JPS6334069A - Grindstone - Google Patents

Grindstone

Info

Publication number
JPS6334069A
JPS6334069A JP17854986A JP17854986A JPS6334069A JP S6334069 A JPS6334069 A JP S6334069A JP 17854986 A JP17854986 A JP 17854986A JP 17854986 A JP17854986 A JP 17854986A JP S6334069 A JPS6334069 A JP S6334069A
Authority
JP
Japan
Prior art keywords
abrasive grain
layer
grindstone
metal
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17854986A
Other languages
Japanese (ja)
Other versions
JPH0771788B2 (en
Inventor
Tsutomu Takahashi
務 高橋
Kazuyoshi Adachi
足立 数義
Masakatsu Inaba
稲葉 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61178549A priority Critical patent/JPH0771788B2/en
Publication of JPS6334069A publication Critical patent/JPS6334069A/en
Publication of JPH0771788B2 publication Critical patent/JPH0771788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To obtain the superior cutting performance and discharge performance by forming an abrasive grain layer by dispersing the composite abrasive grains which are formed by fixing a lubricating particle onto a superfine abrasive grain through metal covering, into a bonding agent phase. CONSTITUTION:A metal layer 8a is formed onto the surface of a superfine abrasive grain 6 by the thin film formation method through plating, sputtering, etc., and magnetized. Also a metal layer 8b is formed onto the surface of the lubricating particle 7 having an average particle diameter in 1/100-2/3 of the average diameter of the superfine abrasive grain. Then, the superfine abrasive grains 6 and the lubricating particles 7 are sufficiently mixed, and the metal layer 8 is adsorbed by the magnetic force of the metal layer 8a, and after the lubricating particle 7 is allowed to adhere onto the periphery of the superfine abrasive grain, a composite abrasive grain 3 having a joint layer 8c is manufactured through the electroless plating method. The composite abrasive grains 3 are added into the plating liquid into which the ions such as Ni and Co are dissolved, and a grindstone base metal 1 is immersed, and an abrasive grain layer 4 is formed. Therefore, the grinding resistance can be reduced, and the cutting performance can be improved, and the performance in discharging chips can be improved.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、メタルボンド砥石、レジノイドボンド砥石、
電着砥石、電鋳砥石等の砥石に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is applicable to metal bond grindstones, resinoid bond grindstones,
It relates to grindstones such as electroplated grindstones and electroformed grindstones.

「従来の技術」 この種の砥石は、ダイヤモンド、CBS等の超砥粒を、
熱硬化性樹脂(レジノイドボンド砥石の場合)または金
属(メタルボンド砥石、電着砥石、電鋳砥石の場合)に
より形成された結合剤相中に分散させてなる砥粒層を有
する乙のである。
"Conventional technology" This type of grindstone uses super abrasive grains such as diamond and CBS.
It has a layer of abrasive particles dispersed in a binder phase made of thermosetting resin (in the case of resinoid bonded grindstones) or metal (in the case of metal bonded grindstones, electroplated grindstones, and electroformed grindstones).

「発明が解決しようとする問題点」 ところで、このような砥石では、前記結合剤用が緻密に
形成されているために、結合剤粗表面とと被研削材料と
の摩擦係数が大きく、研削抵抗が大きい。このため、研
削の際に大きな駆動力を要するとともに、研削中に発生
する摩擦熱によって砥石が過熱しやすいという問題があ
った。
``Problems to be Solved by the Invention'' By the way, in such a grindstone, since the bonding agent is densely formed, the coefficient of friction between the rough surface of the bonding agent and the material to be ground is large, which reduces the grinding resistance. is large. For this reason, there is a problem in that a large driving force is required during grinding, and the grindstone is likely to overheat due to frictional heat generated during grinding.

また、このような砥石では、緻密な結合剤用により超砥
粒が強固に保持されているため、超砥粒が脱落しに<<
、新たに研削に関与すべき超砥粒の突出が遅く、いわゆ
る超砥粒の自生全刃作用が不十分であると同時に、砥石
表面にチップポケットが形成されにくいため、切り屑の
排出性および冷却水による冷却性が悪いという問題もあ
った。
In addition, in such grinding wheels, the superabrasive grains are firmly held by the dense binder, so the superabrasive grains do not fall off.
, the protrusion of the superabrasive grains that are newly involved in grinding is slow, and the so-called self-generating full-edge action of the superabrasive grains is insufficient. At the same time, chip pockets are difficult to form on the grinding wheel surface, resulting in poor chip evacuation and There was also the problem that the cooling performance of the cooling water was poor.

一方、前記研削抵抗を低減する手段として、結合剤相中
にフッ素樹脂等の潤滑性粒子を添加し、これら潤滑性粒
子を結合剤粗表面から露出させ、結合剤粗表面と被研削
材との摩擦抵抗を低下させることか考えられているが、
実際には、比重の比較的小さな潤滑性拉、子と、比重の
大きな超砥粒とを均一に結合剤中に分散させることは困
難であり、潤滑性粒子か砥粒層中で偏在しやすく、砥石
の切れ味を低下させたり、局部的に異常摩耗を生じたり
、砥fi層の強度を低下させたりといった新たな欠点が
生じる。
On the other hand, as a means to reduce the grinding resistance, lubricating particles such as fluororesin are added to the binder phase, and these lubricating particles are exposed from the rough surface of the binder, thereby forming a bond between the rough surface of the binder and the material to be ground. It is thought that it reduces frictional resistance, but
In reality, it is difficult to uniformly disperse lubricating particles, which have a relatively small specific gravity, and superabrasive particles, which have a large specific gravity, in a binder, and the lubricating particles tend to be unevenly distributed in the abrasive layer. New drawbacks arise, such as a decrease in the sharpness of the grindstone, abnormal local wear, and a decrease in the strength of the abrasive fi layer.

「本発明の目的」 本発明は、研削抵抗が小さく切れ味が良好で、しかも切
り屑の排出性が良い砥石を提供することを目的とする。
"Objective of the Present Invention" An object of the present invention is to provide a grindstone with low grinding resistance, good sharpness, and good chip evacuation.

「問題点を解決するための手段」 本発明の砥石は、超砥粒に超砥粒平均粒径の1/100
〜2/3の平均粒径を仔する潤滑性粒子を金属被覆によ
って固着させてなる腹合砥粒を、結合剤中に分散さ仕た
砥粒層を育することを特徴とする。
"Means for Solving the Problems" The grinding wheel of the present invention has superabrasive grains with a diameter of 1/100 of the average particle diameter of the superabrasive grains.
It is characterized by growing an abrasive grain layer in which lubricating particles having an average particle diameter of ~2/3 are fixed by a metal coating and dispersed in a binder.

「実施例」 以下、図面を用いて本発明の実施例を詳細に説明する。"Example" Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の砥石(電着砥石)を示す拡
大断面図である。
FIG. 1 is an enlarged sectional view showing a grindstone (electroplated grindstone) according to an embodiment of the present invention.

図中符号lは砥石台金であり、この砥石合金1上には、
金属メッキ相(結合剤相)2内に腹合砥粒3・・・を分
散させてなる砥粒層4が形成されている。
The symbol l in the figure is a grinding wheel base metal, and on this grinding wheel alloy 1,
An abrasive grain layer 4 is formed by dispersing abrasive grains 3 in a metal plating phase (binder phase) 2.

また、この砥粒層4の内部には、部分的に気孔5・が形
成されている。
Furthermore, pores 5 are partially formed inside this abrasive grain layer 4.

前記腹合砥粒3は、第2図に示すように、ダイヤモンド
、CBN等の超砥粒6の表面に、多数の潤滑性粒子7・
・・を金属被覆8を介して固着させたものである。
As shown in FIG. 2, the abrasive grains 3 have a large number of lubricating particles 7 on the surface of superabrasive grains 6 such as diamond or CBN.
... are fixed through a metal coating 8.

前記潤滑性粒子7の材質としては、六方晶窒化硼素、二
硫化モリブデン、フッ化黒鉛、テトラフルオロエチレン
等のフッ素樹脂等が好適である。また、潤滑性粒子7の
平均粒径は、超低#i6の平均粒径の1/100〜2/
3であることが望ましい。この平均粒径が超砥粒平均粒
洋の1/100未満であると十分な研削抵抗低下効果が
得られず、他方、超砥粒平均粒径の2/3よりも大きい
と、被研削材への超砥粒6の食い込みを悪化させるおそ
れがある。潤滑性粒子7・・・の砥粒層4全体に占める
割合は、2〜30vo1%であることが望ましく、2 
vo1%未満では十分な研削抵抗低下効果が得られず、
反対に潤滑性粒子7・・・の割合が30vo1%より大
きいと、砥石の切れ味および強度が低下するおそれがあ
る。
Suitable materials for the lubricating particles 7 include hexagonal boron nitride, molybdenum disulfide, graphite fluoride, and fluororesins such as tetrafluoroethylene. In addition, the average particle size of the lubricating particles 7 is 1/100 to 2/2 of the average particle size of ultra-low #i6.
3 is desirable. If this average grain size is less than 1/100 of the average grain size of the superabrasive grains, a sufficient grinding resistance reduction effect cannot be obtained, while on the other hand, if it is larger than 2/3 of the average grain size of the superabrasive grains, There is a risk that the superabrasive grains 6 may become less likely to bite into the surface. The proportion of the lubricating particles 7 in the entire abrasive layer 4 is desirably 2 to 30 vol%;
If the vo is less than 1%, a sufficient grinding resistance reduction effect cannot be obtained,
On the other hand, if the proportion of the lubricating particles 7 is greater than 30vol%, the sharpness and strength of the grindstone may be reduced.

前記金属被覆8は、超砥粒6の表面に直接形成された硬
質の磁気特性を有する金属層8aと、潤滑性粒子7の表
面に直接形成された硬質の磁気特性を存する金属層8b
と、これら金属層8 a、 8 bを接合する接合層8
cとから構成されている。前記金属層8 a、 8 b
の材質としては、N i、 Co、 F e等が好適で
ある。また、接合層8cの材質としては、Ni、Fe、
Cu、Cr、Co、Zn、Sn等がコストの点から好ま
しい。そして、これらを合わせた金属被覆8の肉厚は0
,5μ次以上とされることが望ましく、05μ屑未満で
は超砥粒6の表面に潤滑性粒子7を付着させておく力が
弱くなり、複合砥粒3が壊れやすくなる。
The metal coating 8 includes a metal layer 8a having hard magnetic properties formed directly on the surface of the superabrasive grains 6, and a metal layer 8b having hard magnetic properties formed directly on the surface of the lubricant particles 7.
and a bonding layer 8 that bonds these metal layers 8a and 8b.
It is composed of c. The metal layers 8a, 8b
Suitable materials include Ni, Co, Fe, etc. Further, the material of the bonding layer 8c includes Ni, Fe,
Cu, Cr, Co, Zn, Sn, etc. are preferable from the viewpoint of cost. The thickness of the metal coating 8 that combines these is 0.
, 5 μm or more is desirable. If the particle size is less than 0.5 μm, the force for adhering the lubricating particles 7 to the surface of the superabrasive grains 6 becomes weak, and the composite abrasive grains 3 become easily broken.

前記気孔5・・か砥粒層4中に占める割合は、5〜60
vo1%であることが望ましい。気孔5 ・の割合か5
vo1%未満であるとチップポケット形成効果が小さく
なり、60 vo1%よりし大きいと、金属メツキ層2
が腹合砥粒3を保持する力が弱くなる。
The proportion of the pores 5 in the abrasive grain layer 4 is 5 to 60.
It is desirable that it be vo1%. The proportion of stomata 5.
If it is less than 1%, the chip pocket formation effect will be small, and if it is more than 60 vo1%, the metal plating layer 2
The force holding the abrasive grains 3 becomes weaker.

次に、このような電着砥石の製造方法を、工程順に説明
する。
Next, a method for manufacturing such an electrodeposited grindstone will be explained step by step.

まず、超砥粒6の表面に、無電解メツキ法、スパッタ法
等の薄膜形成法を用いて、金属層8aを、前記金属被覆
8の数分の1程変の肉厚に形成する。
First, a metal layer 8a is formed on the surface of the superabrasive grains 6 using a thin film forming method such as an electroless plating method or a sputtering method to have a thickness that is a fraction of the thickness of the metal coating 8.

そして、メツキされた超砥粒6を着磁装置にかけ、金属
層8aに着磁する。
Then, the plated superabrasive grains 6 are applied to a magnetizing device to magnetize the metal layer 8a.

一方、潤滑性粒子7の表面にも、前記と同様の方法を用
いて金属層8bを形成しておく(着磁はしない)。
On the other hand, a metal layer 8b is also formed on the surface of the lubricant particles 7 using the same method as described above (without magnetization).

次いで、前記超砥粒6と潤滑性粒子7を十分混合し、超
砥粒6の金属層8aの磁力で、潤滑性粒子7の金属層8
bを引き付け、超砥粒6の周囲に潤滑性粒子7を付着さ
せる。そして、この混合粉末を再度、無電解メツキ液に
加え、これらの粒子6.7を包みこむ接合層8cを形成
し、複合砥粒3を製造する。
Next, the superabrasive grains 6 and the lubricant particles 7 are sufficiently mixed, and the metal layer 8 of the lubricant particles 7 is mixed with the magnetic force of the metal layer 8a of the superabrasive grains 6.
b, and the lubricating particles 7 are attached around the superabrasive grains 6. Then, this mixed powder is added to the electroless plating solution again to form a bonding layer 8c that envelops these particles 6.7, thereby producing composite abrasive grains 3.

次に、こうしてできた複合紙fL3を、Ni、C。Next, the composite paper fL3 made in this way was coated with Ni and C.

等のイオンを溶解したメツキ液に添加する。そして、砥
石台金1をこのメツキ液中に浸漬し、この砥石台金1を
電源の陰極に接続するとともに、メツキ液内に陽極を配
置し、砥石台金l上に金属メッキ相2を形成しつつ、こ
の金属メッキ相2中に複合砥粒3・・を分散させて砥粒
層4を形成する。この時、金属メッキ相2に付着した複
合砥粒3・・・の金属被覆8上にも、順次金属メツキが
なされていくので、複合砥粒3と複合砥粒3との間の空
隙は部分的に充たされぬまま残り、気孔5が形成される
ion is added to the plating solution containing dissolved ions. Then, the grinding wheel base metal 1 is immersed in this plating solution, and this grinding wheel base metal 1 is connected to the cathode of the power source, and an anode is placed in the plating solution to form a metal plating phase 2 on the grinding wheel base metal l. At the same time, composite abrasive grains 3 are dispersed in this metal plating phase 2 to form an abrasive grain layer 4. At this time, the metal coating 8 of the composite abrasive grains 3 attached to the metal plating phase 2 is also sequentially plated with metal, so that the gaps between the composite abrasive grains 3 are partially The pores remain unfilled and pores 5 are formed.

このようにして、砥粒層4が所定の肉厚に達したら、通
電を停止し、砥粒層にドレッシング等の処理を施して電
着砥石を得る。
In this manner, when the abrasive grain layer 4 reaches a predetermined thickness, the electricity supply is stopped and the abrasive grain layer is subjected to a treatment such as dressing to obtain an electrodeposited grindstone.

このような構成からなる電着砥石にあっては、個々の超
砥粒6の回りに潤滑性粒子7 ・を固着して曳合砥#i
3を形成した後、この複合砥粒3を金属メッキ相2中に
分散するので、砥粒層4中に潤滑性粒子7・・・が偏在
することがなく、常に適正な密度で砥粒層4の表面から
潤滑性粒子7を露出させることが可能である。したがっ
て、このような電着砥石によれば、必要以上に潤滑性粒
子7・・・を砥粒層4表面から突出さけて砥石の切れ味
を低下さけろことなく、被研削材料との摩擦係数を低下
さけ、研削抵抗を小さくすることができ、研削中に発生
する摩擦熱を減じて過熱等の異常を防止することが可能
である。
In an electrodeposited grindstone having such a structure, lubricating particles 7 are fixed around each superabrasive grain 6 to form a grinding wheel #i.
After forming the composite abrasive grains 3, the composite abrasive grains 3 are dispersed in the metal plating phase 2, so that the lubricating particles 7 are not unevenly distributed in the abrasive grain layer 4, and the abrasive grain layer is always maintained at an appropriate density. It is possible to expose the lubricating particles 7 from the surface of 4. Therefore, with such an electrodeposited grindstone, the coefficient of friction with the material to be ground can be reduced without causing the lubricant particles 7 to protrude beyond the surface of the abrasive grain layer 4 more than necessary, thereby reducing the sharpness of the grindstone. It is possible to reduce the grinding resistance, reduce the frictional heat generated during grinding, and prevent abnormalities such as overheating.

また、この電着砥石では、超砥粒6の周囲に金属被覆8
との接合強度が比較的小さい潤滑性粒子7を配置してい
るので、超砥粒6に大きな力かがかった場合には、潤滑
性粒子7と金属被覆8との界面から金属被覆8が剥離し
て超砥粒6が脱落する。したがって、この電着砥石では
、従来の電着砥石に比べ、超砥粒保持力を適度に低下さ
けることができ、超砥粒6の自生全刃作用を促すことが
でき、砥石の切れ味向上が図れるとともに、被研削材に
生じる加工損傷を低減することが可能である。また同時
に、チップポケットの形成が容易になるので、切り屑の
排出性向上が図れるうえ、砥粒層4表面での冷却水保持
効果が高まり、砥石の冷却効率向上が図れる。さらに、
この電着砥石にあっては、砥粒層4内に部分的に気孔5
・・・を形成し、砥粒層4を多孔質構造としたので、上
述の効果がより一眉顕著となっている。
In addition, in this electrodeposited grindstone, a metal coating 8 is provided around the superabrasive grains 6.
Since the lubricating particles 7 have a relatively low bonding strength with the superabrasive particles 6, if a large force is applied to the superabrasive particles 6, the metal coating 8 will peel off from the interface between the lubricating particles 7 and the metal coating 8. The superabrasive grains 6 fall off. Therefore, with this electrodeposited grindstone, compared to conventional electrodeposition grindstones, it is possible to moderately reduce the superabrasive grain retention force, promote the self-generating full-edge action of the superabrasive grains 6, and improve the sharpness of the grindstone. At the same time, it is possible to reduce machining damage caused to the material to be ground. At the same time, since chip pockets can be easily formed, chip discharge performance can be improved, and the effect of retaining cooling water on the surface of the abrasive grain layer 4 can be increased, so that the cooling efficiency of the grindstone can be improved. moreover,
In this electrodeposited grindstone, there are pores 5 partially in the abrasive grain layer 4.
... is formed, and the abrasive grain layer 4 is made to have a porous structure, so that the above-mentioned effect becomes even more remarkable.

なお、前記の実施例にあっては、砥粒層4が複合砥粒3
のみを含有する構成となっていたが、本発明はこれに限
られず、複合砥ri3と、複合砥粒とされていない超砥
粒とを混合し、砥粒層中に分散してもよい。
In addition, in the above embodiment, the abrasive grain layer 4 is made of composite abrasive grains 3.
However, the present invention is not limited to this, and composite abrasive ri3 and superabrasive grains that are not composite abrasive grains may be mixed and dispersed in the abrasive grain layer.

「実験例」 次に、本発明の実験例を挙げて本発明の効果を実証する
"Experimental Examples" Next, experimental examples of the present invention will be given to demonstrate the effects of the present invention.

(実験例1) ■ダイヤモンド超砥粒粉末(200〜240メツシユ)
をパラジウム塩水溶液に浸し、超砥粒の表面に触媒活性
を付与した。
(Experiment Example 1) ■Diamond super abrasive powder (200-240 mesh)
was soaked in a palladium salt aqueous solution to impart catalytic activity to the surface of the superabrasive grains.

■この超砥粒粉末を、無電解コバルトメツキ液(硫酸コ
バルト:259/12、コハク酸ナトリウム・259/
e1硫酸ナトリウム:15g/12、ジメチルアミンボ
ラン 29#SPH・5.0、tL温ニア0℃)中に分
散し、超砥粒表面に約3μmのコバルト被覆層を形成し
た。
■This super abrasive powder is mixed with an electroless cobalt plating solution (cobalt sulfate: 259/12, sodium succinate/259/
e1 Sodium sulfate: 15g/12, dimethylamine borane 29#SPH, 5.0, tL temperature (0°C) was dispersed to form a cobalt coating layer of approximately 3 μm on the surface of the superabrasive grain.

■前記コバルト被覆した超砥粒粉末を、プラスチック瓶
に封入し、5キロエルステツドの磁場中にさらして着磁
した。
(2) The cobalt-coated superabrasive powder was sealed in a plastic bottle and magnetized by exposing it to a 5 kOe magnetic field.

■これとは別に、六方晶窒化硼素(hBN)粉末(平均
粒径1〜5μl)に、前記■■と同様の処理を施し、そ
の表面に約2μlのコバルト被覆を形成した。
(2) Separately, hexagonal boron nitride (hBN) powder (average particle size 1 to 5 μl) was subjected to the same treatment as in (2) above to form about 2 μl of cobalt coating on its surface.

■以上の処理を施した超砥粒1009とhBN粉末20
9とをプラスチック瓶に封入して、十分に混合し、超砥
粒表面のコバルト被覆の磁力により、超砥粒の周囲に複
数のhBN粒子を付着させた。
■Super abrasive grain 1009 and hBN powder 20 treated as above
9 were sealed in a plastic bottle and thoroughly mixed, and a plurality of hBN particles were attached around the superabrasive grains by the magnetic force of the cobalt coating on the surface of the superabrasive grains.

■この混合粉末を、再び前記パラジウム塩水溶液に浸し
、混合粉末の表面に触媒活性を付与した。
(2) This mixed powder was again immersed in the palladium salt aqueous solution to impart catalytic activity to the surface of the mixed powder.

■次いで、この混合粉末を、無電解銅メツキ液(奥野製
薬工業株式会社製OPCカッパーS1液温:50°C)
中に分散し、表面に5μ肩の銅被覆を形成した複合砥粒
を得た。
■Next, this mixed powder was mixed with an electroless copper plating solution (OPC Copper S1 manufactured by Okuno Pharmaceutical Co., Ltd. Liquid temperature: 50°C)
Composite abrasive grains were obtained in which a 5μ thick copper coating was formed on the surface.

■こうして製造した複合砥粒(平均粒径)を、虜脂結合
剤粉末(フェノール樹脂)中に30vo1%添加し、十
分に混合し、型込めして砥石台金上に固定したのち、ホ
ットプレスおよび焼成を行ない、砥石形状に整形し、円
板状のレジノイドボンド研削砥石を得た。
■Add 30vol 1% of the composite abrasive grains (average particle size) manufactured in this way to binder powder (phenolic resin), mix thoroughly, mold and fix on the grindstone base metal, then hot press. Then, it was fired and shaped into a grindstone shape to obtain a disc-shaped resinoid bond grinding wheel.

(比較例1) ダイヤモンド超砥粒(200〜240メツンユ)を、実
験例1と同じ樹脂結合剤粉末中に20vo1%添加し、
十分に混合し、型込めして砥石台金上に固定したのち、
ホットプレスおよび焼結を行ない、砥石形状に整形し、
実験例と同形状のレジノイドボンド砥石を得た。
(Comparative Example 1) Diamond superabrasive grains (200 to 240 mesh) were added at 20vo1% to the same resin binder powder as in Experimental Example 1,
After thoroughly mixing, molding and fixing on the grindstone base,
Hot press and sinter, shape into a grindstone,
A resinoid bonded grindstone having the same shape as the experimental example was obtained.

次いで、前記2つのレジン1′ドボンド砥石を用い、以
下の研削条件(湿式)により研削を行なった。
Next, grinding was performed using the two resin 1' bonded grindstones under the following grinding conditions (wet type).

研削条件   被研削材:96%アルミナ材砥石周速:
1500x/win。
Grinding conditions Material to be ground: 96% alumina Grinding wheel peripheral speed:
1500x/win.

送り速度: l Ox/ min。Feed rate:  1 Ox/ min.

クロス送り:2xm 切り込み:0.01zz 表1は、前記2つのレジノイドボンド砥石の研削結果を
示すものである。
Cross feed: 2xm Depth of cut: 0.01zz Table 1 shows the grinding results of the two resinoid bond grindstones.

表1 上表から明らかなように、実験例のレノノイドボンド砥
石では研削抵抗が低減した。
Table 1 As is clear from the above table, the grinding resistance was reduced in the renonoid bonded grindstone of the experimental example.

(実験例2) 次に、本発明を適用した電鋳薄刃砥石を作成し、従来の
電鋳薄刃砥石と比較した。
(Experimental Example 2) Next, an electroformed thin-blade grindstone to which the present invention was applied was created and compared with a conventional electroformed thin-blade grindstone.

第3図は、その際に使用した製造装置の縦断面図である
。符号IOはメツキ槽であり、このメッキ槽10内には
、Niイオンを含むメツキ液Mが満たされている。また
、このメツキ槽lOには、図示しない超音波撹拌機等の
撹拌機が配設されている。メツキ槽IO内には、非導電
性の台座11が水平に配置されており、この台座11上
には、ステンレス製の平面基板12が載置されている。
FIG. 3 is a longitudinal sectional view of the manufacturing equipment used at that time. Reference numeral IO designates a plating tank, and the plating tank 10 is filled with a plating solution M containing Ni ions. Further, a stirrer such as an ultrasonic stirrer (not shown) is provided in the plating tank IO. A non-conductive pedestal 11 is horizontally arranged in the plating tank IO, and a stainless steel flat substrate 12 is placed on the pedestal 11.

この平面基板12の上面には、製造すべき砥石の原型形
状をなす部分を残してマスキングが施されている。また
、平面基板12の上方には、平面基板I2と平行に陽極
板13が配置され、図示しない電源の陽極に接続されて
いる。
The upper surface of this flat substrate 12 is masked, leaving a portion forming the prototype shape of the grindstone to be manufactured. Further, above the flat substrate 12, an anode plate 13 is arranged parallel to the flat substrate I2, and is connected to an anode of a power source (not shown).

電鋳薄刃砥石を製造するに際して、まず、メッキ槽10
内のメツキ液Mに、実験例Iと同様の方法により25μ
肩のダイヤ超砥粒の表面に2μlのhBN粒子を配置し
た複合砥粒を所定量添加し、撹拌機によってメツキ液間
中に均一に分散させた。
When manufacturing an electroformed thin blade grindstone, first, the plating tank 10
25μ of the plating liquid M in
A predetermined amount of composite abrasive grains having 2 μl of hBN particles arranged on the surface of the shoulder diamond superabrasive grains was added and uniformly dispersed in the plating liquid using a stirrer.

次いで平面基板12を電源の陰極に接続し、陽極板13
との間に通電し、平面基板12の表面にNiメッキ相1
4を形成しつつ、このNiメッキ相I4内に複合砥粒を
均一に分散させて取り込ませた。
Next, the flat substrate 12 is connected to the cathode of the power source, and the anode plate 13 is connected to the cathode of the power source.
, and the Ni plating phase 1 is applied to the surface of the flat substrate 12.
4, composite abrasive grains were uniformly dispersed and incorporated into this Ni plating phase I4.

やがて、金属メッキ相14が所定の肉厚に達したら通電
を停止し、平面基板12をメツキ槽lOから取り出して
水洗した。そして、この平面基板12から金属メッキ相
14を剥がし、ラッピングおよび外周研磨を施して所定
形状に整形し、電鋳薄刃砥石を得た。
Eventually, when the metal plating layer 14 reached a predetermined thickness, the electricity supply was stopped, and the flat substrate 12 was taken out from the plating tank IO and washed with water. Then, the metal plating layer 14 was peeled off from the flat substrate 12, and the substrate was lapped and polished to form a predetermined shape, thereby obtaining an electroformed thin blade grindstone.

(比較例2) 前記実験例2と同様の方法により、複合砥粒の代わりに
超砥粒を使用して、比較例2の電鋳薄刃砥石を作成した
(Comparative Example 2) An electroformed thin-blade grindstone of Comparative Example 2 was created in the same manner as in Experimental Example 2, using superabrasive grains instead of composite abrasive grains.

次いで、これら実験例2および比較例2の砥石を用い、
以下の研削条件により研削切断を行なった。
Next, using the grindstones of Experimental Example 2 and Comparative Example 2,
Grinding and cutting were performed under the following grinding conditions.

研削条件  被研削材:フエライト 砥石周速: l 500 z/min 送り速度 100 zttt/ min。Grinding conditions Material to be ground: Ferrite Grinding wheel peripheral speed: l 500 z/min Feed speed 100 zttt/min.

切り込み:2.0xx 表2は、これらの電鋳薄刃砥石による研削結果を示すも
のである。
Depth of cut: 2.0xx Table 2 shows the results of grinding using these electroformed thin-blade grindstones.

(以下、余白) 表2 表2に示される通り、実験例2の電鋳薄刃砥石では、比
較例2の砥石に比べて研削抵抗およびチッピングを低減
することができた。
(Hereinafter, blank spaces) Table 2 As shown in Table 2, the electroformed thin-blade grindstone of Experimental Example 2 was able to reduce grinding resistance and chipping compared to the grindstone of Comparative Example 2.

「発明の効果」 本発明の砥石によれば、次のような優れた効果が得られ
る。
"Effects of the Invention" According to the grindstone of the present invention, the following excellent effects can be obtained.

■個々の超砥粒の回りに潤滑性粒子を固着して複合砥粒
を形成した後、この複合砥粒を金属メツキ相中に分散し
て砥粒層を形成するので、砥粒層中に潤滑性粒子が偏在
することかなく、常に適正な密度で砥粒層の表面から潤
滑性粒子を露出させることが可能である。したがって、
このような電着砥石によれば、必要以上に潤滑性粒子を
砥粒層表面から突出させて砥石の切れ味を低下させるこ
となく、被研削材料との摩擦係数を低下させ、研削抵抗
を小さくすることができるとともに、研削中に発生する
摩擦熱を減じて、砥石の過熱を防止することができる。
■After forming composite abrasive grains by fixing lubricating particles around individual superabrasive grains, the composite abrasive grains are dispersed in the metal plating phase to form an abrasive grain layer, so that It is possible to always expose the lubricant particles from the surface of the abrasive layer at an appropriate density without causing the lubricant particles to be unevenly distributed. therefore,
According to such an electroplated grindstone, the coefficient of friction with the material to be ground is lowered and the grinding resistance is reduced without causing lubricant particles to protrude from the surface of the abrasive grain layer more than necessary and reducing the sharpness of the grindstone. At the same time, it is possible to reduce the frictional heat generated during grinding and prevent the grindstone from overheating.

■超砥粒の周囲に金属被覆との接合強度が比較的小さい
潤滑性粒子を配置しているので、超砥粒に大きな力がか
かった場合には、潤滑性粒子と金属被覆との界面から金
属被覆が剥離して超砥粒が脱落する。したがって、この
電着砥石では、従来の電着砥石に比べ、超砥粒保持力を
適度に低下させることができ、超砥粒の自生全刃作用を
促すことにより、砥石の切れ味向上が図れるとともに、
被研削材に生じる加工損傷を低減することが可能である
。また同時に、チップポケットの形成が容易になるので
、切り屑の排出性向上が図れるうえ、砥粒層表面での冷
却水保持効果が高まり、砥石の冷却効率向上が図れる。
■Lubricating particles with relatively low bonding strength with the metal coating are placed around the superabrasive grains, so when a large force is applied to the superabrasive particles, the interface between the lubricating particles and the metal coating The metal coating peels off and the superabrasive grains fall off. Therefore, with this electrodeposited grindstone, the superabrasive retention force can be moderately reduced compared to conventional electrodeposited grindstones, and by promoting the self-generating full-edge action of the superabrasives, it is possible to improve the sharpness of the grindstone. ,
It is possible to reduce machining damage caused to the material to be ground. At the same time, since the formation of chip pockets becomes easier, it is possible to improve the evacuation of chips, and the effect of retaining cooling water on the surface of the abrasive grain layer is increased, thereby improving the cooling efficiency of the grindstone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電着砥石の部分拡大断面図
、第2図は同砥石の複合砥粒の断面図、第3図は本発明
の実験例の砥石を製造するための製造装置の縦断面図で
ある。
Fig. 1 is a partially enlarged cross-sectional view of an electrodeposited grindstone according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of composite abrasive grains of the same grindstone, and Fig. 3 is a cross-sectional view of a grindstone according to an experimental example of the present invention. FIG. 2 is a longitudinal cross-sectional view of the manufacturing device.

Claims (1)

【特許請求の範囲】[Claims] 超砥粒にこの超砥粒平均粒径の1/100〜2/3の平
均粒径を有する潤滑性粒子を金属被覆によって固着させ
てなる複合砥粒を、結合剤相中に分散させてなる砥粒層
を有することを特徴とする砥石。
Composite abrasive grains, which are made by adhering lubricating particles having an average particle diameter of 1/100 to 2/3 of the average particle diameter of the superabrasive grains with a metal coating, are dispersed in a binder phase. A whetstone characterized by having an abrasive grain layer.
JP61178549A 1986-07-29 1986-07-29 Whetstone Expired - Lifetime JPH0771788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178549A JPH0771788B2 (en) 1986-07-29 1986-07-29 Whetstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178549A JPH0771788B2 (en) 1986-07-29 1986-07-29 Whetstone

Publications (2)

Publication Number Publication Date
JPS6334069A true JPS6334069A (en) 1988-02-13
JPH0771788B2 JPH0771788B2 (en) 1995-08-02

Family

ID=16050425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178549A Expired - Lifetime JPH0771788B2 (en) 1986-07-29 1986-07-29 Whetstone

Country Status (1)

Country Link
JP (1) JPH0771788B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542481A (en) * 1991-08-09 1993-02-23 Tone Corp Cutter for cutting casting
JPH08325558A (en) * 1995-03-31 1996-12-10 Toyota Banmotsupusu Kk Composite abrasive grain and its production
JP2002089558A (en) * 2000-08-03 2002-03-27 Ina Waelzlager Schaeffler Ohg Cover belt device for linear guide
JP2007191164A (en) * 2006-01-17 2007-08-02 Hane:Kk Foamed synthetic resin-made container
US7798353B2 (en) 2005-11-23 2010-09-21 Pactiv Corporation Polymeric container assembly with stackable features
CN102470511A (en) * 2009-07-28 2012-05-23 3M创新有限公司 Coated abrasive article and methods of ablating coated abrasive articles
CN113751157A (en) * 2021-09-09 2021-12-07 安徽省交通控股集团有限公司 Device and method for making sand particle shape by magnetic field auxiliary high-pressure water jet shaping machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501119A (en) * 2014-12-22 2018-01-18 スリーエム イノベイティブ プロパティズ カンパニー Abrasive article having a removable abrasive member and method for separating and replacing a removable abrasive member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626763A (en) * 1979-08-04 1981-03-14 Showa Denko Kk Metallclad grindstone grain and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626763A (en) * 1979-08-04 1981-03-14 Showa Denko Kk Metallclad grindstone grain and manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542481A (en) * 1991-08-09 1993-02-23 Tone Corp Cutter for cutting casting
JPH08325558A (en) * 1995-03-31 1996-12-10 Toyota Banmotsupusu Kk Composite abrasive grain and its production
JP2002089558A (en) * 2000-08-03 2002-03-27 Ina Waelzlager Schaeffler Ohg Cover belt device for linear guide
US7798353B2 (en) 2005-11-23 2010-09-21 Pactiv Corporation Polymeric container assembly with stackable features
JP2007191164A (en) * 2006-01-17 2007-08-02 Hane:Kk Foamed synthetic resin-made container
CN102470511A (en) * 2009-07-28 2012-05-23 3M创新有限公司 Coated abrasive article and methods of ablating coated abrasive articles
CN113751157A (en) * 2021-09-09 2021-12-07 安徽省交通控股集团有限公司 Device and method for making sand particle shape by magnetic field auxiliary high-pressure water jet shaping machine

Also Published As

Publication number Publication date
JPH0771788B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
KR880002342B1 (en) Electrodeposited grinding tool
JP2896657B2 (en) Dresser and manufacturing method thereof
TW200800504A (en) Electroplated abrasive tools, methods, and molds
JPH05245762A (en) Abrasive article and manufacture thereof
JPS6334069A (en) Grindstone
CN109290970B (en) Preparation method of electroplated diamond abrasive belt with mixed particle size
JP2003340729A (en) Wire saw and method for manufacturing the same
JP2504418B2 (en) Grinding stone manufacturing method
JP2001341076A (en) Grinding wheel
JPH0215977A (en) Diamond grindstone and manufacture thereof
JPS6334070A (en) Grindstone
JP2006082187A (en) Thin blade grinding wheel
JP5957317B2 (en) Dresser for polishing cloth and method for producing the same
KR20120048769A (en) Grinding method for the glass of mobile phone
JPH05138537A (en) Electrodeposit grinding wheel and manufacture thereof
JP3134469B2 (en) Electroplated whetstone and method of manufacturing the same
JPH04269170A (en) Metal coated porous grinding wheel
JP2002127011A (en) Cmp conditioner
JP3280639B2 (en) Super abrasive cutting wheel
JP2002018725A (en) Method of manufacturing grinding wheel
JPS6258872B2 (en)
JPS5943894A (en) Method and device for plating of granular material
JPH04111776A (en) Porous multilayer electrodeposition grindstone and manufacture thereof
JPS582034B2 (en) Manufacturing method of grinding wheel
JP4419485B2 (en) Grinding wheel and method for manufacturing the same