分散層を介して、
台金上に固定してもよい。
After removing the coarse porous body to which the superabrasive grains are fixed, from the composite porous body, the coarse porous body forms a non-directional three-dimensional structure over the entire inside. Through the grinding fluid dispersion layer in which the continuous ventilation holes for dispersion are formed,
It may be fixed on the base metal.

【0012】また、超砥粒を固着させた前記粗目多孔質
体を前記複合多孔質体から取り外した後に、この超砥粒
を固着させた粗目多孔質体から、粗目多孔質体のみを除
去することにより、通水性砥粒層を得てもよい。
Further, after removing the coarse porous body to which the superabrasive grains are fixed, from the composite porous body, only the coarse porous body is removed from the coarse porous body to which the superabrasive grains are fixed. By doing so, a water-permeable abrasive grain layer may be obtained.

【0013】また、超砥粒を固着させた粗目多孔質体か
ら、粗目多孔質体のみを除去して得た通水性砥粒層を、
内部全域に亙って無方向性の3次元構造をなす分散用連
通気孔が形成された研削液分散層を介して、台金上に固
定してもよい。
Further, a water-permeable abrasive grain layer obtained by removing only the coarse porous body from the coarse porous body to which the superabrasive particles are fixed,
You may fix on a base metal via the grinding-liquid dispersion layer in which the continuous ventilation hole for dispersion which has a non-directional three-dimensional structure was formed over the whole inside.

【0014】[0014]

【作用】本発明に係わる通水性砥石によれば、研削中、
研削液を台金の研削液供給面に吹き付けると、給液路を
通じて研削液が研削液分散層に導入される。この研削液
分散層の内部には、全域に亙って無方向性の3次元構造
をなす分散用連通気孔が形成されているから、研削液は
分散用連通気孔を通じて厚さ方向だけでなく平面方向に
も広がり、分散層表面の広い範囲から通水性砥粒層に流
れ込む。そして、研削液は通水性砥粒層内部に形成され
た通水気孔を通って砥粒層表面の広い範囲からむらなく
流出し、研削面に供給される。したがって、研削面にお
いて、研削液の供給が不十分な箇所が生じにくい。
According to the water-permeable whetstone according to the present invention, during grinding,
When the grinding liquid is sprayed onto the grinding liquid supply surface of the base metal, the grinding liquid is introduced into the grinding liquid dispersion layer through the liquid supply passage. Inside the grinding fluid dispersion layer, there are formed non-directional three-dimensional structure dispersion vents throughout the entire area, so that the grinding fluid can pass through the dispersion vents not only in the thickness direction but also on the flat surface. It also spreads in the direction and flows into the water-permeable abrasive grain layer from a wide area on the surface of the dispersion layer. Then, the grinding fluid flows out uniformly from a wide area on the surface of the abrasive grain layer through the water-permeable pores formed inside the water-permeable abrasive grain layer, and is supplied to the grinding surface. Therefore, it is unlikely that a location where the grinding liquid is insufficiently supplied occurs on the ground surface.

【0015】一方、本発明に係わる製造方法では、複合
多孔質体に分散めっき液を強制的に通過させながら無電
解めっきまたは電気めっきを行なうので、分散めっき液
の水流により超砥粒は細目多孔質体との接合界面で捕捉
され、順に粗目多孔質体の内部に蓄積され、粗目多孔質
体の個々の繊維に押し付けられつつ、めっきが進行する
ので、析出する金属めっき相に均一に超砥粒が取り込ま
れていく。これにより、粗目多孔質体の全域に亙って超
砥粒の分散密度および金属めっき相への埋め込み量が均
一になるから、この方法で得られた通水性砥粒層では、
摩耗が進行しても切れ味や砥粒保持力が変化せず、砥粒
層の全域を安定に研削に供することができ、超砥粒の使
用効率も高い。また、分散めっき液を強制的に流通させ
ることにより、めっき速度を向上することができ、十分
実用に供しうる高い生産性が得られる。
On the other hand, in the production method according to the present invention, since electroless plating or electroplating is performed while the dispersion plating solution is forcedly passed through the composite porous body, the superabrasive grains are finely porous due to the water flow of the dispersion plating solution. It is captured at the bonding interface with the porous body, is sequentially accumulated inside the coarse porous body, and is pressed against the individual fibers of the coarse porous body while the plating proceeds, so that the metal plating phase that precipitates is uniformly super-abrasive. Grains are taken in. Thereby, since the dispersion density of the superabrasive grains and the amount of embedding in the metal plating phase become uniform over the entire area of the coarse porous body, in the water-permeable abrasive grain layer obtained by this method,
Even if the wear progresses, the sharpness and the holding force of the abrasive grains do not change, the entire region of the abrasive grain layer can be stably ground, and the use efficiency of the superabrasive grains is high. Further, by forcibly circulating the dispersed plating solution, the plating rate can be improved, and high productivity that can be sufficiently put to practical use can be obtained.

【0016】[0016]

【実施例】図1ないし図3は本発明に係わる通水性砥石
の一実施例を示し、図1は全体の正面図、図2はII−II
線視断面図、図3は通水性砥粒層および研削液分散層の
断面拡大図である。この通水性砥石は、図中符号10に
示すホイール型台金の外周面に、全周に亙って一定厚の
研削液分散層11、および通水性砥粒層12を順に形成
したものである。
1 to 3 show an embodiment of a water-permeable grindstone according to the present invention, FIG. 1 is an overall front view, and FIG. 2 is II-II.
FIG. 3 is an enlarged cross-sectional view of the water-permeable abrasive grain layer and the grinding liquid dispersion layer, as seen in a line. This water-permeable whetstone is formed by sequentially forming a grinding liquid dispersion layer 11 and a water-permeable abrasive grain layer 12 having a constant thickness over the entire circumference on the outer peripheral surface of a wheel-type base metal 10 shown in the figure. .

【0017】台金10の外周部には、図2に示すように
表裏側のそれぞれに、放射状に複数(この場合16)の給
液路13が周方向等間隔に形成され、これら給液路13
の一端は台金外周面に開口するとともに、他端は台金1
0の両側面(研削液供給面)にそれぞれ開口している。台
金10の外周面にはまた、各給液路13の開口部をつな
いで周方向全周に亙って延びる浅い給液溝14が2列形
成されている。
As shown in FIG. 2, a plurality of (16 in this case) liquid supply passages 13 are radially formed on the outer peripheral portion of the base metal 10 on the front and back sides, respectively, at equal intervals in the circumferential direction. Thirteen
One end of the base metal opens to the outer peripheral surface of the base metal, and the other end of the base metal 1
Both side surfaces of 0 (grinding liquid supply surface) are opened. Two rows of shallow liquid supply grooves 14 are formed on the outer peripheral surface of the base metal 10 so as to connect the openings of the respective liquid supply passages 13 and extend over the entire circumference.

【0018】通水性砥粒層12は、図3に示すように、
粗目多孔質体15の表面および内部の全域に亙って、一
定厚のNi,Co,Cu等の無電解金属めっき相16を
介して、ダイヤモンドまたはCBN等の超砥粒17をそ
れぞれ単層状もしくは多層状(図は単層状の例)に固着
させたものである。通水性砥粒層12の厚さは、研削寿
命および砥粒層強度の点から30μm以上とされること
が望ましい。
The water-permeable abrasive grain layer 12 is, as shown in FIG.
Over the entire surface and inside of the coarse porous body 15, a superabrasive grain 17 such as diamond or CBN is formed in a single layer or via a non-electrolytic metal plating phase 16 of Ni, Co, Cu or the like having a constant thickness. It is fixed in a multi-layered form (the figure shows a single-layered example). The thickness of the water-permeable abrasive grain layer 12 is preferably 30 μm or more in terms of grinding life and abrasive grain layer strength.

【0019】粗目多孔質体15としては、発泡剤を用い
て樹脂を高度に発泡成形した樹脂発泡体等が使用可能で
あり、具体的には成形が容易でコストの安いポリウレタ
ンフォーム等が好適である。図5はその一例を示す拡大
図である。粗目多孔質体15の厚さは、所望の砥粒層厚
さに合わせられる。
As the coarse porous material 15, a resin foam or the like in which a resin is highly foam-molded by using a foaming agent can be used. Specifically, polyurethane foam or the like which is easy to mold and low in cost is suitable. is there. FIG. 5 is an enlarged view showing an example thereof. The thickness of the coarse porous body 15 is adjusted to the desired thickness of the abrasive grain layer.

【0020】図3に示すように、粗目多孔質体15の網
目の平均セル径D1は、超砥粒17の平均粒径D2の3
〜100倍、より望ましくは5〜30倍とされている。
ここでセルと称するのは、繊維の網目で囲まれたほぼ球
状をなす空隙のことである。平均セル径D1が平均粒径
D2の3倍未満では、超砥粒17が入り込みにくい小さ
いセルの割合が増すため、砥粒分布密度のばらつきが増
し、切刃密度が不均一になって砥石の切れ味が不安定に
なる。また、100倍より大では、通常の研削に堪えう
るだけの砥粒層強度が得られない。なお、超砥粒17の
平均粒径D1は、砥石の使用目的に応じて決定される。
As shown in FIG. 3, the average cell diameter D1 of the mesh of the coarse porous body 15 is 3 of the average particle diameter D2 of the superabrasive grains 17.
˜100 times, more preferably 5 to 30 times.
Here, the term “cell” refers to a substantially spherical void surrounded by a mesh of fibers. If the average cell diameter D1 is less than 3 times the average particle diameter D2, the proportion of small cells in which the superabrasive grains 17 are hard to enter increases, so the variation in the abrasive grain distribution density increases and the cutting edge density becomes non-uniform, resulting in The sharpness becomes unstable. On the other hand, if it is more than 100 times, the strength of the abrasive grain layer that can withstand normal grinding cannot be obtained. The average particle diameter D1 of the superabrasive grains 17 is determined according to the purpose of use of the grindstone.

【0021】一方、研削液分散層11は、粗目多孔質体
15よりも目の細かい細目多孔質体で構成されており、
その内部には、全域に亙って無方向性の3次元構造をな
す分散用連通気孔11Aが形成されている。構造は図5
に示したものと同様である。分散用連通気孔11Aの平
均径D3は、粗目多孔質体15の平均セル径D1の1/
2倍以下が好ましく、より望ましくは10μm以上かつ
粗目多孔質体15の平均セル径D1の1/4以下とされ
る。10μm未満では研削加工時に研削液分散層11内
における圧力損失が大きいうえ、切粉により研削液分散
層11内で目詰まりを生じて、研削液が研削面に十分に
供給されないおそれがある。また、1/2倍より大では
研削液の水平方向への分散効果が弱く、通水性砥粒層1
2の全域に研削液が均一供給されないおそれがある。
On the other hand, the grinding fluid dispersion layer 11 is composed of a fine porous body having finer mesh than the coarse porous body 15.
Inside thereof, a dispersion-use ventilation hole 11A having a non-directional three-dimensional structure is formed over the entire area. Structure is Figure 5
Is the same as that shown in. The average diameter D3 of the dispersing continuous ventilation holes 11A is 1 / the average cell diameter D1 of the coarse porous body 15.
It is preferably not more than 2 times, more preferably not less than 10 μm and not more than ¼ of the average cell diameter D1 of the coarse porous body 15. If it is less than 10 μm, the pressure loss in the grinding liquid dispersion layer 11 during grinding is large, and the cutting liquid may cause clogging in the grinding liquid dispersion layer 11, so that the grinding liquid may not be sufficiently supplied to the grinding surface. On the other hand, when it is more than 1/2 times, the dispersion effect of the grinding liquid in the horizontal direction is weak, and the water-permeable abrasive grain layer 1
The grinding liquid may not be uniformly supplied to the entire area of No. 2.

【0022】研削液分散層11の厚さは、給液路13の
配置間隔にもよるが、図1に示すように(給液路間隔L
2/給液路口径L1)の1/20〜1倍、かつ0.5m
m以上であることが望ましい。前記値の1/20倍未満
または0.5mm未満では研削液分散効果に乏しく、部
分的な給液むらが生じやすい。また、1倍より大では流
液抵抗が高すぎて研削液が通過しにくく、供給量不足が
生じる場合がある。
The thickness of the grinding fluid dispersion layer 11 depends on the arrangement interval of the liquid supply passages 13, but as shown in FIG.
2/20 times to 1 times of the liquid supply path aperture L1) and 0.5m
It is preferably m or more. If it is less than 1/20 times the above value or less than 0.5 mm, the effect of dispersing the grinding fluid is poor, and partial unevenness of the fluid is likely to occur. On the other hand, if it is more than 1 time, the flow resistance is too high and the grinding liquid does not easily pass therethrough, and the supply amount may be insufficient.

【0023】前記構成からなる通水性砥石によれば、図
2に示すように、研削中に砥石の側面に研削液を吹き付
けると、砥石回転に伴う遠心力により、研削液が各給液
路13を通じて給液溝14に流れ込み、給液溝14に沿
って全周に広がったうえ、研削液分散層11に流入す
る。研削液分散層11は、平均孔径D3および気孔率が
通水性砥粒層12に比して遥かに小さいため、研削液は
分散層11内で厚さ方向のみならず平面方向に広がり、
分散層11の表面の広い範囲から均等に砥粒層12に流
れ込み、さらに通水性砥粒層12の表面の広い範囲から
研削面に流出する。したがって、研削面において研削液
供給の不十分な箇所が生じず、部分的な目詰まりを防止
して、多量に切粉が発生する重研削にも好適に使用可能
である。
According to the water-permeable whetstone having the above-mentioned structure, as shown in FIG. 2, when the grinding liquid is sprayed on the side surface of the whetstone during grinding, the grinding liquid is supplied to each of the liquid supply passages 13 by the centrifugal force accompanying the rotation of the whetstone. Through the liquid supply groove 14, spreads all around along the liquid supply groove 14, and then flows into the grinding liquid dispersion layer 11. Since the average pore diameter D3 and the porosity of the grinding liquid dispersion layer 11 are much smaller than those of the water-permeable abrasive grain layer 12, the grinding liquid spreads in the dispersion layer 11 not only in the thickness direction but also in the plane direction.
It uniformly flows into the abrasive grain layer 12 from a wide range of the surface of the dispersion layer 11, and further flows out from a wide range of the surface of the water-permeable abrasive grain layer 12 to the ground surface. Therefore, a portion where the grinding liquid is not sufficiently supplied does not occur on the grinding surface, partial clogging is prevented, and the present invention can be suitably used for heavy grinding in which a large amount of chips are generated.

【0024】また、通水性砥粒層12の内部に3次元的
につながる通水気孔12Aがくまなく形成され、通水性
砥粒層12の気孔率が30〜96vol%にも達するた
め、通水性砥粒層12が適度の弾性を有し、個々の超砥
粒17による被削材への切り込み衝撃がその弾性変形に
よって緩和され、被削材のチッピングが防止できる。
Further, three-dimensionally connected water-permeable pores 12A are formed inside the water-permeable abrasive grain layer 12, and the porosity of the water-permeable abrasive grain layer 12 reaches 30 to 96 vol%, so that water permeability is achieved. The abrasive grain layer 12 has an appropriate elasticity, and the cutting impact of the individual superabrasive grains 17 on the work material is alleviated by the elastic deformation, so that chipping of the work material can be prevented.

【0025】さらに、この実施例では、通水性砥粒層1
2の研削面に開口した通水気孔12Aがチップポケット
となり、研削面に生じた切粉を砥石の運動とともに排出
するため、切粉排出性が高く、通水性砥粒層12の目詰
まりが生じにくい。この例ではさらに、台金10の外周
面全周に亙って延びる給液溝14を形成しているため、
一層、研削液供給量の不均一化が防止できる。
Further, in this embodiment, the water-permeable abrasive grain layer 1
The water-permeable pores 12A opened on the second grinding surface serve as chip pockets, and the chips generated on the grinding surface are discharged together with the movement of the grindstone. Hateful. Further, in this example, since the liquid supply groove 14 extending over the entire outer peripheral surface of the base metal 10 is formed,
It is possible to further prevent the non-uniformity of the grinding liquid supply amount.

【0026】次に、図4および図5を用いて、前記通水
性砥石の製造方法を説明する。この方法ではまず、前述
した粗目多孔質体15に、無電解めっき時に金属析出を
促進するための表面触媒化処理を施す。これは、Au,
Pt,Pd,Ag等の貴金属触媒核を付与するための処
理で、例えばPdCl2等の前記貴金属の塩溶液に、粗
目多孔質体15を浸漬し、水洗する。その際の処理溶液
の濃度、温度、処理時間などの条件は、従来無電解めっ
きを行なっていた場合と同様でよい。
Next, a method of manufacturing the water-permeable whetstone will be described with reference to FIGS. 4 and 5. In this method, first, the coarse porous body 15 described above is subjected to a surface catalyzation treatment for promoting metal deposition during electroless plating. This is Au,
In the treatment for imparting a noble metal catalyst nucleus such as Pt, Pd, Ag, etc., the coarse porous body 15 is immersed in a salt solution of the above noble metal such as PdCl 2 and washed with water. The conditions such as the concentration of the treatment solution, the temperature, and the treatment time at that time may be the same as those in the case where the conventional electroless plating is performed.

【0027】次に、この粗目多孔質体15の一面に、超
砥粒17の通過を阻止するための板または膜状の細目多
孔質体18を配置して、複合多孔質板19を構成し、図
4に示すようなめっき治具20に固定する。細目多孔質
体18としては、その通気孔が超砥粒17の粒径よりも
十分に細かいろ紙,布,メンブレンフィルタ,図5に示
したようなポリウレタンフォーム発泡体等が使用可能で
ある。前記めっき治具20は、複合多孔質体19とほぼ
同形状をなす一対の筒体21,22 の接合部間に、複合
多孔質体19を気密的にはさんで固定するものであり、
粗目多孔質体15の側から超砥粒17を分散した無電解
めっき液を循環させるようになっている。
Next, a plate or a film-shaped fine porous body 18 for preventing passage of the superabrasive grains 17 is arranged on one surface of the coarse porous body 15 to form a composite porous plate 19. , And fixed to a plating jig 20 as shown in FIG. As the fine porous body 18, a filter paper, a cloth, a membrane filter, a polyurethane foam foam as shown in FIG. 5 or the like whose ventilation holes are sufficiently smaller than the particle size of the superabrasive grain 17 can be used. The plating jig 20 fixes the composite porous body 19 in an airtight manner between the joint portions of a pair of cylindrical bodies 21 and 22 having substantially the same shape as the composite porous body 19.
An electroless plating solution in which superabrasive grains 17 are dispersed is circulated from the side of the coarse porous body 15.

【0028】すると、無電解めっき液の水流により、超
砥粒17は細目多孔質体18と接する面側から順に粗目
多孔質体15の内部に蓄積され、粗目多孔質体15の個
々の繊維に押し付けられつつ、析出する無電解金属めっ
き相16に取り込まれていく。このように無電解めっき
法を使用すれば、金属めっき相16の厚さは粗目多孔質
体15の全域に亙ってほぼ一定になるから、得られた通
水性砥粒層12における砥粒分散密度および埋め込み量
が均一になる。なお、超砥粒17は、金属めっき相16
の厚さ方向に、単層状に形成しても多層状に固着しても
よい。
Then, due to the water flow of the electroless plating solution, the superabrasive grains 17 are sequentially accumulated inside the coarse porous body 15 from the surface side in contact with the fine porous body 18, and the superabrasive grains 17 are formed in the individual fibers of the coarse porous body 15. While being pressed, it is taken in by the electroless metal plating phase 16 that is deposited. When the electroless plating method is used in this way, the thickness of the metal plating phase 16 becomes substantially constant over the entire area of the coarse porous body 15, so that the abrasive grains in the water-permeable abrasive grain layer 12 thus obtained are dispersed. The density and filling amount are uniform. The superabrasive grains 17 are the metal plating phase 16
May be formed in a single layer or may be fixed in multiple layers in the thickness direction.

【0029】次に、無電解めっきが完了したら、複合多
孔質板19をめっき治具20から外し、通水性砥粒層1
2と細目多孔質体18とを分離した後、通水性砥粒層1
2に300〜400℃程度で熱処理を行なう。これによ
り、金属めっき相16内に蓄積した応力が緩和できると
ともに、金属めっき相16がNi−P、Ni−B等であ
る場合は、金属めっき相16の硬質化が図れるととも
に、多孔質体を構成する樹脂の一部が除去される。ただ
し、この熱処理は省くことも可能である。
Next, when the electroless plating is completed, the composite porous plate 19 is removed from the plating jig 20, and the water-permeable abrasive grain layer 1 is removed.
After separating 2 and the fine porous body 18, the water-permeable abrasive grain layer 1
2 is heat-treated at about 300 to 400 ° C. Thereby, the stress accumulated in the metal plating phase 16 can be relaxed, and when the metal plating phase 16 is Ni-P, Ni-B, etc., the metal plating phase 16 can be hardened and a porous body can be formed. A part of the constituent resin is removed. However, this heat treatment can be omitted.

【0030】次に、この通水性砥粒層12を適当な形状
に切断する一方、台金10の外周面に研削液分散層11
となる細目多孔質体を巻回して接合し、さらにその外周
に前記の通水性砥粒層12を巻回して接合することによ
り、前記実施例の砥石を得る。研削液分散層11および
通水性砥粒層12の各接合方法としては、エポキシ系等
の接着剤を接合面に塗布して接着する方法等が可能であ
るが、この場合、接着剤によりそれぞれの気孔がふさが
らないように留意する必要がある。
Next, while the water-permeable abrasive grain layer 12 is cut into an appropriate shape, the grinding liquid dispersion layer 11 is formed on the outer peripheral surface of the base metal 10.
The fine porous body is wound and bonded, and the water-permeable abrasive grain layer 12 is wound around and bonded to the outer periphery thereof to obtain the grindstone of the embodiment. As a method of joining the grinding liquid dispersion layer 11 and the water-permeable abrasive grain layer 12, a method of applying an adhesive such as an epoxy-based adhesive to the joint surface and adhering it can be used. Care must be taken not to close the pores.

【0031】このような製造方法によれば、通水性砥粒
層12における砥粒分散密度および埋め込み量が均一に
なり、通水性砥粒層12の厚さ方向へ砥粒を均一に分布
させ多層配置することができる。したがって、通水性砥
粒層12の摩耗が進行しても切れ味や砥粒保持力が変化
せず、砥粒層12の全域を安定に研削に供することがで
きる砥石が得られる。また、細目多孔質体18により超
砥粒17を粗目多孔質体15内に高密度に保持しつつ電
着を行うため、超砥粒17の使用効率が高く、砥粒コス
トの低減が図れるうえ、砥石寿命の延長、砥石強度の向
上、砥石の弾性率の適正化、研削液の砥粒層内における
流通均一化も図れる。
According to such a manufacturing method, the abrasive grain dispersion density and the embedding amount in the water permeable abrasive grain layer 12 become uniform, and the abrasive grains are evenly distributed in the thickness direction of the water permeable abrasive grain layer 12 to form a multilayer structure. Can be placed. Therefore, even if the water-permeable abrasive grain layer 12 is worn, the sharpness and the abrasive grain retaining force do not change, and a grindstone capable of stably providing the entire region of the abrasive grain layer 12 for grinding is obtained. Further, since the fine abrasive particles 18 are used for electrodeposition while maintaining the high density of the superabrasive particles 17 in the coarse porous material 15, the use efficiency of the superabrasive particles 17 is high and the cost of the abrasive particles can be reduced. Also, the life of the grindstone can be extended, the strength of the grindstone can be improved, the elastic modulus of the grindstone can be optimized, and the distribution of the grinding fluid in the abrasive grain layer can be made uniform.

【0032】また、砥粒層形成時に無電解めっき液を強
制的に流通させることにより、電解めっき法に比してめ
っき速度の小さい無電解めっき法を用いた場合にも、十
分実用に供しうる高い生産性が得られる。さらに、ポリ
ウレタンフォーム等の樹脂多孔質体15は、気孔率およ
び平均セル径が広範囲に調整可能であるから、砥石の用
途に応じて任意のセル径および気孔率を有する通水気孔
12Aが容易に形成できる。
Further, by forcibly circulating the electroless plating solution at the time of forming the abrasive grain layer, even when the electroless plating method having a smaller plating rate than the electrolytic plating method is used, it can be sufficiently put to practical use. High productivity can be obtained. Further, since the porosity and the average cell diameter of the resin porous body 15 such as polyurethane foam can be adjusted in a wide range, the water-permeable pores 12A having an arbitrary cell diameter and porosity can be easily obtained depending on the application of the grindstone. Can be formed.

【0033】なお、通水性砥粒層12は、前記実施例の
ように台金に固定しなくとも、それ自体を平板状または
シート状の弾性を有する通水性砥石として使用すること
ができるし、研削液分散層11を設けずに通水性砥粒層
12を台金に直接接合して弾性砥石としてもよい。
The water-permeable abrasive grain layer 12 can be used as a flat water-permeable or sheet-like water-permeable abrasive stone even if it is not fixed to the base metal as in the above embodiment. The water-permeable abrasive grain layer 12 may be directly bonded to the base metal without providing the grinding liquid dispersion layer 11 to form an elastic grindstone.

【0034】また、本発明に使用する台金は、図示した
ホイール型に限らず、カップ型,ブロック型,総型砥石
用など、いかなる形状のものでもよい。例えば、図6は
本発明をカップ型砥石に適用した第2実施例を示してい
る。カップ型台金10には、内壁面(研削液供給面)か
ら下端面に達する複数の給液路13が形成され、下端面
には各給液路13の開口部をつなぐ円環状の給液溝14
が全周に亙って形成されている。また、台金10の端面
には、円環状をなす前記実施例同様の研削液分散層11
および通水性砥粒層12が固定されている。
Further, the base metal used in the present invention is not limited to the illustrated wheel type, and may have any shape such as a cup type, a block type and a full-scale grindstone. For example, FIG. 6 shows a second embodiment in which the present invention is applied to a cup type grindstone. The cup-shaped base metal 10 is formed with a plurality of liquid supply passages 13 extending from the inner wall surface (grinding liquid supply surface) to the lower end surface, and the annular liquid supply liquid connecting the openings of the respective liquid supply passages 13 to the lower end surface. Groove 14
Is formed all around. Further, on the end surface of the base metal 10, a grinding fluid dispersion layer 11 having an annular shape similar to that in the above-described embodiment.
And the water-permeable abrasive grain layer 12 is fixed.

【0035】この砥石を使用するには、台金10をスピ
ンドル軸23に固定したうえ、スピンドル軸23の内部
に形成された給液路25を通じて、フランジ部24の周
面に周方向一定間隔毎に形成された給液口26から、前
記内壁面に向けて研削液を噴出させる。すると研削液
は、砥石回転の遠心力により給液路13を通って砥粒層
12に均一に供給され、前記実施例と同様の効果が得ら
れる。
To use this grindstone, the base metal 10 is fixed to the spindle shaft 23, and the liquid supply passage 25 formed inside the spindle shaft 23 is used to make a constant interval in the circumferential direction on the peripheral surface of the flange portion 24. The grinding liquid is jetted from the liquid supply port 26 formed in the direction toward the inner wall surface. Then, the grinding liquid is uniformly supplied to the abrasive grain layer 12 through the liquid supply path 13 by the centrifugal force of the rotation of the grindstone, and the same effect as that of the above-described embodiment can be obtained.

【0036】また、前記実施例では、電着後に粗目多孔
質体15と細目多孔質体18とを分離したが、予め細目
多孔質体18に表面触媒化処理を施し、細目多孔質体1
8にも全域に亙って無電解めっきする構成としてもよ
い。この場合には、細目多孔質体18と通水性砥粒層1
2が金属めっき相により一体的に接合されるので、細目
多孔質体18をそのまま研削液分散層11として使用す
ることが可能となる。
Further, in the above-mentioned embodiment, the coarse porous body 15 and the fine porous body 18 were separated after the electrodeposition, but the fine porous body 18 was previously subjected to the surface catalytic treatment to obtain the fine porous body 1.
8 may also be configured to electrolessly plate over the entire area. In this case, the fine porous body 18 and the water-permeable abrasive grain layer 1
Since the two are integrally joined by the metal plating phase, the fine porous body 18 can be used as it is as the grinding liquid dispersion layer 11.

【0037】次に、図7は、本発明に係わる通水性砥石
の第3実施例を示す断面拡大図である。この実施例の通
水性砥粒層12は、超砥粒30を金属めっき相32で架
橋しつつ積層することにより、超砥粒30同士の間に通
水気孔33を形成したことを特徴とする。
Next, FIG. 7 is an enlarged sectional view showing a third embodiment of the water-permeable whetstone according to the present invention. The water-permeable abrasive grain layer 12 of this embodiment is characterized in that water-permeable pores 33 are formed between the super-abrasive grains 30 by laminating the super-abrasive grains 30 while bridging them with the metal plating phase 32. .

【0038】このような砥石を製造するには、まず、研
削液分散層11となる多孔質体を無電解めっき液に浸漬
し、その繊維の表面に金属被覆を形成する。次いで、金
属被覆した多孔質体を電解めっき槽内に配置し、電解め
っき液中に、予め無電解めっき法により表面に金属被覆
しておいた超砥粒を分散させる。
In order to manufacture such a grindstone, first, a porous body to be the grinding liquid dispersion layer 11 is immersed in an electroless plating solution to form a metal coating on the surface of the fiber. Next, the metal-coated porous body is placed in an electrolytic plating bath, and the superabrasive grains whose surfaces are metal-coated in advance by an electroless plating method are dispersed in an electrolytic plating solution.

【0039】そして、電解めっき液を攪拌しつつ、研削
液分散層11を電源陰極へ、また、研削液分散層11と
対向させて配置した陽極を電源陽極へそれぞれ接続す
る。すると、研削液分散層11上に金属めっき相32が
析出し、この金属めっき相32に接触した超砥粒30が
固着される。超砥粒30が固着されると、この超砥粒3
0の金属被覆31と金属めっき相32が導通し、金属被
覆31上に金属めっき相32が続いて析出し、隣接した
超砥粒30間が架橋されるため、超砥粒30の間には部
分的に気孔が残る。この気孔の割合をある程度以上高め
れば、各気孔は互いに連通し、図示のような通水気孔3
3が形成される。
Then, while the electrolytic plating solution is being stirred, the grinding liquid dispersion layer 11 is connected to the power supply cathode, and the anode arranged so as to face the grinding liquid dispersion layer 11 is connected to the power supply anode. Then, the metal plating phase 32 is deposited on the grinding liquid dispersion layer 11, and the superabrasive grains 30 contacting the metal plating phase 32 are fixed. When the superabrasive grains 30 are fixed, the superabrasive grains 3
The metal coating 31 of 0 and the metal plating phase 32 are electrically connected, the metal plating phase 32 is subsequently deposited on the metal coating 31, and the adjacent superabrasive grains 30 are bridged, so that between the superabrasive grains 30. Some pores remain. If the proportion of the pores is increased to a certain extent or more, the pores communicate with each other and the water-permeable pores 3 as shown in the figure are formed.
3 is formed.

【0040】なお、この第3実施例の砥石を製造するに
は、電解めっき槽内でステンレス等の基板上に通水性砥
粒層12を形成した後、これを剥離させて整形し、研削
液分散層11上に接着剤等を使用して接合してもよい。
In order to manufacture the grindstone of the third embodiment, after the water-permeable abrasive grain layer 12 is formed on the substrate such as stainless steel in the electrolytic plating tank, the water-permeable abrasive grain layer 12 is peeled and shaped, and the grinding liquid is used. You may join on the dispersion layer 11 using an adhesive agent.

【0041】次に、図8は、本発明の砥石の第4実施例
を示す断面拡大図である。この実施例の通水性砥粒層1
2は、超砥粒40を金属めっき相41の内部に均一に分
散させ、かつ、金属めっき相41に垂直に貫通する通水
気孔42を形成したことを特徴とする。
Next, FIG. 8 is an enlarged sectional view showing a fourth embodiment of the grindstone of the present invention. Water-permeable abrasive grain layer 1 of this example
No. 2 is characterized in that the superabrasive grains 40 are uniformly dispersed inside the metal plating phase 41, and the water-permeable pores 42 that penetrate the metal plating phase 41 perpendicularly are formed.

【0042】このような砥石を製造するには、まず第3
実施例と同様に、研削液分散層11となる多孔質体を無
電解めっき液に浸漬し、その繊維の表面に金属被覆を形
成する。次いで、この金属被覆した多孔質体を電解めっ
き槽内に配置し、その被めっき面にマスキング部材43
を載置する。
In order to manufacture such a grindstone, first of all,
Similar to the example, the porous body to be the grinding liquid dispersion layer 11 is dipped in the electroless plating solution to form a metal coating on the surface of the fiber. Next, the metal-coated porous body is placed in an electrolytic plating tank, and the masking member 43 is placed on the surface to be plated.
To place.

【0043】このマスキング部材43は、平板な格子状
等をなす支持部43Aと、この支持部43Aから垂直に
突出する多数の棒状突起43Bを有するもので、これら
棒状突起43Bの先端を研削液分散層11に当接して配
置される。この状態で第3実施例同様に電着を行うこと
により、当接点での金属めっき相41の析出が阻止され
るため、砥粒層12に通水気孔42が形成される。な
お、この場合にも、基板上に通水性砥粒層12を形成し
た後、これを剥離させて整形し、研削液分散層11上に
接合してもよい。
The masking member 43 has a support portion 43A in the form of a flat lattice, and a large number of rod-shaped projections 43B protruding vertically from the support portion 43A. It is placed against the layer 11. By performing electrodeposition in this state in the same manner as in the third embodiment, precipitation of the metal plating phase 41 at the contact point is prevented, so that water holes 42 are formed in the abrasive grain layer 12. In this case as well, after the water-permeable abrasive grain layer 12 is formed on the substrate, the water-permeable abrasive grain layer 12 may be peeled and shaped to be bonded onto the grinding liquid dispersion layer 11.

【0044】図9は、本発明の砥石の第5実施例を示す
断面拡大図である。この実施例の通水性砥粒層12の構
造は、先の第4実施例とほぼ等しく、超砥粒50を金属
めっき相51の内部に均一に分散させ、かつ、金属めっ
き相51に、垂直に貫通する通水気孔52を形成したも
のである。
FIG. 9 is an enlarged sectional view showing a fifth embodiment of the grindstone of the present invention. The structure of the water-permeable abrasive grain layer 12 of this embodiment is almost the same as that of the fourth embodiment described above, the superabrasive grains 50 are uniformly dispersed in the metal plating phase 51, and the metal plating phase 51 is perpendicular to the metal plating phase 51. The through-hole 52 is formed so as to penetrate therethrough.

【0045】この砥石を製造するには、前記実施例と同
様に、研削液分散層11となる多孔質体の繊維の表面に
金属被覆を形成する。次いで、この金属被覆した多孔質
体を通気用治具に固定し、電解めっき槽内に配置する。
この通気用治具は、電解めっき槽内で、研削液分散層1
1の一面から他面へガスを流すためのもので、ガス供給
源に接続されている。
In order to manufacture this grindstone, a metal coating is formed on the surface of the fiber of the porous body which becomes the grinding liquid dispersion layer 11, as in the above-mentioned embodiment. Next, the metal-coated porous body is fixed to a ventilation jig and placed in an electrolytic plating tank.
This aeration jig is used for grinding liquid dispersion layer 1 in an electrolytic plating tank.
1 for flowing gas from one surface to the other surface, and is connected to a gas supply source.

【0046】そして、陽極と研削液分散層11の間で通
電し、その表面に金属めっき相51を析出させつつ、通
気用治具を介して研削液分散層11の裏面側を加圧して
被めっき面から気泡を噴出させる。この状態で電着を行
うことにより、気泡発生箇所では金属めっき相51の析
出が阻止されるため、図示のように垂直な通水気孔52
がほぼ均一に形成される。なお、この製造方法によれ
ば、電着時に被めっき面の角度を変更すると、砥粒層1
2表面に対する通水気孔52の角度が任意に変更できる
という利点も有する。
Then, an electric current is applied between the anode and the grinding liquid dispersion layer 11 to deposit the metal plating phase 51 on the surface of the grinding liquid dispersion layer 11 while pressing the back surface side of the grinding liquid dispersion layer 11 through a ventilation jig. Air bubbles are ejected from the plated surface. By performing the electrodeposition in this state, the deposition of the metal plating phase 51 is prevented at the bubble generation location, so that the vertical water-permeable pores 52 are formed as shown in the figure.
Are formed almost uniformly. According to this manufacturing method, when the angle of the plated surface is changed during electrodeposition, the abrasive grain layer 1
There is also an advantage that the angle of the water passage holes 52 with respect to the two surfaces can be arbitrarily changed.

【0047】次に図10は、本発明の砥石の第6実施例
を示している。この例の通水性砥粒層12は、前述の第
1実施例(図3)とほぼ同様の構造をなし、ポリウレタ
ンフォーム等の粗目多孔質体60の繊維の表面全域に亙
って、一定厚の金属めっき相62を介して、超砥粒61
を多層状に固着させたものであるが、金属めっき相62
中にウィスカー63を分散させた点が異なる。ウィスカ
ー63としては、SiC,Al23,TiC,Si34
等が使用可能である。
Next, FIG. 10 shows a sixth embodiment of the grindstone of the present invention. The water-permeable abrasive grain layer 12 of this example has a structure similar to that of the first embodiment (FIG. 3) described above, and has a constant thickness over the entire surface of the fibers of the coarse porous body 60 such as polyurethane foam. Through the metal plating phase 62 of
The metal plating phase 62
The difference is that whiskers 63 are dispersed therein. The whiskers 63 include SiC, Al 2 O 3 , TiC, Si 3 N 4
Etc. can be used.

【0048】この第6実施例の砥石では、ウィスカー6
3を分散したことにより、金属めっき相62の剛性が向
上するから、重研削に使用した場合に、研削面の金属め
っき相62が座屈して通水気孔64が潰れ、通水性が低
下するおそれがない。
In the whetstone of the sixth embodiment, whiskers 6
Since the rigidity of the metal plating phase 62 is improved by dispersing 3, the metal plating phase 62 on the ground surface may buckle and the water-permeable pores 64 may be collapsed to lower the water permeability when used in heavy grinding. There is no.

【0049】次に、図11は本発明の第7実施例の砥石
を示し、この例では、金属めっき相71中に超砥粒70
を均一かつ多層状に分散させるとともに、金属めっき相
71中に、その全域に亙って無方向性の3次元網目構造
をなす通水気孔72を形成したものである。
Next, FIG. 11 shows a grindstone of a seventh embodiment of the present invention. In this example, the superabrasive grains 70 are contained in the metal plating phase 71.
Is dispersed uniformly and in a multi-layered manner, and water-permeable pores 72 having a non-directional three-dimensional network structure are formed in the entire area of the metal plating phase 71.

【0050】通水気孔72の網目の平均セル径D4は、
超砥粒70の平均粒径の3〜100倍、望ましくは5〜
30倍とされている。平均セル径D4が平均粒径の3倍
未満では後述する電着時に個々のセル内への超砥粒70
の侵入が困難になるため、各セル内における超砥粒70
の分散密度が不均一になる。また100倍より大では、
研削面で開口する通水気孔72の分布密度が小さすぎ、
通水性が不十分になる。
The average cell diameter D4 of the mesh of the water holes 72 is
3-100 times the average particle size of the superabrasive grain 70, preferably 5
It is supposed to be 30 times. If the average cell diameter D4 is less than 3 times the average particle diameter, the superabrasive grains 70 in the individual cells during electrodeposition described later will be 70.
Since it is difficult for the
The dispersion density of is not uniform. If it is more than 100 times,
The distribution density of the water passage pores 72 opening on the grinding surface is too small,
Water permeability is insufficient.

【0051】また、研削液分散層11の分散用連通気孔
11Aの平均径D3は、平均セル径D4の1/2倍以下
とされることが望ましい。1/2倍より大であると、研
削液分散層11による研削液の水平方向への分散効果が
不十分になる。
Further, it is desirable that the average diameter D3 of the dispersion-use ventilation holes 11A of the grinding fluid dispersion layer 11 be 1/2 times or less of the average cell diameter D4. If it is more than 1/2 times, the effect of the grinding fluid dispersion layer 11 for dispersing the grinding fluid in the horizontal direction becomes insufficient.

【0052】この第7実施例の砥石を製造するには、ま
ず、電解めっき槽中において、平面陰極基板上に前記同
様の樹脂多孔質体(金属被覆はしない)を配置し、その
内部に超砥粒70を分散させつつ、陰極基板上に金属め
っき相71を析出させ、樹脂多孔質体のセル内部に満た
して電析品を得た後、この電析品から多孔質体を除去
し、その除去跡に通水気孔72を形成する。多孔質体の
除去方法としては、電析品全体を加熱して多孔質体を分
解・気化させる方法、あるいはアルカリ溶液中に電析品
を浸漬して多孔質体を溶解除去する方法等が採用でき
る。
In order to manufacture the grindstone of the seventh embodiment, first, in the electrolytic plating bath, a resin porous body (not coated with metal) similar to the above is placed on a flat cathode substrate, and the inside thereof is superposed. While dispersing the abrasive grains 70, a metal plating phase 71 was deposited on the cathode substrate, the inside of the cell of the resin porous body was filled to obtain an electrodeposited product, and then the porous body was removed from this electrodeposited product. Water passage pores 72 are formed in the removal traces. As a method for removing the porous body, a method of heating the entire electrodeposited product to decompose and vaporize the porous body, or a method of immersing the electrodeposited product in an alkaline solution to dissolve and remove the porous body are adopted. it can.

【0053】この例では、第1実施例と同様の効果が得
られるのみならず、通水性砥粒層12の内部に3次元網
目状構造をなす比較的内径の小さい通水気孔72が全域
に亙って無方向的に形成されているため、研削液分散層
11を介して砥粒層12に供給された研削液は、砥粒層
12の内部でも分散されつつ研削面に達し、研削面へ研
削液をより均等に供給することができる。
In this example, not only the same effects as those of the first embodiment can be obtained, but also the water-permeable pores 72 having a relatively small inner diameter, which have a three-dimensional mesh structure, are formed in the whole area of the water-permeable abrasive grain layer 12. Since it is formed non-directionally, the grinding liquid supplied to the abrasive grain layer 12 through the grinding liquid dispersion layer 11 reaches the grinding surface while being dispersed inside the abrasive grain layer 12, The grinding liquid can be supplied more evenly.

【0054】図12に示す第8実施例は、第7実施例を
さらに改良したものである。この例では、超砥粒80の
表面に予め金属被覆81を形成したうえ、第7実施例と
同様の製造方法に供することにより、金属めっき相82
の内部には、通水気孔83だけでなく、各セル内におい
て、超砥粒80の間に多数の気孔84を形成したことを
特徴とする。
The eighth embodiment shown in FIG. 12 is a further improvement of the seventh embodiment. In this example, the metal coating 81 is previously formed on the surface of the superabrasive grains 80, and then the metal plating phase 82 is obtained by applying the same manufacturing method as in the seventh embodiment.
In addition to the water-permeable pores 83, a large number of pores 84 are formed between the superabrasive grains 80 in each cell.

【0055】このようにセル内にも気孔84を形成する
と、これら気孔84の一部が相互に連通するうえ、通水
気孔83とも連通しあうため、砥粒層12内にはより複
雑に入り組んだ研削液通路が形成され、さらに研削液の
分散効果が向上できる。また、研削面におけるチップポ
ケットの存在密度が向上するので、いっそう切粉排出性
が高まる。
When the pores 84 are formed in the cell as described above, some of the pores 84 communicate with each other and also communicate with the water permeation pores 83, so that the abrasive grain layer 12 becomes more complicated and complicated. The grinding fluid passage is formed, and the dispersion effect of the grinding fluid can be further improved. Moreover, since the density of the chip pockets on the ground surface is improved, the chip discharging property is further improved.

【0056】なお、本発明は上述した各実施例のみに限
定されることはなく、各実施例の構成を組み合わせた
り、周知の他の構成を追加することも当然可能である。
The present invention is not limited to the above-mentioned respective embodiments, and it is naturally possible to combine the structures of the respective embodiments or add other well-known structures.

【0057】[0057]

【発明の効果】本発明の通水性砥石によれば、研削中、
研削液を台金の研削液供給面に吹き付けると、給液路を
通じて研削液が研削液分散層に導入される。この研削液
分散層の内部には、全域に亙って無方向性の3次元構造
をなす分散用連通気孔が形成されているから、研削液は
分散用連通気孔を通じて厚さ方向だけでなく平面方向に
も広がり、分散層表面の広い範囲から通水性砥粒層に流
れ込む。そして、研削液は通水性砥粒層内部に形成され
た通水気孔を通って砥粒層表面の広い範囲からむらなく
流出し、研削面に供給される。したがって、研削面にお
いて、研削液の供給が不十分な箇所が生じにくく、研削
液の供給不十分による砥粒層の目詰まりや加熱を防ぐこ
とができる。
According to the water-permeable grindstone of the present invention, during grinding,
When the grinding liquid is sprayed onto the grinding liquid supply surface of the base metal, the grinding liquid is introduced into the grinding liquid dispersion layer through the liquid supply passage. Inside the grinding fluid dispersion layer, there are formed non-directional three-dimensional structure dispersion vents throughout the entire area, so that the grinding fluid can pass through the dispersion vents not only in the thickness direction but also on the flat surface. It also spreads in the direction and flows into the water-permeable abrasive grain layer from a wide area on the surface of the dispersion layer. Then, the grinding fluid flows out uniformly from a wide area on the surface of the abrasive grain layer through the water-permeable pores formed inside the water-permeable abrasive grain layer, and is supplied to the grinding surface. Therefore, it is possible to prevent a portion where the grinding liquid is not sufficiently supplied on the ground surface, and it is possible to prevent clogging or heating of the abrasive grain layer due to insufficient supply of the grinding liquid.

【0058】一方、本発明に係わる製造方法では、複合
多孔質体に分散めっき液を強制的に通過させながら無電
解めっきまたは電気めっきを行なうため、分散めっき液
の水流により超砥粒は細目多孔質体との接合界面で捕捉
され、順に粗目多孔質体の内部に蓄積され、粗目多孔質
体の個々の繊維に押し付けられつつ、めっきが進行す
る。したがって、析出する金属めっき相に均一に超砥粒
が取り込まれていき、粗目多孔質体の全域に亙って超砥
粒の分散密度および金属めっき相への埋め込み量が均一
になるので、この方法で得られた通水性砥粒層では、摩
耗が進行しても切れ味や砥粒保持力が変化せず、砥粒層
の全域を安定に研削に使用することができ、超砥粒の使
用効率も高い。また、分散めっき液を強制的に流通させ
ることにより、めっき速度を向上することができ、十分
実用に供しうる高い生産性が得られる。
On the other hand, in the production method according to the present invention, since electroless plating or electroplating is performed while forcibly passing the dispersion plating solution through the composite porous body, the superabrasive grains are finely porous by the water flow of the dispersion plating solution. The plating proceeds while being captured at the bonding interface with the porous body, sequentially accumulated inside the coarse porous body, and pressed against the individual fibers of the coarse porous body. Therefore, since the superabrasive grains are uniformly taken into the precipitated metal plating phase, the dispersion density of the superabrasive grains and the amount of embedding in the metal plating phase become uniform over the entire area of the coarse porous body. In the water-permeable abrasive grain layer obtained by the method, the sharpness and the abrasive grain retention force do not change even if the wear progresses, and the entire area of the abrasive grain layer can be stably used for grinding. Efficiency is also high. Further, by forcibly circulating the dispersed plating solution, the plating rate can be improved, and high productivity that can be sufficiently put to practical use can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる通水性砥石の一実施例を示す正
面図である。
FIG. 1 is a front view showing an embodiment of a water-permeable whetstone according to the present invention.

【図2】図1内のII−II線視断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】前記砥石の通水性砥粒層の断面拡大図である。FIG. 3 is an enlarged cross-sectional view of a water-permeable abrasive grain layer of the grindstone.

【図4】前記砥石の製造方法を示す断面図である。FIG. 4 is a cross-sectional view showing a method for manufacturing the grindstone.

【図5】前記方法に使用される多孔質体の一例を示す拡
大図である。
FIG. 5 is an enlarged view showing an example of a porous body used in the method.

【図6】本発明の砥石の第2実施例を示す縦断面図であ
る。
FIG. 6 is a vertical sectional view showing a second embodiment of the grindstone of the present invention.

【図7】本発明の砥石の第3実施例の砥粒層近傍を示す
断面拡大図である。
FIG. 7 is an enlarged cross-sectional view showing the vicinity of an abrasive grain layer of a third embodiment of the grindstone of the present invention.

【図8】本発明の砥石の第4実施例の砥粒層近傍を示す
断面拡大図である。
FIG. 8 is an enlarged cross-sectional view showing the vicinity of an abrasive grain layer of a fourth embodiment of the grindstone of the present invention.

【図9】本発明の砥石の第5実施例の砥粒層近傍を示す
断面拡大図である。
FIG. 9 is an enlarged cross-sectional view showing the vicinity of an abrasive grain layer of a fifth embodiment of a grindstone of the present invention.

【図10】本発明の砥石の第6実施例の砥粒層近傍を示
す断面拡大図である。
FIG. 10 is an enlarged sectional view showing the vicinity of an abrasive grain layer of a sixth embodiment of the grindstone of the present invention.

【図11】本発明の砥石の第7実施例の砥粒層近傍を示
す断面拡大図である。
FIG. 11 is an enlarged cross-sectional view showing the vicinity of the abrasive grain layer of the seventh embodiment of the grindstone of the present invention.

【図12】本発明の砥石の第8実施例の砥粒層近傍を示
す断面拡大図である。
FIG. 12 is an enlarged cross-sectional view showing the vicinity of an abrasive grain layer of an eighth embodiment of the grindstone of the present invention.

【図13】一般的な電着砥石の砥粒層の断面拡大図であ
る。
FIG. 13 is an enlarged cross-sectional view of an abrasive grain layer of a general electrodeposition grindstone.

【図14】従来の砥石を示す縦断面図である。FIG. 14 is a vertical sectional view showing a conventional grindstone.

【符号の説明】[Explanation of symbols]

10 台金 11 研削液分散層 11A 分散用連通気孔 12 通水性砥粒層 12A 通水気孔 13 給液路 14 給液溝 15 粗目多孔質体 16 金属めっき相 17 超砥粒 18 細目多孔質体 19 複合多孔質体 20 めっき治具 D1 粗目多孔質体の平均セル径 D2 超砥粒の平均粒径 D3 分散用連通気孔の平均径 30,40,50,61,70,80 超砥粒 31,81 金属被覆 32,41,51,62,71,82 金属めっき相 33,42,52,64,72,83 通水気孔 43 マスキング部材 63 ウィスカー D4 通水気孔の平均セル径 10 money 11 Grinding liquid dispersion layer 11A Dispersion air vent 12 Water-permeable abrasive layer 12A Passage 13 Liquid supply path 14 Liquid supply groove 15 Coarse porous body 16 Metal plating phase 17 Super Abrasive Grains 18 Fine porous material 19 Composite porous body 20 Plating jig D1 Average cell diameter of coarse porous material D2 Average grain size of superabrasive grains D3 Average diameter of continuous ventilation holes for dispersion 30, 40, 50, 61, 70, 80 Super abrasive grain 31,81 Metal coating 32, 41, 51, 62, 71, 82 Metal plating phase 33, 42, 52, 64, 72, 83 Water vents 43 Masking member 63 whiskers D4 Average pore diameter of water holes

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B24D 5/14 8813−3C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B24D 5/14 8813-3C

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 砥粒層形成面および研削液供給面を有す
る台金と、前記砥粒層形成面に設けられ、内部全域に亙
って無方向性の3次元構造をなす分散用連通気孔が形成
された研削液分散層と、この研削液分散層上に設けら
れ、少なくともその厚さ方向に連通する多数の通水気孔
を有する通水性砥粒層とを具備し、前記台金の内部に
は、一端が前記研削液供給面に開口し、他端が前記砥粒
層形成面に開口する給液路が形成されていることを特徴
とする通水性砥石。
1. A base metal having an abrasive grain layer forming surface and a grinding liquid supply surface, and a dispersion ventilation hole which is provided on the abrasive grain layer forming surface and has a non-directional three-dimensional structure over the entire inside thereof. And a water-permeable abrasive grain layer provided on the grinding-fluid dispersion layer and having a large number of water-permeable pores communicating at least in the thickness direction thereof. The water-permeable whetstone is characterized in that a liquid supply passage having one end opened to the grinding liquid supply surface and the other end opened to the abrasive layer forming surface is formed.
【請求項2】 前記通水性砥粒層は、無方向性の3次元
網目構造をなし網目の平均セル径が前記超砥粒の平均粒
径の3〜100倍である粗目多孔質体の表面および内部
に、前記超砥粒を金属めっき相で多数固着したものであ
ることを特徴とする請求項1記載の通水性砥石。
2. The surface of a coarse porous body, wherein the water-permeable abrasive grain layer has a non-directional three-dimensional mesh structure and the average cell diameter of the mesh is 3 to 100 times the average particle diameter of the superabrasive grains. 2. The water-permeable grindstone according to claim 1, wherein a large number of the superabrasive grains are fixed to the inside by a metal plating phase.
【請求項3】 前記分散用連通気孔の平均径は、前記粗
目多孔質体の平均セル径の1/2倍以下であることを特
徴とする請求項2記載の通水性砥石。
3. The water permeable whetstone according to claim 2, wherein the average diameter of the dispersion communicating vents is not more than 1/2 times the average cell diameter of the coarse porous body.
【請求項4】 前記通水性砥粒層は、金属めっき相中に
超砥粒が分散されるとともに、この金属めっき相の内部
に無方向性の3次元網目構造をなす前記通水気孔が形成
されたものであり、前記通水気孔の網目の平均セル径
は、前記超砥粒の平均粒径の3〜100倍とされている
ことを特徴とする請求項1記載の通水性砥石。
4. In the water-permeable abrasive grain layer, superabrasive grains are dispersed in a metal plating phase, and the water-permeable pores having a non-directional three-dimensional network structure are formed inside the metal plating phase. The water-permeable whetstone according to claim 1, wherein the average cell diameter of the mesh of the water-permeable pores is 3 to 100 times the average particle diameter of the superabrasive grains.
【請求項5】 前記分散用連通気孔の平均径は、前記通
水気孔の網目の平均セル径の1/2倍以下とされている
ことを特徴とする請求項4記載の通水性砥石。
5. The water-permeable whetstone according to claim 4, wherein the average diameter of the dispersion communicating vents is not more than 1/2 times the average cell diameter of the mesh of the water-permeable pores.
【請求項6】 無方向性の3次元網目構造をなし、網目
の平均セル径が超砥粒の平均粒径の3〜100倍である
平板状の粗目多孔質体に導電性金属層を形成したうえ、 この粗目多孔質体に、無方向性の3次元多孔構造をな
し、孔の平均径が前記平均粒径の3/4倍以下である平
板状の細目多孔質体を配置して複合多孔質体を構成し、 この複合多孔質体に、前記粗目多孔質体の内部に前記超
砥粒を分散させつつ、粗目多孔質体側から細目多孔質体
側へ分散めっき液を通し、粗目多孔質体の表面および内
部に無電解めっきおよび/または電気めっきにより超砥
粒を金属めっき相で固着させた後、複合多孔質体より、
超砥粒が固着された粗目多孔質体を取り外し、これを通
水性砥粒層とすることを特徴とする通水性砥石の製造方
法。
6. A conductive metal layer is formed on a flat plate-like coarse porous body having a non-directional three-dimensional mesh structure and having an average cell diameter of the mesh of 3 to 100 times the average particle diameter of superabrasive grains. In addition, a flat-plate-like fine porous body having a non-directional three-dimensional porous structure and having an average pore diameter of 3/4 times or less of the average particle diameter is arranged on the coarse porous body to form a composite. A porous body is constituted, and while the superabrasive grains are dispersed inside the coarse porous body, the dispersion plating solution is passed from the coarse porous body side to the fine porous body side to form a coarse porous body. After the superabrasive grains are fixed on the surface and inside of the body by electroless plating and / or electroplating in the metal plating phase,
A method for producing a water-permeable whetstone, which comprises removing a coarse porous body to which superabrasive particles are fixed and forming a water-permeable abrasive grain layer.
【請求項7】 超砥粒を固着させた前記粗目多孔質体を
前記複合多孔質体から取り外した後に、この粗目多孔質
体を、内部全域に亙って無方向性の3次元構造をなす分
散用連通気孔が形成された研削液分散層を介して、台金
上に固定することを特徴とする請求項6記載の通水性砥
石の製造方法。
7. The coarse porous body having superabrasive particles adhered thereto is removed from the composite porous body, and then the coarse porous body has a non-directional three-dimensional structure over the entire inside thereof. 7. The method for producing a water-permeable whetstone according to claim 6, wherein the water-permeable whetstone is fixed on a base metal via a grinding liquid dispersion layer having dispersion air vents formed therein.
【請求項8】 超砥粒を固着させた前記粗目多孔質体を
前記複合多孔質体から取り外した後に、この超砥粒を固
着させた粗目多孔質体から、粗目多孔質体のみを除去す
ることにより、通水性砥粒層を得ることを特徴とする請
求項6記載の通水性砥石の製造方法。
8. After removing the coarse porous body to which the superabrasive particles are fixed, from the composite porous body, only the coarse porous body is removed from the coarse porous body to which the superabrasive particles are fixed. The water-permeable abrasive grain layer is thereby obtained, and the method for producing a water-permeable abrasive stone according to claim 6, wherein.
【請求項9】 超砥粒を固着させた粗目多孔質体から、
粗目多孔質体のみを除去して得た通水性砥粒層を、内部
全域に亙って無方向性の3次元構造をなす分散用連通気
孔が形成された研削液分散層を介して、台金上に固定す
ることを特徴とする請求項6記載の通水性砥石の製造方
法。
9. From a coarse porous material to which superabrasive particles are fixed,
The water-permeable abrasive grain layer obtained by removing only the coarse porous body is passed through the grinding liquid dispersion layer in which the continuous ventilation holes for dispersion having a non-directional three-dimensional structure are formed over the entire area of the table. The method for producing a water-permeable whetstone according to claim 6, wherein the water-permeable whetstone is fixed on gold.
JP33362891A 1990-12-19 1991-12-17 Water permeable grinding wheel and manufacture thereof Pending JPH0531674A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-403890 1990-12-19
JP40389090 1990-12-19

Publications (1)

Publication Number Publication Date
JPH0531674A true JPH0531674A (en) 1993-02-09

Family

ID=18513617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33362891A Pending JPH0531674A (en) 1990-12-19 1991-12-17 Water permeable grinding wheel and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0531674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764519B2 (en) 2010-12-06 2014-07-01 Komatsu Ntc Ltd. Grinding wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764519B2 (en) 2010-12-06 2014-07-01 Komatsu Ntc Ltd. Grinding wheel

Similar Documents

Publication Publication Date Title
US7527050B2 (en) Method for fabricating multi-layer, hub-less blade
US6413388B1 (en) Pad designs and structures for a versatile materials processing apparatus
JP4508514B2 (en) CMP conditioner and method of manufacturing the same
WO1998014307A1 (en) Superabrasive tool and method of its manufacture
KR20010076403A (en) Electroplated grinding wheel and its production equipment and method
JP2924305B2 (en) Water-permeable cup type whetstone
JPH0531674A (en) Water permeable grinding wheel and manufacture thereof
JPH09225827A (en) Dresser and manufacture thereof
JP2765172B2 (en) Porous multilayer electrodeposited grinding wheel and method for producing the same
JPS6334071A (en) Manufacture of grindstone
JPS6334069A (en) Grindstone
JP2976502B2 (en) Whetstone having liquid supply means and method of manufacturing the same
JPH0771789B2 (en) Whetstone
JPH04111776A (en) Porous multilayer electrodeposition grindstone and manufacture thereof
WO1986000252A1 (en) Method for electrodeposition of metal and granular abrasive on a tool
JP2687660B2 (en) Manufacturing method of electrodeposited whetstone
JP3390137B2 (en) A method for manufacturing a superabrasive grain in which dimples are scattered on an outer peripheral surface.
JPH0569338A (en) Water permeable cup type grinding wheel
JP2004268238A (en) Electrodeposition tool and its manufacturing method
JP4017215B2 (en) Electrodeposition whetstone and method for manufacturing the same
KR100889288B1 (en) Method for Manufacturing Conditioner for Chemical Mechanical Planarization Pad and Conditioner for Chemical Mechanical Planarization Pad
JPH06190727A (en) Electrodeposited grinding wheel
JPH09193023A (en) Electrodeposited tool and manufacture thereof
JP2929772B2 (en) Water-permeable straight whetstone
JP2754890B2 (en) Electroplated wheel manufacturing equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010410