JP2504418B2 - Grinding stone manufacturing method - Google Patents

Grinding stone manufacturing method

Info

Publication number
JP2504418B2
JP2504418B2 JP61178552A JP17855286A JP2504418B2 JP 2504418 B2 JP2504418 B2 JP 2504418B2 JP 61178552 A JP61178552 A JP 61178552A JP 17855286 A JP17855286 A JP 17855286A JP 2504418 B2 JP2504418 B2 JP 2504418B2
Authority
JP
Japan
Prior art keywords
superabrasive grains
grindstone
plating
metal
superabrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61178552A
Other languages
Japanese (ja)
Other versions
JPS6334071A (en
Inventor
務 高橋
数義 足立
正勝 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP61178552A priority Critical patent/JP2504418B2/en
Publication of JPS6334071A publication Critical patent/JPS6334071A/en
Application granted granted Critical
Publication of JP2504418B2 publication Critical patent/JP2504418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、電着砥石や電鋳砥石、ダイヤモンド工具等
の製造に使用される砥石の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a grindstone used for manufacturing an electrodeposition grindstone, an electroformed grindstone, a diamond tool and the like.

「従来の技術」 従来、例えば、電着砥石の製造は次のようにして行な
われている。
"Prior Art" Conventionally, for example, the production of an electrodeposition grindstone is performed as follows.

まず、メッキ槽内のメッキ液に、ダイヤモンド,CBN等
の超砥粒を所定量添加し、攪拌機によってメッキ液を攪
拌して超砥粒を均一に分散させる。次いで、メッキ液中
に浸漬した砥石台金(被メッキ体)を電源の陰極に接続
し、陽極板との間で通電し、砥石台金上に金属メッキ相
を析出させつつ、この金属メッキ相内に超砥粒を取り込
ませて砥粒層を形成する。
First, a predetermined amount of superabrasive grains such as diamond and CBN is added to the plating liquid in the plating tank, and the superabrasive grains are uniformly dispersed by stirring the plating liquid with a stirrer. Next, connect the whetstone base metal (the object to be plated) immersed in the plating solution to the cathode of the power supply, and energize between it and the anode plate, while precipitating the metal plating phase on the whetstone base metal. An abrasive grain layer is formed by incorporating superabrasive grains therein.

そして、砥粒層が所定の肉厚になったら通電を停止
し、砥石台金を取り出して整形およびドレッシングを行
ない、電着砥石を得る。
Then, when the abrasive grain layer has a predetermined thickness, the power supply is stopped, the grindstone base metal is taken out, shaped and dressed to obtain an electrodeposition grindstone.

「発明が解決しようとする問題点」 ところで、このような砥石の製造方法によって、一般
的な円板状ではなく複雑な形状の電着砥石を製造しよう
とすると、砥石台金の砥粒層を形成すべき部分のうち、
略垂直になった面や下方を向いた面などには、重力の影
響で超砥粒が付着しにくく、金属メッキ相内に超砥粒が
取り込まれにくい。その反面、上方を向いた面などで
は、重力がかかることにより超砥粒が付着しやすく、金
属メッキ相内に取り込まれる超砥粒が多い。金属メッキ
相の析出量は、どの面でも略同じであるために、前記台
金面の垂直部分および下方を向いた部分では、砥粒層中
の超砥粒の分散密度が低下し、研削時の超砥粒露出密度
が低下する結果となり、この製造方法では、砥粒層の肉
厚が不均一で切れ味に部分的なムラがある電着砥石が製
造されしまう欠点があった。
"Problems to be solved by the invention" By the way, by the method for producing a grindstone as described above, when an electrodeposited grindstone having a complicated shape is manufactured instead of a general disk shape, the abrasive grain layer of the grindstone base metal Of the parts to be formed,
Superabrasive grains are less likely to adhere to the surface that is substantially vertical or the surface facing downward, and the superabrasive grains are less likely to be taken into the metal plating phase. On the other hand, on the surface facing upward, the superabrasive grains tend to adhere due to gravity, and many superabrasive grains are taken into the metal plating phase. Since the amount of the metal plating phase deposited is substantially the same on all surfaces, the dispersion density of the superabrasive grains in the abrasive grain layer decreases in the vertical portion and the downward facing portion of the base metal surface during grinding. As a result, the exposure density of the superabrasive grains is decreased, and this manufacturing method has a drawback that an electrodeposition grindstone having an uneven thickness of the abrasive grain layer and partial unevenness in sharpness is manufactured.

「本発明の目的」 本発明は上記事情に鑑みてなされたもので、被メッキ
体上のいかなる方向を向いた面においても超砥粒の密度
が均一な砥粒層を形成することができる砥石の製造方法
を提供することを目的とする。
"Object of the present invention" The present invention has been made in view of the above circumstances, and a grindstone capable of forming an abrasive grain layer having a uniform density of superabrasive grains on the surface of the object to be plated facing in any direction. It aims at providing the manufacturing method of.

「問題点を改善するための手段」 上記課題を達成するために、本発明の請求項1に記載
の砥石の製造方法は、被メッキ体上に金属メッキ相を析
出させつつ、この金属メッキ相中に超砥粒を分散させる
砥石の製造方法において、メッキを行なうに際し、超砥
粒の表面に超砥粒の平均粒径の1/20〜1/2の肉厚を有す
る強磁性金属の被覆層を形成し、この被覆層を着磁する
とともに、前記被メッキ体の少なくとも一部を強磁性体
で構成することを特徴とする。
[Means for Resolving Problems] In order to achieve the above object, the method for producing a grindstone according to claim 1 of the present invention is such that the metal plating phase is deposited on the object to be plated while the metal plating phase is being deposited. In a method of manufacturing a grindstone in which superabrasive grains are dispersed, in performing plating, a coating of a ferromagnetic metal having a thickness of 1/20 to 1/2 of the average grain size of the superabrasive grains on the surface of the superabrasive grains. A layer is formed, the coating layer is magnetized, and at least a part of the object to be plated is made of a ferromagnetic material.

請求項2に記載の砥石の製造方法は、請求項1に記載
の砥石の製造方法において、前記超砥粒表面の金属被覆
層の磁力、メッキ液中における超砥粒の分散密度、およ
びメッキ電流を調整することにより、砥粒層中に気孔が
占める割合を5〜60VOL%とすることを特徴とする。
A method for manufacturing a grindstone according to claim 2, wherein in the method for manufacturing a grindstone according to claim 1, the magnetic force of the metal coating layer on the surface of the superabrasive grains, the dispersion density of the superabrasive grains in the plating solution, and the plating current. Is adjusted to adjust the ratio of pores in the abrasive grain layer to 5 to 60 vol%.

「実施例」 以下、本発明の砥石の製造方法を、電着砥石の製造方
法に適用した例を挙げて説明する。
[Examples] Hereinafter, the method for manufacturing a grindstone of the present invention will be described with reference to an example in which it is applied to a method for manufacturing an electrodeposition grindstone.

始めに、無電解メッキ法を用いて、超砥粒の表面に強
磁性を有する金属被覆層を形成する。そのためにはま
ず、ダイヤモンド,CBN等の超砥粒をパラジウム塩水溶液
等の触媒溶液に浸し、超砥粒の表面に触媒活性を付与す
る。次に、この超砥粒粉末を取り出し、Ni,Co,Fe等の強
磁性(硬質磁性)金属のイオンを含む無電解メッキ液中
に添加する。そして、超砥粒表面において強磁性金属を
析出させ、超砥粒の平均粒径の1/20〜1/2の肉厚を有す
る金属被覆層を形成する。この金属被覆層の肉厚が超砥
粒粒径の1/20未満であると着磁後の残留磁気が弱く、被
メッキ体との磁気吸引力が弱く、被メッキ体上に超砥粒
を均一に分散させることが困難になる。また、金属被覆
層が超砥粒粒径の1/2より厚いと、被研削材への超砥粒
の食い込みを悪化させるおそれがある。
First, an electroless plating method is used to form a metal coating layer having ferromagnetism on the surface of superabrasive grains. For that purpose, first, superabrasive grains such as diamond and CBN are soaked in a catalyst solution such as an aqueous solution of palladium salt to impart catalytic activity to the surface of the superabrasive grains. Next, this superabrasive grain powder is taken out and added to an electroless plating solution containing ions of a ferromagnetic (hard magnetic) metal such as Ni, Co and Fe. Then, a ferromagnetic metal is deposited on the surface of the superabrasive grains to form a metal coating layer having a thickness of 1/20 to 1/2 of the average grain size of the superabrasive grains. If the thickness of this metal coating layer is less than 1/20 of the grain size of the superabrasive grains, the residual magnetism after magnetization is weak, the magnetic attraction with the object to be plated is weak, and the superabrasive particles are deposited on the object to be plated. It becomes difficult to disperse it uniformly. Further, if the metal coating layer is thicker than 1/2 of the superabrasive grain size, the biting of the superabrasive grains into the material to be ground may be deteriorated.

次いで、前記金属被覆した超砥粒を取り出し、プラス
チック容器等に封入して着磁装置にセットし、前記金属
被覆層に十分な残留磁気を付与することができる強さの
磁場中にさらして着磁する。
Then, the metal-coated superabrasive grains are taken out, enclosed in a plastic container or the like, set in a magnetizing device, and exposed by being exposed to a magnetic field having a strength capable of imparting sufficient residual magnetism to the metal-coated layer. Magnetize.

一方、Ni,Co,Fe,強磁性ステンレス等のように強磁性
を有する材質から作られた砥石台金の表面に、砥粒層を
形成すべき部分を除いてマスキングを施した後、この砥
石台金を、Ni,Co等のイオンを溶解したメッキ液中に配
置する。そして、前記着磁した超砥粒を、このメッキ液
中に所定量添加し、超音波攪拌機等の攪拌機によって攪
拌しつつ、砥石台金を電源の陰極に接続し、メッキ液内
の陽極との間に通電する。
On the other hand, after grinding the surface of the grinding wheel base metal made of a material having ferromagnetism such as Ni, Co, Fe, ferromagnetic stainless steel, etc. The base metal is placed in a plating solution in which ions such as Ni and Co are dissolved. Then, the magnetized superabrasive grains are added to this plating solution in a predetermined amount, and while being stirred by a stirrer such as an ultrasonic stirrer, the whetstone base metal is connected to the cathode of the power source, and the anode in the plating solution Energize in the meantime.

この時、メッキ液中に分散している超砥粒は、表面に
形成された金属被覆層によって周囲に磁場を形成してい
るので、この超砥粒が攪拌によって砥石台金に衝突した
りその近傍を通った際には、超砥粒と砥石台金との間に
微弱な磁気吸引力が発生する。このため、超砥粒は、砥
石台金の表面に引き寄せられ、攪拌によって引き剥がさ
れるまでの間、その表面に吸着して滞留する。一方、こ
の滞留時間内にも、砥石台金の表面には順次金属メッキ
相が析出してくるので、超砥粒はこの金属メッキ相内に
捕らえられ、次第に埋もれていく。また、金属メッキ相
内に捕らえられた超砥粒上にも、次々と超砥粒が付着
し、これら超砥粒上に順次金属メッキ相が析出していく
ため、これら超砥粒と超砥粒との間の空隙は、部分的に
充たされぬまま残り、金属メッキ相内に多数の気孔が形
成される結果となる。
At this time, since the superabrasive grains dispersed in the plating solution form a magnetic field around the metal coating layer formed on the surface, the superabrasive grains collide with the whetstone base metal by stirring or When passing through the vicinity, a weak magnetic attraction force is generated between the superabrasive grains and the whetstone base metal. Therefore, the superabrasive grains are attracted to the surface of the whetstone base metal, and are adsorbed and retained on the surface until they are peeled off by stirring. On the other hand, even within this residence time, the metal plating phase is successively deposited on the surface of the grinding wheel base metal, so that the superabrasive grains are trapped in the metal plating phase and gradually buried. Further, since superabrasive particles are successively deposited on the superabrasive grains captured in the metal plating phase, and the metal plating phase is sequentially deposited on these superabrasive grains, these superabrasive grains and superabrasive grains are deposited. The voids between the grains remain partially unfilled, resulting in the formation of multiple pores within the metal plating phase.

このような金属メッキ相内の気孔は、砥石使用時にチ
ップポケットとして切り屑の排出性を高める効果を奏す
るものであり、超砥粒表面の金属被覆層の磁力、メッキ
液中における超砥粒の分散密度、メッキ電流等を調整す
ることにより、気孔の砥粒層中に占める割合が、5〜60
vol%とされることが望ましい。前記気孔の割合が5vol
%未満であるとチップポケット形成効果が不十分とな
り、反対に60vol%よりも大きいと、金属メッキ相によ
り超砥粒を保持する力が弱くなる。
The pores in the metal plating phase have the effect of enhancing the chip discharge performance as a chip pocket when using a grindstone, the magnetic force of the metal coating layer on the surface of the superabrasive grains, and the superabrasive grains in the plating solution. By adjusting the dispersion density, plating current, etc., the proportion of pores in the abrasive grain layer is 5 to 60.
It is desirable to set it as vol%. The proportion of the pores is 5 vol
If it is less than 60%, the effect of forming chip pockets becomes insufficient, while if it is more than 60% by volume, the metal-plating phase weakens the force for holding superabrasive grains.

やがて、砥粒層が所定の肉厚となったら、通電を停止
し、砥石台金を取り出して整形およびドレッシングを施
し、電着砥石を得る。
After a while, when the abrasive grain layer has a predetermined thickness, the energization is stopped, the grindstone base metal is taken out, shaped and dressed to obtain an electrodeposition grindstone.

このような構成からなる電着砥石の製造方法にあって
は、超砥粒と砥石台金との間に磁気吸引力を生じさせ、
この力によって砥石台金表面に超砥粒を付着させてメッ
キを行なうので、いかなる方向を向いた被メッキ面にお
いても重力の影響を受けることなく、超砥粒を満遍無く
取り込ませることができる。したがって、本方法によれ
ば、超砥粒の分散密度が均一な砥粒層を形成することが
でき、砥粒層の肉厚が均一で、切れ味にムラのない電着
砥石を製造することができる。
In the method for producing an electrodeposition grindstone having such a configuration, a magnetic attraction force is generated between the superabrasive grains and the grindstone base metal,
This force causes superabrasive grains to adhere to the surface of the whetstone base for plating, so that the superabrasive grains can be taken up evenly on the surface to be plated in any direction without being affected by gravity. . Therefore, according to the present method, it is possible to form an abrasive grain layer having a uniform dispersion density of superabrasive grains, a uniform thickness of the abrasive grain layer, and to manufacture an electrodeposition grindstone having no unevenness in sharpness. it can.

また、本方法では、切り屑の排出性を高め、冷却水を
保持する作用を持つ多数の気孔を、砥粒層中に容易に形
成できるとで、切り味が良く、冷却効率の高い電着砥粒
を製造することが可能である。
Further, in this method, it is possible to easily form a large number of pores having an action of discharging chips and holding cooling water in the abrasive grain layer, resulting in an excellent electrodeposition with good sharpness and high cooling efficiency. It is possible to manufacture abrasive grains.

なお、前記実施例では、本発明を電着砥石の製造方法
に適用した例を示したが、本発明はこれに限られず、同
様の砥粒層を有する電鋳砥石,ダイヤモンド工具等の製
造方法としても利用することができる。
In the above examples, the present invention is shown as an example applied to a method for producing an electrodeposition grindstone, but the present invention is not limited to this, an electroformed grindstone having a similar abrasive grain layer, a method for producing a diamond tool or the like. Can also be used as

また、金属被覆の形成方法は、無電解メッキ法に限ら
ず、スパッタ法等の薄膜形成法によっても行なうことが
できる。
Further, the method of forming the metal coating is not limited to the electroless plating method, and may be a thin film forming method such as a sputtering method.

さらに、前記実施例では超砥粒の金属被覆層を着磁し
た構成としていたが、本発明はこれに限られず、超砥
粒表面の金属被覆層は着磁せずに砥石台金を着磁する方
法(後で加熱して磁力を消す)、金属被覆層および砥
石台金の両者を着磁する方法、なども実施可能である。
Furthermore, although the metal coating layer of superabrasive grains was magnetized in the above-mentioned embodiment, the present invention is not limited to this, and the metal coating layer of the superabrasive grain surface is not magnetized but the whetstone base is magnetized. It is also possible to carry out a method of doing so (heating later to eliminate the magnetic force), a method of magnetizing both the metal coating layer and the whetstone base metal, and the like.

さらにまた、前記実施例では金属被覆した超砥粒のみ
を金属メッキ相に分散させる方法であったが、本発明は
これに限られず、超砥粒の他にも、六方晶窒化硼素等の
潤滑性粒子、炭化ケイ素等の硬質粒子などに金属被覆を
形成し、この金属被覆に着磁し、超砥粒とともに分散さ
せても良く、その場合には金属被覆超砥粒のみの場合に
比べ、研削抵抗の低下および研削比の向上が図れる。ま
た、場合によっては、超砥粒の全てに着磁しなくても良
い。
Furthermore, in the above-mentioned example, the method was such that only the metal-coated superabrasive grains were dispersed in the metal plating phase, but the present invention is not limited to this, and in addition to the superabrasive grains, lubrication of hexagonal boron nitride, etc. Particles, forming a metal coating on hard particles such as silicon carbide, magnetized to this metal coating, may be dispersed with the superabrasive grains, in that case, compared to the case of only metal-coated superabrasive grains, It is possible to reduce the grinding resistance and improve the grinding ratio. Further, in some cases, it is not necessary to magnetize all of the superabrasive grains.

「実験例」 次に、実験例を挙げて本発明の効果を実証する。"Experimental Example" Next, the effect of the present invention will be demonstrated with an experimental example.

(実験例1) ダイヤモンド超砥粒粉末(平均粒径50μm)をパラジ
ウム塩水溶液に浸し、超砥粒の表面に触媒活性を付与し
た。
(Experimental Example 1) Diamond superabrasive grain powder (average particle size 50 µm) was dipped in a palladium salt aqueous solution to impart catalytic activity to the surface of the superabrasive grains.

この超砥粒粉末を、無電解Niメッキ液(日本カニゼン
株式会社製SB−55、液温65℃)中に分散し、超砥粒表面
に約5μmのコバルト被覆層を形成した。そして、この
コバルト被覆した超砥粒粉末を、プラスチック瓶に封入
し、10キロエルステッドの磁場中にさらして着磁した。
This superabrasive grain powder was dispersed in an electroless Ni plating solution (SB-55 manufactured by Nippon Kanigen Co., Ltd., liquid temperature 65 ° C.) to form a cobalt coating layer of about 5 μm on the surface of the superabrasive grains. Then, the cobalt-coated superabrasive powder was enclosed in a plastic bottle and exposed to a magnetic field of 10 kilo Oersted for magnetization.

次いで、第1図の装置を用い、この着磁した超砥粒を
砥石台金上に電着した。図中符号1は下部がすり鉢状に
形成されたメッキ槽、2はこのメッキ槽1の上部側面か
ら下端部に連通するパイプ、3はパイプ2の途中に配設
された循環ポンプであり、メッキ槽1内に満たされたメ
ッキ液は前記循環ポンプ3によりメッキ槽1の上部より
吸引され、メッキ槽の下端部からメッキ槽内に戻るよう
に構成されている。これにより、メッキ液中の超砥粒が
均一に攪拌されるようになっている。
Then, using the apparatus shown in FIG. 1, the magnetized superabrasive grains were electrodeposited on a whetstone base metal. In the figure, reference numeral 1 is a plating tank having a mortar-shaped lower portion, 2 is a pipe communicating from the upper side surface to the lower end portion of the plating tank 1, and 3 is a circulation pump disposed in the middle of the pipe 2. The plating liquid filled in the bath 1 is sucked from the upper portion of the plating bath 1 by the circulation pump 3 and returned from the lower end of the plating bath into the plating bath. As a result, the superabrasive grains in the plating solution are evenly stirred.

また、メッキ槽1内には、モータで回転操作され電源
の陰極に接続された砥石軸4が水平に設けられており、
この砥石軸4には、被メッキ部を除いてマスキングが施
された円板状の砥石台金5が取り付けられている。そし
て、この砥石台金5の両側方には、それぞれ電源の陽極
に接続されたNi陽極板6,6が配設されている。
Further, in the plating tank 1, a grindstone shaft 4 which is rotated by a motor and connected to a cathode of a power source is horizontally provided.
A disk-shaped grindstone base metal 5 masked except for the portion to be plated is attached to the grindstone shaft 4. Then, on both sides of the whetstone base metal 5, Ni anode plates 6, 6 respectively connected to the anodes of the power sources are arranged.

このような装置を用い、以下のメッキ条件で、外径10
0mmφ、厚さ10mmのスケール台金の外周にNiメッキ相を
形成しつつこのメッキ相中に超砥粒を分散させて、厚さ
500μmの砥粒層を形成した。
Using such equipment, the outer diameter 10
While forming a Ni plating phase on the outer circumference of a scale base metal with a diameter of 0 mm and a thickness of 10 mm, disperse the superabrasive grains in this plating phase
A 500 μm abrasive grain layer was formed.

Niメッキ液 スルファミン酸Ni 450g/ 塩化Ni 10g/ 硼酸 30g/ ピット防止剤 少量 光沢剤 少量 pH 4.0 ダイヤ超砥粒添加量 50g/ 超砥粒平均粒径 50μm 超砥粒へのNi被覆厚さ 5μm 砥石台金5の回転速度 5rpm 陰極電流密度 3A/dm2 メッキ液温度 50℃ 次いで、得られた電着砥石を整形し、ドレッシングを
施して外径100.8mmφの電着砥石を得た。
Ni plating solution Ni sulfamate 450g / Ni chloride 10g / Boric acid 30g / Pit inhibitor Small amount brightener Small amount pH 4.0 Diamond superabrasive grain addition amount 50g / Superabrasive grain average particle size 50μm Ni coating thickness on superabrasive grain 5μm Grindstone Rotation speed of base metal 5 rpm Cathode current density 3 A / dm 2 Plating solution temperature 50 ° C. Next, the obtained electrodeposition grindstone was shaped and dressed to obtain an electrodeposition grindstone with an outer diameter of 100.8 mmφ.

第2図はこの電着砥石の拡大断面図であり、5は砥石
台金、7はNiメッキ相、8は超砥粒、9は超砥粒に形成
された金属被覆、10はメッキ相内に形成された気孔であ
る。この砥石の場合、超砥粒含有率は20vol%、気孔率
は40vol%であった。
FIG. 2 is an enlarged cross-sectional view of this electrodeposition grindstone, 5 is a grinding wheel base metal, 7 is a Ni plating phase, 8 is superabrasive grains, 9 is a metal coating formed on the superabrasive grains, and 10 is a plating phase It is the pores formed in the. In the case of this grindstone, the content of superabrasive grains was 20 vol% and the porosity was 40 vol%.

次に、この実験例の砥石、および従来の製造方法を用
いて作成した同形の電着砥石(比較例)を用い、96%の
アルミナ材を研削した。その結果、実験例の砥石では、
比較例の砥石の2/3の研削抵抗を示し、長期間に亙って
目詰まりすることなく、良好な切れ味を示した。
Next, 96% of the alumina material was ground using the grindstone of this experimental example and the same shaped electrodeposition grindstone (comparative example) created by the conventional manufacturing method. As a result, with the grinding stone of the experimental example,
It showed a grinding resistance of 2/3 that of the grindstone of Comparative Example, and showed good sharpness without clogging for a long period of time.

(実験例2) 上記と同様に、被メッキ部分を除いてマスキングが施
された円板状の平面基板(13Crステンレス鋼)を陰極と
してメッキを行ない、平面基板上に所定厚さのメッキ相
を形成しつつこのメッキ相内に超砥粒を分散させて、砥
粒層を形成した。次いで、この平面基板を取り出し、砥
粒層を平面基板から剥がし、ラッピング、整形、および
ドレッシングを施して電鋳薄刃砥石を得た。
(Experimental Example 2) In the same manner as above, plating is performed by using a disk-shaped flat substrate (13Cr stainless steel) masked except the plated portion as a cathode, and a plating phase of a predetermined thickness is formed on the flat substrate. While forming, superabrasive grains were dispersed in this plating phase to form an abrasive grain layer. Next, this flat substrate was taken out, the abrasive grain layer was peeled off from the flat substrate, and lapping, shaping, and dressing were performed to obtain an electroformed thin blade grindstone.

このようにして得られた電鋳薄刃砥石では、従来の電
鋳薄刃砥石と比較して、超砥粒および気孔が極めて均一
に分散されており、良好な切れ味を示した。
In the electroformed thin blade grindstone thus obtained, the superabrasive grains and the pores were extremely uniformly dispersed, and showed excellent sharpness, as compared with the conventional electroformed thin blade grindstone.

「発明の効果」 本発明の砥石の製造方法によれば、次のような優れた
効果を得ることができる。
"Effects of the Invention" According to the method for manufacturing a grindstone of the present invention, the following excellent effects can be obtained.

本発明の砥石の製造方法においては、超砥粒の表面に
超砥粒の平均粒径の1/20〜1/2の肉厚を有する強磁性金
属の被覆層を形成したので、被覆層が形成された超砥粒
の残留磁気強度を十分に高めることができ、もって超砥
粒を被メッキ面に満遍なく付着させて金属メッキ相中の
超砥粒の分散密度が均一なメッキ相を形成することがで
きる。また、被研削材への超砥粒の食い込みを悪化させ
ることがないという効果も奏する。
In the method for producing a grindstone of the present invention, since the coating layer of the ferromagnetic metal having a thickness of 1/20 to 1/2 of the average particle diameter of the superabrasive grains is formed on the surface of the superabrasive grains, the coating layer is It is possible to sufficiently increase the residual magnetic strength of the formed superabrasive grains, so that the superabrasive grains are evenly adhered to the surface to be plated to form a plating phase with a uniform dispersion density of the superabrasive grains in the metal plating phase. be able to. Further, there is an effect that the biting of the superabrasive grains into the material to be ground is not deteriorated.

したがって、本発明によれば、砥粒層中の超砥粒密度
および砥粒層の肉厚が均一で、切れ味にムラの無い砥石
を製造することができる。
Therefore, according to the present invention, it is possible to manufacture a grindstone in which the superabrasive grain density in the abrasive grain layer and the wall thickness of the abrasive grain layer are uniform and the sharpness is even.

超砥粒の金属被覆の磁力、メッキ液中における超砥粒
の分散密度、メッキ電流等を調整することにより、任意
の気孔量を有する多孔質メッキ層を容易に形成すること
ができる。したがって、例えば、本発明を砥石の製造に
適用した場合には、前記気孔によって砥石の切り屑の排
出性を高め、冷却水を保持する作用を高めることがで
き、切れ味が良く、冷却効率の高い砥石を製造すること
が可能である。
By adjusting the magnetic force of the metal coating of the superabrasive grains, the dispersion density of the superabrasive grains in the plating solution, the plating current, etc., it is possible to easily form a porous plating layer having an arbitrary porosity. Therefore, for example, when the present invention is applied to the production of a grindstone, the pores enhance the dischargeability of the chips of the grindstone, the action of holding cooling water can be enhanced, the sharpness is good, and the cooling efficiency is high. It is possible to manufacture a whetstone.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実験例の電着砥石を製造するために使
用される製造装置の縦断面図、第2図は同装置によって
製造された電着砥石の拡大断面図である。 5……砥石台金(被メッキ体)、7……金属メッキ相、
8……超砥粒、9……金属被覆、10……気孔
FIG. 1 is a longitudinal sectional view of a manufacturing apparatus used for manufacturing an electrodeposition grindstone of an experimental example of the present invention, and FIG. 2 is an enlarged sectional view of an electrodeposition grindstone manufactured by the apparatus. 5 …… Grinding stone base metal (plating object), 7 …… Metal plating phase,
8 ... Super abrasive grain, 9 ... Metal coating, 10 ... Porosity

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 正勝 北本市下石戸上1925番地3 三菱金属株 式会社ダイヤモンド工具製作所内 (56)参考文献 特開 昭53−14489(JP,A) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masakatsu Inaba 1925 Shimoishi Togami, Kitamoto City Inside Diamond Tool Mfg. Co., Ltd., Mitsubishi Metals Co., Ltd. (56)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被メッキ体上に金属メッキ相を析出させつ
つ、この金属メッキ相中に超砥粒を分散させる砥石の製
造方法において、 超砥粒の表面に超砥粒の平均粒径の1/20〜1/2の肉厚を
有する強磁性金属の被覆層を形成し、この被覆層を着磁
するとともに、前記被メッキ体の少なくとも一部を強磁
性体で構成することを特徴とする砥石の製造方法。
1. A method for producing a grindstone in which a metal plating phase is deposited on an object to be plated while the superabrasive grains are dispersed in the metal plating phase, the method comprising: A coating layer of ferromagnetic metal having a thickness of 1/20 to 1/2 is formed, and the coating layer is magnetized, and at least a part of the object to be plated is made of a ferromagnetic material. Method for manufacturing whetstone.
【請求項2】メッキを行うに際し、前記超砥粒表面の金
属被覆層の磁力、メッキ液中における超砥粒の分散密
度、およびメッキ電流を調整することにより、砥粒層中
に気孔が占める割合を5〜60VOL%とすることを特徴と
する請求項1記載の砥石の製造方法。
2. When performing plating, pores are occupied in the abrasive grain layer by adjusting the magnetic force of the metal coating layer on the surface of the superabrasive grains, the dispersion density of the superabrasive grains in the plating solution, and the plating current. The method for manufacturing a grindstone according to claim 1, wherein the ratio is 5 to 60 VOL%.
JP61178552A 1986-07-29 1986-07-29 Grinding stone manufacturing method Expired - Lifetime JP2504418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178552A JP2504418B2 (en) 1986-07-29 1986-07-29 Grinding stone manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178552A JP2504418B2 (en) 1986-07-29 1986-07-29 Grinding stone manufacturing method

Publications (2)

Publication Number Publication Date
JPS6334071A JPS6334071A (en) 1988-02-13
JP2504418B2 true JP2504418B2 (en) 1996-06-05

Family

ID=16050476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178552A Expired - Lifetime JP2504418B2 (en) 1986-07-29 1986-07-29 Grinding stone manufacturing method

Country Status (1)

Country Link
JP (1) JP2504418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100563935C (en) * 2007-05-23 2009-12-02 江苏天一超细金属粉末有限公司 A kind of method and apparatus that makes material granule uniform distributing/orderly arranging/preferred orientation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072307B2 (en) * 1988-09-13 1995-01-18 旭ダイヤモンド工業株式会社 Metal bond diamond whetstone
GB2263706B (en) * 1992-01-31 1995-06-07 Honda Motor Co Ltd Method of and apparatus for producing a grinder used for a grinding machine
KR100698537B1 (en) * 2005-05-20 2007-03-22 박인순 Diamond Cutting Tool and Manufacturing Method Thereof
CN102267107B (en) 2008-04-11 2014-01-29 联合材料公司 Electrodeposited wire tool
TWI655044B (en) * 2018-03-14 2019-04-01 國立臺北科技大學 Abrasive wire and method and system for forming abrasive wire
CN111636089B (en) * 2020-05-11 2022-07-05 杨凌美畅新材料股份有限公司 Diamond wire for cutting photovoltaic large-size silicon wafer and manufacturing method thereof
CN113305749B (en) * 2021-06-25 2022-04-01 江苏锋芒复合材料科技集团有限公司 Sand planting method for magnetic polymeric abrasive

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314489A (en) * 1976-07-26 1978-02-09 Inoue Japax Res Inc Process for manufacturing grinding tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100563935C (en) * 2007-05-23 2009-12-02 江苏天一超细金属粉末有限公司 A kind of method and apparatus that makes material granule uniform distributing/orderly arranging/preferred orientation

Also Published As

Publication number Publication date
JPS6334071A (en) 1988-02-13

Similar Documents

Publication Publication Date Title
JP5051399B2 (en) Peripheral cutting blade manufacturing method and outer peripheral cutting blade manufacturing jig
JPH06114739A (en) Electrodeposition grinding wheel
JPS6080562A (en) Electrodeposited grinding wheel
JPH05245762A (en) Abrasive article and manufacture thereof
TW200800504A (en) Electroplated abrasive tools, methods, and molds
CN103459091A (en) Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
JP2504418B2 (en) Grinding stone manufacturing method
CN102862129A (en) Cemented carbide base outer blade cutting wheel and making method
JP4157724B2 (en) Wire saw manufacturing method and manufacturing apparatus
JPS6334069A (en) Grindstone
CN108588799B (en) Sand feeding device of electroplated grinding wheel and preparation method
JP5734730B2 (en) Polishing cloth dresser
JP2013136142A (en) Manufacturing method of diamond abrasive grain, manufacturing method of wire tool and wire tool
JPH0771789B2 (en) Whetstone
JP2002166370A (en) Electrodeposited grinding wheel and method of manufacturing the same
CN112894639A (en) Method for preparing electroplated diamond grinding wheel
JPH048518B2 (en)
JP2736690B2 (en) Manufacturing method of electrodeposited whetstone
JP2687660B2 (en) Manufacturing method of electrodeposited whetstone
JP2007203443A (en) Method of producing electro-deposited grindstone, and electro-deposited grindstone produced by the method
JP3134469B2 (en) Electroplated whetstone and method of manufacturing the same
JPH0818255B2 (en) Ultra-thin blade grindstone
JPS59197592A (en) Electrodeposition of tool instrument
JPH0584664A (en) Manufacturing device for electrodeposited grinding wheel
JP2002018725A (en) Method of manufacturing grinding wheel