JPH09193023A - Electrodeposited tool and manufacture thereof - Google Patents

Electrodeposited tool and manufacture thereof

Info

Publication number
JPH09193023A
JPH09193023A JP2316796A JP2316796A JPH09193023A JP H09193023 A JPH09193023 A JP H09193023A JP 2316796 A JP2316796 A JP 2316796A JP 2316796 A JP2316796 A JP 2316796A JP H09193023 A JPH09193023 A JP H09193023A
Authority
JP
Japan
Prior art keywords
tool
step portion
plating
low
masking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2316796A
Other languages
Japanese (ja)
Inventor
Haruyuki Fukagawa
治之 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Diamond Industrial Co Ltd
Original Assignee
Asahi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Diamond Industrial Co Ltd filed Critical Asahi Diamond Industrial Co Ltd
Priority to JP2316796A priority Critical patent/JPH09193023A/en
Publication of JPH09193023A publication Critical patent/JPH09193023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To hardly generate clogging, reduce grinding resistance, and prolong the life, by dispersedly fixing super abrasive grains while having step differences on the working surface of a tool. SOLUTION: Super abrasive grains 2 are fixedly secured on a base metal 1 by an electrocast metal layer 9, a part having plating 7 is a high step part 3, and a part having no plating 7 is a low step part 4. Difference of heights of the high step part 3 and the low step part 4 is desirable to be 5-30% of the mean grain size of the super abrasive grain 2, and 8-20% is more desirable. Ratio of area of the high step part 3 to the low step part is desirable to be 3/7-7/3, and 4/6-6/4 is more desirable. By the use of this, at first the super abrasive grains 2 of the high step part 3 function for grinding, hence the degree of concentration is low, grinding resistance is small, and clogging is hardly generated. When the super abrasive grains 2 of the high step part is worn off and omitted by the use, the super abrasive grains 2 of the low step part 4 function for grinding, and similar effect is exhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電着工具及びその
製造方法に関する。さらに詳しくは、本発明は、超砥粒
の集中度が低く、目詰まりが起こりにくく、加工時の研
削抵抗が減少し、切れ味に優れ、しかも工具寿命が長
く、金属、ガラス、セラミックスなどあらゆる被削材の
研削に適用することができる電着工具及びその製造方法
に関する。
The present invention relates to an electrodeposition tool and a method for manufacturing the same. More specifically, the present invention has a low concentration of superabrasive grains, is less likely to cause clogging, has reduced grinding resistance during processing, is excellent in sharpness, and has a long tool life, and can be used for any object such as metal, glass, and ceramics. The present invention relates to an electrodeposition tool applicable to grinding of a work material and a manufacturing method thereof.

【0002】[0002]

【従来の技術】電着工具は、通常は台金を超砥粒を加え
た電気メッキ浴に浸漬してメッキを行い、工具作用表面
に超砥粒を一層分仮固定し、さらに電気メッキ又は無電
解メッキにより電鋳して超砥粒を固着することにより製
作される。したがって、電着工具は通常一層の超砥粒層
からなり、砥粒の脱落による自生作用が起こらない。こ
のため、工具作用表面の超砥粒の隙間に研削によって生
じた切り屑が付着すると、目詰まりを生じて研削力が大
幅に低下するという問題がある。また、固着されている
超砥粒が摩耗、脱落すると、電着工具の寿命が尽きると
いう問題がある。そこで、超砥粒層を複層にし、超砥粒
が脱落した場合でも下層にある超砥粒が作用する電着工
具が提案されている。例えば、特開平5−111875
号公報には、台金表面にランダムに散布した砥粒を電着
によるメッキ層により固定して一層目の砥粒層を形成し
たのち、一層目の砥粒層の表面に再度砥粒を散布し電着
によるメッキ層を析出させて二層目の砥粒層を形成した
電着工具が提案されている。また、特開平6−2547
68号公報には、砥石基体の砥粒層形成面に超砥粒を分
散配置し、電解メッキにより仮固定したのち無電解メッ
キにより超砥粒を埋設することを繰り返すことにより製
造される、多層状砥粒層を有する電着工具が提案されて
いる。これらの電着工具においては、一層目の砥粒は適
当な間隔をあけた状態でランダムに台金面に散布されな
ければならないので、一回の操作で砥粒を仮固定するこ
とができるのは上向きになった面に限られ、特開平6−
254768号公報に記載されているように、一部分の
仮固定が完了したら砥石基体の位置を変えて別の部分を
上向きにし、再び超砥粒を蒔いて仮固定を繰り返すとい
う煩雑な操作が必要であった。また、超砥粒を制御して
蒔くことは必ずしも容易ではなく、さらに一層目と二層
目の超砥粒の高さと固着状態を、任意に制御することは
困難であった。さらに、このような方法により砥粒を複
層にした場合、一層目の砥粒と二層目の砥粒の埋め込み
率が異なるために、一層目の砥粒と二層目の砥粒の研削
の作用が異なったり、あるいは、二層目に比べ一層目の
砥粒が埋まり過ぎ、二層目の砥粒が研削などにより脱落
しても、一層目の砥粒が十分に作用を発揮しないという
問題があった。
2. Description of the Related Art An electrodeposition tool is usually plated by immersing a base metal in an electroplating bath containing superabrasive grains, temporarily fixing the superabrasive grains on the working surface of the tool, and further electroplating or It is manufactured by electroforming by electroless plating and fixing superabrasive grains. Therefore, the electrodeposition tool usually consists of a single layer of superabrasive grains, and no spontaneous action due to the dropping of the abrasive grains occurs. Therefore, if chips generated by grinding adhere to the gaps of the superabrasive grains on the tool working surface, clogging occurs and the grinding force is significantly reduced. Further, if the fixed superabrasive particles are worn or fallen off, there is a problem that the life of the electrodeposition tool is exhausted. Therefore, an electrodeposition tool has been proposed in which the superabrasive layer is formed into a plurality of layers and the superabrasive grains in the lower layer act even when the superabrasive grains fall off. For example, JP-A-5-111875
In the gazette, the abrasive grains randomly dispersed on the surface of the base metal are fixed by a plating layer by electrodeposition to form a first abrasive grain layer, and then the abrasive grains are dispersed again on the surface of the first abrasive grain layer. An electrodeposition tool has been proposed in which a second abrasive grain layer is formed by depositing a plating layer by electrodeposition. In addition, JP-A-6-2547
In the No. 68 publication, it is manufactured by repeatedly disposing superabrasive grains on the surface of a grindstone base on which an abrasive grain layer is formed, temporarily fixing by electroplating, and then burying the superabrasive grains by electroless plating. An electrodeposition tool having a layered abrasive grain layer has been proposed. In these electrodeposition tools, the abrasive grains in the first layer must be randomly scattered on the base metal surface with appropriate intervals, so the abrasive grains can be temporarily fixed in one operation. Is limited to the upward facing surface, and
As described in Japanese Patent No. 254768, when the temporary fixing of a part is completed, the position of the grindstone base is changed to make another part face upward, and the complicated operation of re-seeding the superabrasive grains and repeating the temporary fixing is required. there were. Further, it is not always easy to control and sow the superabrasive grains, and it has been difficult to arbitrarily control the height and the fixed state of the superabrasive grains in the first and second layers. Furthermore, when the abrasive grains are formed into a plurality of layers by such a method, since the embedding ratio of the first layer abrasive grains and the second layer abrasive grains is different, the grinding of the first layer abrasive grains and the second layer abrasive grains is performed. Of the first layer is not sufficiently effective even if the action of the second layer is different or the first layer of abrasive grains is too buried compared to the second layer, and the second layer of abrasive grains falls off by grinding etc. There was a problem.

【0003】[0003]

【発明が解決しようとする課題】本発明は、工具作用表
面に超砥粒が段差を有して分散固着され、高段部及び低
段部の形状及び面積比を任意に制御することができ、高
段部の超砥粒が摩耗脱落したのちに低段部の超砥粒が研
削機能を発揮し、実質的に集中度が低く目詰まりを生じ
にくく、研削抵抗が小さく、寿命の長い電着工具及びそ
の製造方法を提供することを目的としてなされたもので
ある。
SUMMARY OF THE INVENTION According to the present invention, superabrasive grains are dispersed and fixed on the working surface of the tool with steps, and the shapes and area ratios of the high step portion and the low step portion can be controlled arbitrarily. , After the super-abrasive grains in the high-stage part are worn away, the super-abrasive grains in the low-stage part exert a grinding function, the concentration is practically low, clogging hardly occurs, the grinding resistance is small, and the life is long. The purpose of the invention is to provide a dressing tool and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、台金の表面を分散
した非マスキング部を残してマスキングし、非マスキン
グ部に高段部を形成するメッキを施したのちマスキング
を除去して台金及びメッキの表面に超砥粒を電着するこ
とにより、超砥粒が段差を有して任意の形状に分散固着
された電着工具を製造することが可能であり、かかる電
着工具は、研削抵抗が小さく切れ味に優れ、しかも長寿
命を有することを見いだし、この知見に基づいて本発明
を完成するに至った。すなわち、本発明は、(1)工具
作用表面に、超砥粒が段差を有して分散固着されてなる
ことを特徴とする電着工具、(2)段差の高さが超砥粒
の平均粒径の5〜30%であり、高段部と低段部の面積
比が3/7〜7/3である第(1)項記載の電着工具、
(3)台金の表面を分散した非マスキング部を残してマ
スキングし、非マスキング部に高段部を形成するメッキ
を施したのちマスキングを除去し、台金及びメッキの表
面に超砥粒を固着することを特徴とする第(1)項記載の
電着工具の製造方法、及び、(4)非マスキング部に施
す高段部を形成するメッキが、固着する超砥粒の平均粒
径の5〜30%の厚さである第(2)項記載の電着工具の
製造方法、を提供するものである。さらに、本発明の好
ましい態様として、(5)マスキングを、分散した穴状
の非マスキング部を有するマスキングシートの貼着によ
り行う第(3)項又は第(4)項記載の電着工具の製造方
法、(6)マスキングを、スクリーン印刷により行う第
(3)項又は第(4)項記載の電着工具の製造方法、(7)
マスキングを、フォトレジストの露光、現像により行う
第(3)項又は第(4)項記載の電着工具の製造方法、及
び、(8)フォトレジストが、ドライフィルムレジスト
である第(7)項記載の電着工具の製造方法、を挙げるこ
とができる。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has masked the surface of the base metal with the non-masking portion dispersed, leaving a high step on the non-masking portion. Electrodeposition in which the superabrasive grains have steps and are dispersed and fixed in an arbitrary shape by electroplating the base metal and plating surface with superabrasive grains after the plating that forms the parts is removed. It was possible to manufacture a tool, and it was found that such an electrodeposition tool has a small grinding resistance, excellent sharpness, and a long life, and based on this finding, the present invention has been completed. That is, the present invention is (1) an electrodeposition tool characterized in that superabrasive grains are dispersed and fixed to the tool working surface with steps, and (2) the height of the steps is the average of the superabrasive grains. The electrodeposition tool according to item (1), wherein the electrodeposition tool has a particle size of 5 to 30% and an area ratio of the high step part to the low step part is 3/7 to 7/3.
(3) Mask the surface of the base metal with the non-masking part remaining dispersed, perform plating to form a high step on the non-masking part, then remove the masking, and remove superabrasive grains on the surface of the base metal and the plating. The method for producing an electrodeposition tool according to item (1), characterized in that it adheres, and (4) the plating for forming the high stepped portion applied to the non-masking part A method for producing an electrodeposition tool according to item (2), which has a thickness of 5 to 30%. Furthermore, as a preferred embodiment of the present invention, (5) masking is carried out by applying a masking sheet having dispersed non-masking portions in the form of holes, to produce the electrodeposition tool according to (3) or (4). Method (6) Masking by screen printing
A method for manufacturing an electrodeposition tool according to item (3) or (4), (7)
The method for producing an electrodeposition tool according to item (3) or (4), wherein masking is performed by exposing and developing a photoresist, and (8) the photoresist is a dry film resist. The manufacturing method of the electrodeposition tool described can be mentioned.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
図1は、本発明の電着工具の一態様の部分断面図であ
る。本発明の電着工具は、工具作用表面の台金1に、超
砥粒2が高段部3と低段部4に段差を有して分散固着さ
れている。本発明の電着工具を研削加工に使用すると、
まず高段部の超砥粒が研削に作用するので、集中度の低
い電着工具としての効果を発揮し、研削抵抗が小さく、
目詰まりを起こしにくい。使用により高段部の超砥粒が
摩耗、脱落すると、低段部の超砥粒が研削に作用し、同
様に集中度の低い電着工具としての効果を発揮する。本
発明の電着工具は、金属、ガラス、プラスチック、セラ
ミックスなどあらゆる被削材の研削加工に適用すること
ができ、切れ味に優れ、工具寿命が長い。本発明の電着
工具においては、高段部と低段部の段差の高さは、超砥
粒の平均粒径の5〜30%であることが好ましく、超砥
粒の平均粒径の8〜20%であることがより好ましい。
段差の高さが超砥粒の平均粒径の5%未満であると、高
段部の超砥粒と低段部の超砥粒が同時に研削に作用し、
本発明の効果が得られないおそれがある。段差の高さが
超砥粒の平均粒径の30%を超えると、高段部の超砥粒
が摩耗、脱落したのちに、高段部の超砥粒の固着部分が
障害となって、低段部の超砥粒の研削作用が妨げられる
おそれがある。図2は、本発明の電着工具の一態様の部
分平面図であり、図3及び図4は、いずれも本発明の電
着工具の他の態様の部分平面図である。図2の電着工具
の工具作用表面には、円形の島状の高段部が海状の低段
部の中に分散している。図3の電着工具の工具作用表面
には、高段部と低段部が市松模様に配置されている。図
4の電着工具の工具作用表面には、三角形の島状の高段
部が海状の低段部の中に分散している。本発明の電着工
具の高段部及び低段部の形状は、これらに限定されるも
のではなく、高段部が海状となり低段部が島状となる海
−島模様や、高段部の縞と低段部の縞が交互に隣接する
縞模様や、高段部と低段部が不規則に配置された模様な
ど任意の形状とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
FIG. 1 is a partial cross-sectional view of one embodiment of the electrodeposition tool of the present invention. In the electrodeposition tool of the present invention, superabrasive grains 2 are dispersed and fixed on a base metal 1 on the tool working surface with a step between a high step portion 3 and a low step portion 4. When the electrodeposition tool of the present invention is used for grinding,
First, since the super-abrasive grains in the high-step portion act on grinding, it exerts its effect as an electrodeposition tool with a low degree of concentration, and has low grinding resistance.
Less likely to cause clogging. When the super-abrasive grains in the high-step portion are worn or fallen off by use, the super-abrasive grains in the low-step portion act on the grinding, and similarly, the effect as an electrodeposition tool having a low degree of concentration is exerted. INDUSTRIAL APPLICABILITY The electrodeposition tool of the present invention can be applied to grinding of various work materials such as metal, glass, plastic, and ceramics, has excellent sharpness, and has a long tool life. In the electrodeposition tool of the present invention, the height of the step between the high step portion and the low step portion is preferably 5 to 30% of the average particle diameter of the superabrasive grains, and is 8% of the average particle diameter of the superabrasive grains. It is more preferably -20%.
If the height of the step is less than 5% of the average grain size of the superabrasive grains, the superabrasive grains in the high step portion and the superabrasive grains in the low step portion simultaneously act on grinding,
The effect of the present invention may not be obtained. When the height of the step exceeds 30% of the average grain size of the superabrasive grains, the superabrasive grains in the high step portion are worn and fallen off, and then the fixed portion of the superabrasive grain in the high step portion becomes an obstacle, There is a possibility that the grinding action of the superabrasive grains in the low step portion may be hindered. FIG. 2 is a partial plan view of one embodiment of the electrodeposition tool of the present invention, and FIGS. 3 and 4 are partial plan views of other embodiments of the electrodeposition tool of the present invention. On the tool working surface of the electrodeposition tool of FIG. 2, circular island-shaped high steps are dispersed in sea-shaped low steps. High-step portions and low-step portions are arranged in a checkered pattern on the tool action surface of the electrodeposition tool shown in FIG. On the tool working surface of the electrodeposition tool of FIG. 4, triangular island-shaped high steps are dispersed in sea-shaped low steps. The shapes of the high step portion and the low step portion of the electrodeposition tool of the present invention are not limited to these, and the sea-island pattern in which the high step portion is sea-like and the low step portion is island-like, and the high step is high. It may have an arbitrary shape such as a striped pattern in which the stripes of the lower part and the stripes of the lower part are alternately adjacent to each other, or a pattern in which the high part and the low part are irregularly arranged.

【0006】本発明の電着工具においては、高段部と低
段部の面積比は3/7〜7/3であることが好ましく、
4/6〜6/4であることがより好ましい。高段部と低
段部の面積比が3/7未満であっても、7/3を超えて
も、高段部が研削に作用する工具使用前期と、高段部の
超砥粒が摩耗、脱落し、低段部が研削に作用する工具使
用後期の研削性能のバランスが失われるおそれがある。
本発明の電着工具において、高段部又は低段部が島状で
あるときは、1個の島の面積は0.1〜5mm2であること
が好ましく、0.5〜2mm2であることがより好ましい。
また、高段部と低段部が縞模様を形成するときは、縞の
幅は0.2〜3mmであることが好ましく、0.5〜2mmで
あることがより好ましい。本発明の電着工具は、工具作
用表面となる台金の表面を分散した非マスキング部を残
してマスキングし、非マスキング部に、好ましくは固着
する超砥粒の平均粒径の5〜30%の厚さの高段部を形
成するメッキを施したのちマスキングを除去し、台金及
びメッキの表面に超砥粒を電着することによって得るこ
とができる。非マスキングのメッキを施された部分が電
着工具の高段部となり、マスキングされていた部分が電
着工具の低段部となるので、マスキングのパターンを選
ぶことにより、任意の形状及び面積比の高段部及び低段
部を形成することができる。本発明の電着工具の製造方
法において、台金の表面をマスキングする方法はメッキ
条件に耐えるものであれば特に制限はなく、例えば、マ
スキングシート、スクリーン印刷、フォトレジストなど
を好適に使用することができる。マスキングシートを使
用する場合は、高段部は島状のように分散した形状とな
り、低段部は海状のように連続した形状となるが、スク
リーン印刷やフォトレジストによる場合は、高段部を海
状のように連続した形状とし、低段部を島状のように分
散した形状とすることができ、あるいは、市松模様のよ
うに高段部、低段部ともに非連続の形状とすることがで
き、さらに縞状のように高段部、低段部ともに連続した
形状とすることができる。
In the electrodeposition tool of the present invention, the area ratio of the high step portion and the low step portion is preferably 3/7 to 7/3,
It is more preferably 4/6 to 6/4. Even if the area ratio of the high-step portion and the low-step portion is less than 3/7 or exceeds 7/3, the high-step portion acts on the grinding tool during the previous period of use and the super-abrasive grains of the high-step portion are worn. However, the balance of the grinding performance in the latter stage of using the tool, which falls off and the low step portion acts on the grinding, may be lost.
In the electrodeposition tool of the present invention, when the high step portion or the low step portion has an island shape, the area of one island is preferably 0.1 to 5 mm 2 , and 0.5 to 2 mm 2 . Is more preferable.
When the high step portion and the low step portion form a striped pattern, the stripe width is preferably 0.2 to 3 mm, more preferably 0.5 to 2 mm. The electrodeposition tool of the present invention is masked by leaving the non-masking portion in which the surface of the base metal, which is the tool acting surface, is dispersed, and preferably 5 to 30% of the average particle diameter of the superabrasive grains fixed to the non-masking portion. Can be obtained by performing plating for forming a high step portion having a thickness of, then removing the masking, and electrodepositing superabrasive grains on the surfaces of the base metal and the plating. The non-masking plated part becomes the high step part of the electrodeposition tool, and the masked part becomes the low step part of the electrodeposition tool.By selecting the masking pattern, you can select any shape and area ratio. It is possible to form high and low steps. In the method for producing the electrodeposition tool of the present invention, the method of masking the surface of the base metal is not particularly limited as long as it can withstand the plating conditions, and for example, a masking sheet, screen printing, photoresist or the like is preferably used. You can When a masking sheet is used, the high steps are dispersed like islands, and the low steps are continuous like sea, but when using screen printing or photoresist, the high steps are Can be a continuous shape like a sea, and the low steps can be dispersed like an island, or both the high and low steps can be discontinuous like a checkerboard pattern. Further, both the high step portion and the low step portion can be formed into a continuous shape such as a striped pattern.

【0007】本発明方法において、非マスキング部には
固着する超砥粒の平均粒径の5〜30%の厚さの高段部
を形成するメッキを施すことが好ましいので、マスキン
グシート、スクリーン印刷、フォトレジストなどによる
マスキング部の厚さは、高段部を形成するメッキの厚さ
より厚いことが好ましい。例えば、平均粒径100μm
の超砥粒を使用する場合、高段部を形成するメッキの厚
さは5〜30μmとすることが好ましいので、マスキン
グ部の厚さは30μm以上とすることが好ましい。この
ような厚さのマスキングは、マスキングシートによって
も、スクリーン印刷によっても容易に施すことができ
る。また、フォトレジストとしては、ドライフィルムレ
ジストが厚さの大きいマスキングを容易に形成すること
ができるので好ましい。図5は、本発明の電着工具の製
造方法の一態様の説明図である。図5(a)に示すよう
に、表面の脱脂処理を行った台金1の表面に、マスキン
グシート、スクリーン印刷、ドライフィルムレジストな
どにより、非マスキング部5を有するマスキング6を形
成する。工具作用表面にマスキングを形成した台金は、
メッキ槽に入れ、図5(b)に示すように、非マスキング
部に必要な厚さの高段部を形成するメッキ7を施す。高
段部を形成するメッキとする金属には特に制限はなく、
例えば、ニッケル、銅、クロムなどを好適に使用するこ
とができる。台金の高段部を形成するメッキが必要な厚
さに達したとき、メッキを止めて台金をメッキ槽から引
き上げ、図5(c)に示すようにマスキングを剥離する。
台金上のメッキ7の施された部分は本発明の電着工具の
高段部となり、メッキの施されていない部分8が低段部
となる。必要に応じて、マスキングしていた部分の脱脂
処理を行い、さらに接着性向上のために工具作用表面の
全面にニッケル、銅、クロムなどによる下地メッキを施
すことができる。
In the method of the present invention, the non-masking portion is preferably plated so as to form a high step portion having a thickness of 5 to 30% of the average particle diameter of the superabrasive particles to be fixed. The thickness of the masking portion made of photoresist or the like is preferably larger than the thickness of the plating forming the high step portion. For example, the average particle size is 100 μm
When the superabrasive grain is used, the thickness of the plating forming the high step portion is preferably 5 to 30 μm, and therefore the thickness of the masking portion is preferably 30 μm or more. Masking with such a thickness can be easily performed by a masking sheet or screen printing. Further, as the photoresist, a dry film resist is preferable because a masking having a large thickness can be easily formed. FIG. 5: is explanatory drawing of one aspect of the manufacturing method of the electrodeposition tool of this invention. As shown in FIG. 5A, a masking 6 having a non-masking portion 5 is formed on the surface of the base metal 1 whose surface has been degreased by a masking sheet, screen printing, a dry film resist or the like. The base metal with masking on the tool working surface is
It is placed in a plating tank and, as shown in FIG. 5B, plating 7 is applied to form a high step portion having a required thickness on the non-masking portion. There is no particular limitation on the metal used as the plating for forming the high step portion,
For example, nickel, copper, chromium and the like can be suitably used. When the plating forming the high step portion of the base metal reaches the required thickness, the plating is stopped, the base metal is pulled up from the plating tank, and the masking is peeled off as shown in FIG. 5 (c).
The plated portion 7 on the base metal is the high step portion of the electrodeposition tool of the present invention, and the unplated portion 8 is the low step portion. If necessary, the masked portion may be degreased, and undercoating of nickel, copper, chromium or the like may be applied to the entire surface of the tool to improve adhesion.

【0008】本発明方法において、必要な厚さの高段部
を形成するメッキを施した台金は、超砥粒の仮固定のた
めのメッキ槽に入れ、メッキ槽中の台金の工具作用表面
の部分に超砥粒を充填する。次いで、台金に陰極を接続
し、メッキ液に陽極を接続して、電気メッキを行う。メ
ッキする金属は、超砥粒を台金に仮固定することができ
るものであれば特に制限はなく、例えば、ニッケル、
銅、クロムなどを好適に使用することができる。超砥粒
の一層分が仮固定され、台金表面より脱落しない状態に
なれば、メッキを止めて台金をメッキ槽から引き上げ
る。本発明方法においては、超砥粒が充填されたメッキ
浴の中で超砥粒の一層分を仮固定するので、超砥粒を固
着する面は上向きの状態である必要はなく、任意の位置
関係において一工程のみによる超砥粒の仮固定が可能で
ある。本発明方法においては、超砥粒の一層分を仮固定
した台金を、再びメッキ槽に浸漬して陰極を接続し、メ
ッキ液に陽極を接続して電鋳を継続し、超砥粒を台金に
固着して工具作用表面を形成し、本発明の電着工具を得
る。電鋳に用いる金属は、仮固定の場合と同様に超砥粒
を台金に固着することができるものであれば特に制限は
なく、ニッケル、銅、クロムなどを好適に使用すること
ができる。図5(d)に示すように、本発明の電着工具
は、台金1の上に超砥粒2が電鋳金属層9により固着さ
れているが、台金上にメッキ7のある部分が高段部3と
なり、メッキのない部分が低段部4となる。本発明の電
着工具は、高段部を形成するメッキが与える超砥粒層の
段差により、研削加工時に作用する超砥粒が従来の電着
工具に比して少なく、実質的に集中度が低くなるため、
研削抵抗が小さくなる。また、高段部の超砥粒と低段部
の超砥粒の埋め込み率を同一にすることができるので、
両者の研削の作用に差がなく、高段部の超砥粒が摩耗、
脱落したのちは、低段部の超砥粒が研削に作用するの
で、電着工具の寿命が延びる。さらに、工具作用表面に
段差があるため、研削加工時の切り屑の排出が容易で、
目詰まりを生じにくい。本発明の電着工具の製造方法に
よれば、高段部と低段部の形状及び面積比を任意に選択
することが可能で、必要に応じた見かけの集中度などを
容易に制御することができる。
In the method of the present invention, a base metal plated to form a high step portion having a required thickness is placed in a plating bath for temporarily fixing superabrasive grains, and the base metal in the plating bath acts as a tool. The surface portion is filled with superabrasive grains. Next, the cathode is connected to the base metal, and the anode is connected to the plating solution to perform electroplating. The metal to be plated is not particularly limited as long as it can temporarily fix the superabrasive grains to the base metal, and for example, nickel,
Copper, chromium and the like can be preferably used. When one layer of the superabrasive is temporarily fixed and does not fall off the surface of the base metal, the plating is stopped and the base metal is pulled up from the plating tank. In the method of the present invention, since one layer of superabrasive particles is temporarily fixed in the plating bath filled with superabrasive particles, the surface on which the superabrasive particles are fixed does not need to be in an upward state, and any position In relation, the superabrasive grains can be temporarily fixed by only one step. In the method of the present invention, a base metal on which a single layer of superabrasive grains is temporarily fixed, is again immersed in the plating tank to connect the cathode, and the electroplating is continued by connecting the anode to the plating solution. It adheres to the base metal to form a tool working surface, and the electrodeposition tool of the present invention is obtained. The metal used for electroforming is not particularly limited as long as it can fix the superabrasive grains to the base metal as in the case of temporary fixing, and nickel, copper, chromium, etc. can be preferably used. As shown in FIG. 5D, in the electrodeposition tool of the present invention, the superabrasive grains 2 are fixed on the base metal 1 by the electroformed metal layer 9, but the portion where the plating 7 is formed on the base metal. Is the high step portion 3, and the non-plated portion is the low step portion 4. The electrodeposition tool of the present invention has less superabrasive grains that act during grinding compared to conventional electrodeposition tools due to the step of the superabrasive grain layer provided by the plating that forms the high step portion, and the degree of concentration is substantially higher. Is lower,
Grinding resistance decreases. Further, since the embedding ratio of the high-step superabrasive grains and the low-step superabrasive grains can be made the same,
There is no difference in the grinding action of both, the superabrasive grains in the high step wear
After falling off, the super-abrasive grains in the low-step portion act on the grinding, so that the life of the electrodeposition tool is extended. Furthermore, since there is a step on the tool working surface, chips can be easily discharged during grinding,
Less likely to cause clogging. According to the method for manufacturing an electrodeposition tool of the present invention, it is possible to arbitrarily select the shape and area ratio of the high step portion and the low step portion, and easily control the apparent concentration degree and the like as necessary. You can

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 鉄(S45C)製の寸法200D−12T−50.8H
の台金の研削面となる外周部を脱脂処理し、マスキング
シートを貼着した。図6は、本実施例に用いたマスキン
グシートの部分平面図であり、直径1.2mmの穴状の非
マスキング部が配列され、非マスキング部の全面積がマ
スキングシートの全面積の45%となっている。また、
台金の超砥粒層非形成部分は、絶縁性のマスキング材料
で被覆した。台金をアルカリ電解脱脂、脱錆を行い、さ
らに水洗いしたのち、酸性浴で活性化し、再び水洗いし
た。この台金をニッケルメッキ槽に浸漬し、非マスキン
グ部分に厚さ25μmの高段部を形成するメッキを行っ
た。台金をメッキ槽から引き上げ、マスキングシートを
除去し、再度洗浄処理を行い、下地メッキを厚さ3μm
になるよう施した。次いで、この台金を、平均粒径15
0μmのダイヤモンド砥粒の入ったニッケルメッキ槽に
浸漬し、ダイヤモンド砥粒を仮固定した。さらに、ニッ
ケルメッキ槽に浸漬して電鋳を続け、厚さ80μmのダ
イヤモンド砥粒の埋め込みメッキを施して、電着工具を
得た。この電着工具は、ダイヤモンド砥粒が平均粒径の
17%の高さの段差を有して高段部と低段部に分散固着
され、高段部と低段部の面積比が45/55である。こ
の電着工具を平面研削盤に取付け、周速度40m/秒、
送り10m/分、切り込み50μmの条件で、セラミッ
クの研削試験を行った。研削量が0.5cm3、2.3cm3
4.6cm3、9.2cm3、18.4cm3、36.8cm3及び5
5.2cm3のときの法線研削抵抗は、それぞれ34.3
N、48.2N、55.1N、72.0N、90.0N、1
20.4N及び148.1Nであり、接線研削抵抗は、そ
れぞれ4.8N、6.9N、7.6N、9.7N、12.5
N、17.2N及び19.7Nであった。 比較例1 寸法200D−12T−50.8Hの台金の研削面に、
平均粒径150μmのダイヤモンド砥粒を固着した電着
工具を用いて、実施例と同一条件でセラミックの研削試
験を行った。研削量が0.5cm3、2.3cm3、4.6cm3
9.2cm3、18.4cm3、36.8cm3及び55.2cm3のと
きの法線研削抵抗は、それぞれ49.8N、62.3N、
69.8N、80.1N、107.3N、165.3N及び
182.0Nであり、接線研削抵抗は、それぞれ14.5
N、16.9N、19.4N、22.1N、24.9N、3
3.2N及び41.8Nであった。実施例1及び比較例1
の結果を、第1表及び図7に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Dimension 200D-12T-50.8H made of iron (S45C)
The outer peripheral portion to be the ground surface of the base metal was degreased and a masking sheet was attached. FIG. 6 is a partial plan view of the masking sheet used in this example, in which hole-shaped non-masking portions having a diameter of 1.2 mm are arranged, and the total area of the non-masking portions is 45% of the total area of the masking sheet. Has become. Also,
The superabrasive layer-free portion of the base metal was covered with an insulating masking material. The base metal was subjected to alkaline electrolytic degreasing and derusting, further washed with water, then activated in an acidic bath, and washed again with water. The base metal was dipped in a nickel plating bath to perform plating for forming a high step portion having a thickness of 25 μm on the non-masking portion. The base metal is pulled up from the plating tank, the masking sheet is removed, the cleaning process is performed again, and the base plating is 3 μm thick.
I gave it. Then, this base metal is used to obtain an average particle size of 15
The diamond abrasive grains were temporarily fixed by immersing in a nickel plating tank containing 0 μm diamond abrasive grains. Further, it was immersed in a nickel plating bath to continue electroforming, and embedded plating of diamond abrasive grains having a thickness of 80 μm was performed to obtain an electrodeposition tool. In this electrodeposition tool, diamond abrasive grains are dispersed and fixed to the high step portion and the low step portion with a step height of 17% of the average particle diameter, and the area ratio of the high step portion and the low step portion is 45 /. 55. Attaching this electrodeposition tool to a surface grinder, peripheral speed 40m / sec,
A ceramic grinding test was performed under conditions of a feed rate of 10 m / min and a cut of 50 μm. The grinding amount is 0.5 cm 3 , 2.3 cm 3 ,
4.6cm 3, 9.2cm 3, 18.4cm 3 , 36.8cm 3 and 5
The normal grinding resistance at 5.2 cm 3 is 34.3 each.
N, 48.2N, 55.1N, 72.0N, 90.0N, 1
20.4N and 148.1N, and tangential grinding resistances are 4.8N, 6.9N, 7.6N, 9.7N and 12.5, respectively.
N, 17.2N and 19.7N. Comparative Example 1 On a ground surface of a base metal having a size of 200D-12T-50.8H,
A ceramic grinding test was performed under the same conditions as in the examples using an electrodeposition tool to which diamond abrasive grains having an average particle size of 150 μm were fixed. Grinding amount is 0.5 cm 3 , 2.3 cm 3 , 4.6 cm 3 ,
9.2 cm 3, 18.4 cm 3, the normal grinding force when the 36.8Cm 3 and 55.2Cm 3, respectively 49.8N, 62.3N,
69.8N, 80.1N, 107.3N, 165.3N and 182.0N, the tangential grinding resistance is 14.5 each.
N, 16.9N, 19.4N, 22.1N, 24.9N, 3
It was 3.2N and 41.8N. Example 1 and Comparative Example 1
The results are shown in Table 1 and FIG.

【0010】[0010]

【表1】 [Table 1]

【0011】第1表及び図7の結果から、工具作用表面
に超砥粒が段差を有して分散固着されている本発明の電
着工具は、従来の電着工具と比較して、法線研削抵抗及
び接線研削抵抗がともに低く、しかもその差は研削量の
増加とともに拡大していることから、本発明の電着工具
は、切れ味に優れ、工具の寿命も長いことが分かる。
From the results shown in Table 1 and FIG. 7, the electrodeposition tool of the present invention in which superabrasive grains having steps are dispersed and fixed on the working surface of the tool is compared with the conventional electrodeposition tool. Since both the line grinding resistance and the tangential grinding resistance are low, and the difference increases with an increase in the grinding amount, it can be seen that the electrodeposition tool of the present invention has excellent sharpness and a long tool life.

【0012】[0012]

【発明の効果】本発明の電着工具は、研削作業時に目詰
まりを生じにくく、研削抵抗が小さく、工具寿命が長
い。
The electrodeposition tool of the present invention is unlikely to cause clogging during grinding, has a small grinding resistance, and has a long tool life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の電着工具の一態様の部分断面
図である。
FIG. 1 is a partial cross-sectional view of one embodiment of an electrodeposition tool of the present invention.

【図2】図2は、本発明の電着工具の一態様の部分平面
図である。
FIG. 2 is a partial plan view of an embodiment of the electrodeposition tool of the present invention.

【図3】図3は、本発明の電着工具の他の態様の部分平
面図である。
FIG. 3 is a partial plan view of another embodiment of the electrodeposition tool of the present invention.

【図4】図4は、本発明の電着工具の他の態様の部分平
面図である。
FIG. 4 is a partial plan view of another embodiment of the electrodeposition tool of the present invention.

【図5】図5は、本発明の電着工具の製造方法の一態様
の説明図である。
FIG. 5 is an explanatory view of one embodiment of a method for manufacturing an electrodeposition tool according to the present invention.

【図6】図6は、実施例に用いたマスキングシートの部
分平面図である。
FIG. 6 is a partial plan view of a masking sheet used in Examples.

【図7】図7は、研削量と研削抵抗の関係を示すグラフ
である。
FIG. 7 is a graph showing a relationship between a grinding amount and a grinding resistance.

【符号の説明】[Explanation of symbols]

1 台金 2 超砥粒 3 高段部 4 低段部 5 非マスキング部 6 マスキング 7 メッキ 8 メッキの施されていない部分 9 電鋳金属層 1 base metal 2 superabrasive grain 3 high level part 4 low level part 5 non-masking part 6 masking 7 plating 8 non-plated part 9 electroformed metal layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】工具作用表面に、超砥粒が段差を有して分
散固着されてなることを特徴とする電着工具。
1. An electrodeposition tool characterized in that superabrasive grains are dispersed and fixed to the tool working surface with steps.
【請求項2】段差の高さが超砥粒の平均粒径の5〜30
%であり、高段部と低段部の面積比が3/7〜7/3で
ある請求項1記載の電着工具。
2. The height of the step is 5 to 30 of the average grain size of the superabrasive grains.
%, And the area ratio of the high step portion and the low step portion is 3/7 to 7/3, and the electrodeposition tool according to claim 1.
【請求項3】台金の表面を分散した非マスキング部を残
してマスキングし、非マスキング部に高段部を形成する
メッキを施したのちマスキングを除去し、台金及びメッ
キの表面に超砥粒を固着することを特徴とする請求項1
記載の電着工具の製造方法。
3. The surface of the base metal is masked with a non-masking portion left dispersed, plating is performed to form a high step portion on the non-masking portion, the masking is removed, and the surface of the base metal and the plating is super-abrasive. The particles are fixedly adhered to each other.
A method for manufacturing the described electrodeposition tool.
【請求項4】非マスキング部に施す高段部を形成するメ
ッキが、固着する超砥粒の平均粒径の5〜30%の厚さ
である請求項2記載の電着工具の製造方法。
4. The method for producing an electrodeposition tool according to claim 2, wherein the plating for forming the high step portion applied to the non-masking portion has a thickness of 5 to 30% of the average grain diameter of the superabrasive grains to be fixed.
JP2316796A 1996-01-16 1996-01-16 Electrodeposited tool and manufacture thereof Pending JPH09193023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316796A JPH09193023A (en) 1996-01-16 1996-01-16 Electrodeposited tool and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316796A JPH09193023A (en) 1996-01-16 1996-01-16 Electrodeposited tool and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09193023A true JPH09193023A (en) 1997-07-29

Family

ID=12103074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316796A Pending JPH09193023A (en) 1996-01-16 1996-01-16 Electrodeposited tool and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09193023A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793562B2 (en) 2001-04-23 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Grinder and method of and apparatus for non-contact conditioning of tool
JP2007160457A (en) * 2005-12-13 2007-06-28 Asahi Diamond Industrial Co Ltd Beads for wire-saw and wire-saw
WO2016181751A1 (en) * 2015-05-13 2016-11-17 バンドー化学株式会社 Polishing pad and method for manufacturing polishing pad
WO2017014197A1 (en) * 2015-07-17 2017-01-26 本田技研工業株式会社 Electroplated tool, screw-shaped grindstone for grinding gear, method for manufacturing electroplated tool, and method for manufacturing screw-shaped grindstone for grinding gear

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793562B2 (en) 2001-04-23 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Grinder and method of and apparatus for non-contact conditioning of tool
US7175509B2 (en) 2001-04-23 2007-02-13 Itsubishi Denki Kabushiki Kaisha Grinder and method of and apparatus for non-contact conditioning of tool
JP2007160457A (en) * 2005-12-13 2007-06-28 Asahi Diamond Industrial Co Ltd Beads for wire-saw and wire-saw
WO2016181751A1 (en) * 2015-05-13 2016-11-17 バンドー化学株式会社 Polishing pad and method for manufacturing polishing pad
JP6046865B1 (en) * 2015-05-13 2016-12-21 バンドー化学株式会社 Polishing pad and polishing pad manufacturing method
WO2017014197A1 (en) * 2015-07-17 2017-01-26 本田技研工業株式会社 Electroplated tool, screw-shaped grindstone for grinding gear, method for manufacturing electroplated tool, and method for manufacturing screw-shaped grindstone for grinding gear
CN107848051A (en) * 2015-07-17 2018-03-27 本田技研工业株式会社 Electro-deposition instrument, gear grinding helical form grinding tool, the manufacture method of the manufacture method of electro-deposition instrument and gear grinding helical form grinding tool
JPWO2017014197A1 (en) * 2015-07-17 2018-04-26 本田技研工業株式会社 Electrodeposition tool, threaded grinding wheel for gear grinding, method for producing electrodeposition tool, and method for producing threaded grinding wheel for gear grinding
US10857652B2 (en) 2015-07-17 2020-12-08 Honda Motor Co., Ltd. Electroplated tool, screw-shaped grindstone for grinding gear, method for manufacturing electroplated tool, and method for manufacturing screw-shaped grindstone for grinding gear

Similar Documents

Publication Publication Date Title
JP3782108B2 (en) Superabrasive electrodeposited cutting blade and its manufacturing method
AU613895B2 (en) Flexible abrasives
US6200360B1 (en) Abrasive tool and the method of producing the same
JP2003511255A (en) Conditioner for polishing pad and method of manufacturing the same
JPS58151477A (en) Manufacture of metallic polishing body
JP4927534B2 (en) High precision multi-grain slicing blade
WO1998014307A1 (en) Superabrasive tool and method of its manufacture
KR20030096083A (en) Abrasive tools with precisely controlled abrasive array and method of fabrication
JP2006130586A (en) Cmp conditioner and manufacturing method thereof
KR20010076403A (en) Electroplated grinding wheel and its production equipment and method
JPH10193269A (en) Electrodeposition tool and manufacture therefor
JPH09193023A (en) Electrodeposited tool and manufacture thereof
JP3302054B2 (en) Electrodeposition method
JP3020434B2 (en) Electroplated wheel and manufacturing method thereof
JP5705813B2 (en) Diamond abrasive manufacturing method, wire tool manufacturing method, and wire tool
JP2004358640A (en) Method for manufacturing electroplated tool and electroplated tool
JPH1177535A (en) Conditioner and its manufacture
JPH09225827A (en) Dresser and manufacture thereof
JP4017215B2 (en) Electrodeposition whetstone and method for manufacturing the same
JP4281253B2 (en) Electrodeposition whetstone, manufacturing apparatus and manufacturing method thereof
JP3390137B2 (en) A method for manufacturing a superabrasive grain in which dimples are scattered on an outer peripheral surface.
JP2001252871A (en) Dresser for polishing cloth, and method of manufacturing the same
JP2002018725A (en) Method of manufacturing grinding wheel
KR100908273B1 (en) Method of Making Diamond Grinding Tool
JPH0113994B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040209