JPH04111776A - Porous multilayer electrodeposition grindstone and manufacture thereof - Google Patents

Porous multilayer electrodeposition grindstone and manufacture thereof

Info

Publication number
JPH04111776A
JPH04111776A JP2230129A JP23012990A JPH04111776A JP H04111776 A JPH04111776 A JP H04111776A JP 2230129 A JP2230129 A JP 2230129A JP 23012990 A JP23012990 A JP 23012990A JP H04111776 A JPH04111776 A JP H04111776A
Authority
JP
Japan
Prior art keywords
porous
abrasive grain
superabrasive grains
grain layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2230129A
Other languages
Japanese (ja)
Inventor
Tsutomu Takahashi
務 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2230129A priority Critical patent/JPH04111776A/en
Publication of JPH04111776A publication Critical patent/JPH04111776A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent chipping by setting a mean cell diameter of a mesh of a resin porous body to 3 to 100 times the mean size of super abrasive grains, and further forming air holes partly in a metal plating phase in each cell. CONSTITUTION:A resin porous body 14, which is formed of three-dimensional mesh structure of non-orientation with a mean cell diameter of a mesh of the structure 3 to 100 times the mean size of a superabrasive grain 13, is fixed onto a forming surface of an abrasive grain layer 11 having conductivity of a base material(base metal)10. Next, the base material 10 is immersed in electrolytic plating liquid to deposit a metal plating phase 12 in an abrasive grain layer forming surface while dispersing the superabrasive grains formed of a conductive film in the surface, and the porous abrasive grain layer 11, in which the superabrasive grains 13 are dispersed in a multilayer state in the inside of the resin porous body 14, is formed to obtain a desired electrodeposition grindstone.

Description

【発明の詳細な説明】 「産業上の利用分野− 本発明は電着砥石およびその製造方法に係わり、特に、
被削材と面接触して研削する場合において、砥粒層の目
詰まりを防止するとともに、研削液の供給効率を高め、
切れ味を向上するための改良に関する。
[Detailed Description of the Invention] "Industrial Application Field - The present invention relates to an electrodeposited grindstone and a method for manufacturing the same, and in particular,
When grinding in surface contact with the workpiece, it prevents clogging of the abrasive grain layer and increases the efficiency of supplying the grinding fluid.
Concerning improvements to improve sharpness.

「従来の技術J 第13図は、従来の電着砥石の一例を示す砥粒層の断面
拡大図である。
"Prior Art J" FIG. 13 is an enlarged cross-sectional view of an abrasive grain layer showing an example of a conventional electrodeposited grindstone.

図中符号1は各種形状の合金であり、この台金1の砥粒
層形成面IAには、金属めつき相3を介して単層状に多
数の超砥粒2が固着されている。
Reference numeral 1 in the figure indicates alloys of various shapes, and a large number of superabrasive grains 2 are fixed in a single layer on the abrasive grain layer forming surface IA of this base metal 1 via a metal plating phase 3.

金属めっき相3を形成するには、通常、主に電解めっき
法が使用されている。例えば、外周面に砥粒層を有する
ホイール型等の電着砥石を製造する場合には、まず外周
面IAを除いてマスキングを施した台金1を電解めっき
液内に浸漬し、外周面IAの少なくとも一部を上向きか
つ水平に配置する。
To form the metal plating phase 3, an electrolytic plating method is usually used. For example, when manufacturing a wheel-type electrodeposited grindstone having an abrasive grain layer on the outer circumferential surface, first, the base metal 1, which has been masked except for the outer circumferential surface IA, is immersed in an electrolytic plating solution, and the outer circumferential surface IA with at least a portion thereof facing upward and horizontally.

そして、この水平面に超砥粒2を蒔き、台金1を電源陰
極に接続するとともに、前記水平面と対向配置された陽
極との間で通電し、金属めつき相3を析出させて超砥粒
2を固定する。この操作を台金1を間欠的に回しながら
外周面IAの全周に亙って繰り返し、単層状の砥粒層を
均一に形成する。
Then, superabrasive grains 2 are sown on this horizontal surface, the base metal 1 is connected to a power supply cathode, and electricity is applied between the horizontal surface and an anode placed opposite to precipitate the metal plating phase 3, and the superabrasive grains are Fix 2. This operation is repeated over the entire circumference of the outer circumferential surface IA while rotating the base metal 1 intermittently to form a uniform monolayer abrasive grain layer.

「発明が解決しようとする課題ゴ しかし、上記のような電着砥石では、特に被削材と面接
触して研削を行なう用途、例えば両頭研削、クリープフ
ィード研削、ロータリートランス研削、研摩定盤を用い
た研摩、カーブジェネレータによる研摩等において以下
のような欠点が顕著であり、改善が求められていた。
``Problems to be Solved by the Invention'' However, the above-mentioned electroplated grindstone is particularly suitable for applications where surface contact with the workpiece is performed, such as double-head grinding, creep feed grinding, rotary transformer grinding, and polishing surface plates. The following drawbacks were noticeable in the polishing method used, the polishing method using a curve generator, etc., and improvements were needed.

■ 超砥粒2が緻密かつ硬質の金属めっき相3で強固に
固定されているため、特に硬質で脆い被削材の研削を行
なった場合、個々の超低rL2が被削材に食い込む時点
での衝撃が大きく、被削面に微細な欠け(チッピング)
が生じて、表面粗さおよび加工精度が低下する。
■ Since the super abrasive grains 2 are firmly fixed by the dense and hard metal plating phase 3, when grinding a particularly hard and brittle work material, the individual ultra-low rL2 particles will cut into the work material. The impact is large, causing minute chips (chipping) on the machined surface.
occurs, resulting in a decrease in surface roughness and processing accuracy.

■ 金属めっき相3の表面が緻密でしかも平坦であるた
め、研削中に生じた切粉を砥石の運動につれて研削部分
から排出する効果(切粉排出性)が小さい。
(2) Since the surface of the metal plating phase 3 is dense and flat, the effect of discharging chips generated during grinding from the grinding part along with the movement of the grinding wheel (chip discharging performance) is small.

■ 湿式研削に使用した場合、■と同様の理由により研
削液が研削部に供給されにくく、研削液による冷却およ
び潤滑効果、切粉排出効果が十分に得られない。
■ When used in wet grinding, for the same reason as in ■, it is difficult to supply the grinding fluid to the grinding part, and the cooling and lubrication effects and chip discharge effects of the grinding fluid cannot be obtained sufficiently.

また、前記の電着砥石の製造方法では、以下のような欠
点があった。
Furthermore, the method for manufacturing an electrodeposited grindstone described above has the following drawbacks.

■ 局部的なめっきを断続的に繰り返して砥粒層を形成
しているので、人手による超砥粒2の散布密度のばらつ
きや、めっき時間およびめっき条件のばらつき等に起因
するめつき相の厚さ不均一などにより、砥粒層中の砥粒
分布密度が不均一になり易く、砥粒層各部の切れ味や寿
命にばらつきが生じて、偏摩耗や砥石の異常振動を生じ
る原因となる。
■ Since the abrasive grain layer is formed by repeating local plating intermittently, the thickness of the plating phase may be affected by variations in the scattering density of superabrasive grains 2 by hand, variations in plating time and plating conditions, etc. Due to non-uniformity, the abrasive grain distribution density in the abrasive grain layer tends to become non-uniform, which causes variations in the sharpness and life of each part of the abrasive grain layer, causing uneven wear and abnormal vibration of the grindstone.

■ 被めっき面に超砥粒2を載せ、めっき液を撹拌せず
に静止状態で電着するため、被めっき・面への金属イオ
ン供給が不十分になり易い。したがって、めっき電流を
大きくできず、その分、めっき作業に時間がかかって生
産性が悪く、製造コストが高くつく。
■ Since the superabrasive grains 2 are placed on the surface to be plated and the plating solution is electrodeposited in a static state without stirring, the supply of metal ions to the surface to be plated tends to be insufficient. Therefore, the plating current cannot be increased, and the plating operation takes time, resulting in poor productivity and high manufacturing costs.

■ 多層状に超砥粒2を電着できれば砥石の長寿命化が
図れるのであるが、上記の方法では、相当母金に電着を
行なわないと、砥粒分布密度のばらつきが累積して使用
に堪える精度の砥粒層が形成できない。したがって、一
般には単層状の砥粒層しか形成されていないのが現状で
、砥石寿命が短い問題がある。
■ If the superabrasive grains 2 can be electrodeposited in multiple layers, the life of the grinding wheel can be extended, but in the above method, if the electrodeposition is not performed on the base metal, variations in the abrasive grain distribution density will accumulate and the use It is not possible to form a layer of abrasive grains with sufficient precision. Therefore, the current situation is that only a single layer of abrasive grains is formed, and there is a problem that the life of the grinding wheel is short.

「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、ま
ず本発明の多孔性多層電着砥石は、基材上に、超砥粒を
金属めっき相中に多層状に分散してなる砥粒層が設けら
れ、前記金属めっき相中には、無方向性の3次元網目構
造をなす樹脂多孔質体が埋設され、この樹脂多孔質体の
網目の平均セル径は前記超砥粒の平均粒径の3〜100
倍とされるとともに、前記各セル内の金属めっき相には
部分的に気孔が形成されていることを特徴とする。
"Means for Solving the Problems" The present invention has been made to solve the above problems, and firstly, the porous multilayer electrodeposited grindstone of the present invention has superabrasive grains formed on a base material in a metal plating phase. A multi-layered abrasive grain layer is provided, and a resin porous body having a non-directional three-dimensional network structure is embedded in the metal plating phase, and the average cell of the network of this resin porous body is The diameter is 3 to 100 times the average particle diameter of the superabrasive grains.
The metal plating phase in each cell is characterized in that pores are partially formed in the metal plating phase in each cell.

一方、本発明の請求項2に係わる多孔性多層電着砥石の
製造方法は、基材の導電性を有する砥粒層形成面上に、
無方向性の3次元網目構造をなし、その網目の平均セル
径が超砥粒の平均粒径の3〜100倍である樹脂多孔質
体を固定したうえ、基材を電解めっき液に浸漬し、表面
に導電性皮膜が形成されてなる超砥粒を分散しっつ砥粒
層形成面に金属めっき相を析出させ、樹脂多孔質体の内
部に超砥粒が多層状に分散した多孔質状の砥粒層を形成
することを特徴とする。
On the other hand, the method for manufacturing a porous multilayer electrodeposited grindstone according to claim 2 of the present invention includes:
A porous resin body having a non-directional three-dimensional network structure with an average cell diameter of 3 to 100 times the average particle diameter of the superabrasive grains is fixed, and the base material is immersed in an electrolytic plating solution. , a porous resin material in which superabrasive grains with a conductive film formed on the surface are dispersed, a metal plating phase is precipitated on the surface on which the abrasive grain layer is formed, and superabrasive grains are dispersed in multiple layers inside a porous resin body. It is characterized by forming a layer of abrasive grains.

なお、前記砥粒層の形成に際し、樹脂多孔質体のセル内
に部分的に気泡を保持した状態で、導電性皮膜が形成さ
れてなる超砥粒を分散しつつ前記砥粒層形成面に金属め
っき相を析出させることにより、金属めっき相をさらに
多孔質化してもよい。
In addition, when forming the abrasive grain layer, the superabrasive grains on which the conductive film is formed are dispersed on the surface on which the abrasive grain layer is formed, with air bubbles partially retained in the cells of the porous resin body. The metal plating phase may be made more porous by precipitating the metal plating phase.

また、本発明の請求項4に係わる製造方法は、基材の導
電性を有する砥粒層形成面上に、無方向性の3次元網目
構造をなし、その網目の平均セル径が超砥粒の平均粒径
の3〜100倍である樹脂多孔質体を固定しfこうえ、
基材を電解めっき液に浸漬し、樹脂多孔質体のセル内に
部分的に気泡を保持した状態で、超砥粒を分散しつつ砥
粒層形成面に金属めっき相を析出させ、樹脂多孔質体の
内部に超砥粒が多層状に分散した多孔質状の砥粒層を形
成することを特徴とする。
Further, in the manufacturing method according to claim 4 of the present invention, a non-directional three-dimensional network structure is formed on the conductive abrasive layer forming surface of the base material, and the average cell diameter of the network is the superabrasive grain layer. A porous resin body having an average particle diameter of 3 to 100 times is fixed,
The base material is immersed in an electrolytic plating solution, and with air bubbles partially retained in the cells of the resin porous material, a metal plating phase is precipitated on the abrasive layer forming surface while dispersing the superabrasive grains, and the resin porous material is It is characterized by forming a porous abrasive grain layer in which superabrasive grains are dispersed in multiple layers inside the mass.

「作 用」 本発明の多孔性多層電着砥石では、砥粒層の内部に3次
元網目状の樹脂多孔質体が形成され、砥粒層が適度の弾
性を有するから、研削時における個々の超砥粒と被削材
との接触衝撃をその周囲の金属めっき相の弾性変形によ
って緩和し、チッピングが防止できる。
"Function" In the porous multilayer electrodeposited grindstone of the present invention, a three-dimensional network-like resin porous body is formed inside the abrasive grain layer, and since the abrasive grain layer has appropriate elasticity, individual The contact impact between the superabrasive grains and the workpiece material is alleviated by the elastic deformation of the surrounding metal plating phase, making it possible to prevent chipping.

また、樹脂多孔質体のセル内において金属めっき相に気
孔が形成され、その一部力で研削面に露出するうえ、こ
の砥粒層の表面に露出した樹脂多孔質体が摩耗し凹部と
なるため、これらがチップポケットとして作用し、研削
部に生じた切粉を砥石の運動とともに排出するため、切
粉排出性が高く、砥粒層の目詰まりが生じにくい。した
がって、被削材と面接触して研削する用途においても良
好な研削効率が得られる。
In addition, pores are formed in the metal plating phase within the cells of the resin porous material, and some of the pores are exposed to the grinding surface due to the force, and the resin porous material exposed on the surface of this abrasive grain layer is worn away, forming recesses. Therefore, these act as chip pockets and discharge the chips generated in the grinding section along with the movement of the grinding wheel, resulting in high chip discharge performance and less clogging of the abrasive grain layer. Therefore, good grinding efficiency can be obtained even in applications where grinding is carried out in surface contact with a workpiece.

さらに、湿式研削を行なう場合には、樹脂多孔質体が吸
水性を有するうえ、金属めっき相に多数の気孔が形成さ
れているため、これら気孔を通じて樹脂多孔質体に研削
液が行き渡り、研削液が自由に砥粒層の内部に出入りす
るため、研削部へ効率良く研削液が供給できる。同時に
、樹脂多孔質体に付着、または吸い込まれた研削液が砥
粒層内部の熱を効果的に奪うので、冷却効率が高い。
Furthermore, when performing wet grinding, the porous resin body has water absorption properties and many pores are formed in the metal plating phase, so the grinding fluid spreads through the porous resin body through these pores, causing the grinding fluid to flow through the porous resin body. Since the liquid freely enters and exits the abrasive grain layer, the grinding fluid can be efficiently supplied to the grinding section. At the same time, the grinding fluid that adheres to or is sucked into the porous resin body effectively removes the heat inside the abrasive grain layer, resulting in high cooling efficiency.

一方、本発明の製造方法によれば、電解めっき時に樹脂
多孔質体の個々のセル内に超砥粒が保持されるため、合
金の水平面部分だけでなく、砥粒層形成面のほぼ全面で
同時に超砥粒の電着が行なうことが可能である。しかも
電着時には、被めっき面へ電解めっき液を強制的に供給
できるから、電着速度が向上できる。
On the other hand, according to the manufacturing method of the present invention, superabrasive grains are retained in individual cells of the porous resin body during electrolytic plating, so that superabrasive grains are retained not only on the horizontal surface of the alloy but also on almost the entire surface on which the abrasive grain layer is formed. At the same time, it is possible to electrodeposit superabrasive grains. Moreover, since the electrolytic plating solution can be forcibly supplied to the surface to be plated during electrodeposition, the electrodeposition speed can be improved.

また、樹脂多孔質体内での超砥粒の分布密度は、平均セ
ル径に応じてほぼ一定になるため、いずれの部位の砥粒
層も、砥粒含有率、砥粒積層度、金属めっき相の厚さお
よび気孔率が均等化され、従来は製造困難だった高精度
の多層状砥粒層が容易に形成できる。
In addition, since the distribution density of superabrasive grains in the resin porous body is almost constant depending on the average cell diameter, the abrasive grain layer at any part is affected by the abrasive grain content, the degree of lamination of abrasive grains, and the metal plating phase. The thickness and porosity of the abrasive grains are equalized, making it possible to easily form highly precise multilayer abrasive grain layers that were previously difficult to manufacture.

さらに、請求項2の方法では、超砥粒の表面に金属皮膜
が形成されているため、各超砥粒間に気孔を残した状態
で金属めっき相が析出し、前記金属めっき相を一層多孔
質化して、切粉排出性および冷却効率がさらに高い砥石
が容易に製造できる。
Furthermore, in the method of claim 2, since the metal coating is formed on the surface of the superabrasive grains, the metal plating phase precipitates with pores remaining between each superabrasive grain, making the metal plating phase even more porous. It is possible to easily produce a grindstone with improved quality and improved chip evacuation and cooling efficiency.

「実施例」 第1図および第2図は本発明に係わる多孔性多層電着砥
石の第1実施例を示し、第1図は全体の正面図、第2図
は砥粒層の断面拡大図である。
"Example" Figures 1 and 2 show a first example of a porous multilayer electrodeposited grindstone according to the present invention, with Figure 1 being an overall front view and Figure 2 being an enlarged cross-sectional view of an abrasive grain layer. It is.

この多孔性多層電着砥石は、図中符号10に示すホイー
ル型台金(基材)の外周面に、全周に亙って一定厚の砥
粒層IIを形成したものである。
This porous multilayer electrodeposited grindstone has an abrasive grain layer II having a constant thickness formed over the entire circumference on the outer peripheral surface of a wheel-shaped base metal (base material) indicated by reference numeral 10 in the figure.

砥粒層11は、第2図に示すように、N i、 G o
As shown in FIG. 2, the abrasive grain layer 11 has Ni, Go
.

あるいはこれらの合金からなる金属めっき相12中に、
ダイヤモンドまたはCBN等の超砥粒13を均一、かつ
多層状に多数分散したもので、金属めっき相12には、
その全域に亙って無方向性の3次元網目構造をなす樹脂
多孔質体14か埋設され、さらにこの樹脂多孔質体14
のセル内において金属めっき相12には多数の気孔15
か部分的Jこ形成されている。
Or in the metal plating phase 12 made of these alloys,
A large number of superabrasive grains 13 such as diamond or CBN are dispersed uniformly and in a multilayered manner, and the metal plating phase 12 includes:
A resin porous body 14 having a non-directional three-dimensional network structure is buried over the entire area, and this resin porous body 14
There are many pores 15 in the metal plating phase 12 in the cell.
It is partially formed.

樹脂多孔質体14の網目の平均セル径DIは、超砥粒I
3の平均粒径D2の3〜100倍、より望ましくは5〜
30倍とされている。なお、ここでセルと称するのは、
網目状の樹脂多孔質体14で囲まれたほぼ球状をなす部
分のことである。平均セル径が平均粒径の3倍未満では
、電着時に個々のセル内への超砥粒13の侵入が困難に
なるため、各セル内における超砥粒13の分散密度が不
均一になり、砥粒層表面での切刃密度のばらつきが生じ
て砥石の切れ味が不安定になる。また、100倍より大
では、砥粒層表面に露出する樹脂多孔質体14の分布密
度が小さすぎるとともに、気孔15が形成されにくくな
るため、チップポケット形成効果が低下し、切粉排出性
向上効果および研削液の供給効率が低下する。
The average cell diameter DI of the network of the resin porous body 14 is the superabrasive grain I.
3 to 100 times the average particle diameter D2 of No. 3, more preferably 5 to 100 times
It is said to be 30 times more. Note that the term cell here is
This is a substantially spherical portion surrounded by a network-like porous resin body 14. If the average cell diameter is less than three times the average particle diameter, it will be difficult for the superabrasive grains 13 to penetrate into individual cells during electrodeposition, resulting in uneven distribution density of the superabrasive grains 13 within each cell. , the cutting edge density varies on the surface of the abrasive layer, making the sharpness of the whetstone unstable. Moreover, if it is larger than 100 times, the distribution density of the resin porous body 14 exposed on the surface of the abrasive grain layer is too small, and the pores 15 are difficult to form, so the chip pocket formation effect is reduced and the chip discharge performance is improved. The effectiveness and grinding fluid supply efficiency decreases.

樹脂多孔質体14は、発泡剤を用いて樹脂を高度に発泡
させnもので、具体的には成形が容易でコストの安いポ
リウレタンフォームが好適である。
The resin porous body 14 is made by highly foaming a resin using a foaming agent, and specifically, polyurethane foam, which is easy to mold and inexpensive, is suitable.

具体的には、株式会社ブリデストン製のFxパーライト
SF」はセル同士の連通性か高く、親水性および保水性
に優れ、好適である。
Specifically, "Fx Pearlite SF" manufactured by Brideston Co., Ltd. is suitable because it has high communication between cells and excellent hydrophilicity and water retention.

超砥粒13の平均粒径DIは砥石の使用目的に応じて決
定される。砥粒層11の厚さは任意であるか、望ましく
は前記平均セル径の2倍以上とされる。2倍以上であれ
ば、気孔15および樹脂多孔質体14を通じての平面方
向への研削液の流通がよくなる。
The average particle diameter DI of the superabrasive grains 13 is determined depending on the purpose of use of the grindstone. The thickness of the abrasive grain layer 11 is arbitrary, or preferably at least twice the average cell diameter. If it is twice or more, the flow of the grinding fluid in the plane direction through the pores 15 and the porous resin body 14 will be improved.

また、砥粒層11全体に占める気孔15の割合(気孔率
)は5〜50vo1%程度であることが望ましい。5v
o1%未満では十分な研削液供給効果が得られないうえ
、50voI%より大きいと砥粒保持力が低下する。
Further, it is desirable that the ratio of the pores 15 to the entire abrasive grain layer 11 (porosity) is about 5 to 50 vol%. 5v
If o is less than 1%, a sufficient grinding fluid supply effect cannot be obtained, and if it is more than 50voI%, the abrasive grain retention will decrease.

このような構成からなる多孔性多層電着砥石によれば、
砥粒層11の内部に3次元網目状の樹脂多孔質体14が
均一に埋設されているため、砥粒層11が適度の弾性を
有し、個々の超砥粒13の切り込み時の衝撃をその周囲
の金属めつき相12が弾性変形して緩和する。この作用
により、硬質で脆性を有する被削材の研削を行なった場
合にも、被削材のチッピングを防止して、仕上げ面粗さ
および精度が向上できる。
According to the porous multilayer electrodeposited grindstone having such a structure,
Since the three-dimensional network-like resin porous body 14 is uniformly embedded inside the abrasive grain layer 11, the abrasive grain layer 11 has appropriate elasticity and can withstand the impact when the individual superabrasive grains 13 cut. The surrounding metal plating phase 12 is elastically deformed and relaxed. Due to this effect, even when grinding a hard and brittle workpiece, chipping of the workpiece can be prevented and the finished surface roughness and precision can be improved.

また、砥粒層11の表面には、気孔I5の一部が開口す
るとともに、露出した樹脂多孔質体14が摩耗して凹部
が形成されるため、これら凹部がチップポケットとして
作用し、研削面に生じた切粉を砥石の回転につれて排出
する。したがって、例えば被削材と面接触する用途に使
用した場合にも、切粉排出性が高くて目詰まりしにくく
、良好な研削効率が得られるうえ、ドレッシングの頻度
を減らし、ドレッシングによる砥石寿命の短縮が防止で
きる。
Further, on the surface of the abrasive grain layer 11, some of the pores I5 are opened and the exposed resin porous body 14 is worn out to form recesses, so these recesses act as chip pockets, and the grinding surface The chips generated during grinding are discharged as the grindstone rotates. Therefore, even when used in applications where there is surface contact with the workpiece, it has high chip evacuation properties, is less likely to become clogged, provides good grinding efficiency, and can reduce the frequency of dressing, thereby extending the service life of the grinding wheel. Shortening can be prevented.

また、湿式研削を行なう場合には、親水性を有する樹脂
多孔質体14の表層を伝わって、あるいは気孔15を通
じて、研削液が自由に砥粒層11の内部へ出入りするた
め、その一部が研削部へ流れだし、効果的な研削液供給
が行なえる。同時に研削液が砥粒層11の熱を内部から
奪うので、冷却効果が極めて高く、砥粒層11の過熱に
よる焼は付きなどが防止できる。
In addition, when performing wet grinding, the grinding fluid freely enters and exits the abrasive layer 11 through the surface layer of the hydrophilic porous resin body 14 or through the pores 15, so that a part of it It flows to the grinding section, allowing effective supply of grinding fluid. At the same time, the grinding fluid removes heat from the abrasive grain layer 11 from inside, so the cooling effect is extremely high, and it is possible to prevent burn-out due to overheating of the abrasive grain layer 11.

次に、第3図ないし第5図を用いて、上記多孔性多層電
着砥石の製造方法を説明する。
Next, a method for manufacturing the porous multilayer electrodeposited grindstone will be described with reference to FIGS. 3 to 5.

この方法ではまず、金属製の台金lOの両側面に絶縁マ
スキングを行なうとともに、例えば第3図に示すように
その外周面の全面に亙って、無方向性の3次元網目構造
をなす一定厚で帯状の樹脂多孔質体14を固定する。固
定方法としては、マスキング用の絶縁テープなどを用い
て樹脂多孔質体14と台金lOとを側面からテープで貼
付固定するか、マスキング治具を用いて固定する。
In this method, first, insulating masking is performed on both sides of a metal base lO, and a constant masking is applied to form a non-directional three-dimensional network structure over the entire outer circumferential surface as shown in Fig. 3. A thick, belt-shaped porous resin body 14 is fixed. As for the fixing method, the porous resin body 14 and the base metal 1O are attached and fixed from the sides using insulating tape for masking, or they are fixed using a masking jig.

または、樹脂多孔質体14を台金lOの外径よりも若干
小さい内径を有する円環状に成形し、この樹脂多孔質体
14の内側に台金10を圧入して相互に固定してもよい
。この場合、樹脂多孔質体14に継目が生じないため、
継目による電着むらが防止できる利点を有する。
Alternatively, the resin porous body 14 may be formed into a ring shape having an inner diameter slightly smaller than the outer diameter of the base metal lO, and the base metal 10 may be press-fitted inside this resin porous body 14 and fixed to each other. . In this case, since no seams occur in the porous resin body 14,
It has the advantage of preventing uneven electrodeposition due to seams.

樹脂多孔質体I4の網目の平均セル径D1の範囲には、
前述した理由の他に製造上の理由もある。
The range of the average cell diameter D1 of the network of the resin porous body I4 includes:
In addition to the reasons mentioned above, there are also manufacturing reasons.

すなわち、この種の樹脂多孔質体14のセル径にはある
程度のばらつきかあるため、前記値か3倍未満では、内
部に超砥粒13が進入しにくい小さいセルが多数生じ、
超砥粒13の分布密度のばらつきが増す。また、100
倍より大では、後述するめっき時においてセルによる超
砥粒13の保持力が小さくなり、超砥粒13を台金lO
の外周面に保持する効果が低下する。
That is, since the cell diameter of this type of resin porous body 14 varies to a certain extent, if the value is less than 3 times the above value, many small cells are generated into which the superabrasive grains 13 are difficult to enter.
The variation in the distribution density of the superabrasive grains 13 increases. Also, 100
If it is larger than twice as much, the holding force of the superabrasive grains 13 by the cells during plating described later becomes small, and the superabrasive grains 13 are
The effect of holding the material on the outer peripheral surface of the material decreases.

樹脂多孔質体14の厚さは、所望の砥粒層11よりも厚
く、かつ0.5〜20yrxとされることが望ましい。
The thickness of the resin porous body 14 is preferably thicker than the desired abrasive grain layer 11 and is preferably 0.5 to 20 yrx.

Q、5xmより薄いとめつき時に超砥粒I3を十分に保
持できない。また20yzより厚いと樹脂多孔質体14
を通して超砥粒I3が台金外周面まで進入しにくく、電
着が困難になる。
Q: The super abrasive grains I3 cannot be held sufficiently when tightening thinner than 5xm. Also, if it is thicker than 20yz, the resin porous body 14
It is difficult for the superabrasive grains I3 to penetrate to the outer peripheral surface of the base metal, making electrodeposition difficult.

なお、気孔15の含有率を調整するため、樹脂多孔質体
に予め界面活性処理等を施してもよい。
In addition, in order to adjust the content rate of the pores 15, the porous resin body may be subjected to a surfactant treatment or the like in advance.

界面活性処理を施すと電着時に気泡の付着密度が低下し
、気孔15の含有率を低下することができる。逆ニ撥水
処理を行なえば、気泡の付着密度を増し、気孔15の含
有率が高められる。
When the surface active treatment is applied, the adhesion density of air bubbles during electrodeposition is reduced, and the content of pores 15 can be reduced. If reverse water repellency treatment is performed, the adhesion density of air bubbles will be increased and the content of pores 15 will be increased.

次に、この台金IOを電解めっき液に浸漬し、樹脂多孔
質体I4の内部に超砥粒13を分散しつつ合金外周面に
金属めつき相12を析出させ、樹脂多孔質体14の内部
に超砥粒!3か多層状に分散された砥粒層11を形成す
る。
Next, this base metal IO is immersed in an electrolytic plating solution to precipitate the metal plating phase 12 on the outer peripheral surface of the alloy while dispersing the superabrasive grains 13 inside the resin porous body 14. Super abrasive grain inside! A multilayer abrasive grain layer 11 is formed.

第4図はめつき装置の一例を示し、めつき槽20の内部
には、台金lOを支持する回転軸21か水平に配置され
、台金lOの両側方には回転軸2Iと平行に一対の陽極
板22が配置されている。
FIG. 4 shows an example of a plating apparatus. Inside the plating tank 20, a rotating shaft 21 supporting the base metal 1O is arranged horizontally, and on both sides of the base metal 1O there are two pairs of rotating shafts parallel to the rotating shaft 2I. An anode plate 22 is arranged.

めっき槽20の下端中央には排液口23が形成され、こ
こから回収された超砥粒およびめっき液Mをポンプ24
で加圧し、ノズル25から樹脂多孔質体I4の外周面に
吹き付ける構成になっている。
A drain port 23 is formed at the center of the lower end of the plating tank 20, and the collected superabrasive grains and plating solution M are pumped through the pump 24.
The resin is pressurized and sprayed from the nozzle 25 onto the outer circumferential surface of the porous resin body I4.

また、台金lOは、回転軸21を通して電源の陰極に接
続される一方、陽極板22はリード線を介して陽極に接
続されている。なお、使用する電源は直流電源、パルス
電源、あるいは直流バイアスをかけた交流電源のいずれ
でもよい。
Further, the base metal lO is connected to the cathode of the power source through the rotating shaft 21, while the anode plate 22 is connected to the anode through a lead wire. Note that the power source used may be a DC power source, a pulse power source, or an AC power source with a DC bias applied.

装置へのセットを終えたら、めっき液M内に所定量の超
砥粒を分散し、図示しない超音波撹拌機等によりめっき
液Mを撹拌するとともに、ポンプ24で樹脂多孔質体I
4に超砥粒13を含んだめっき液Mを吹き付けつつ、台
金10を定速回転して通電する。すると、ノズル25か
ら吹き付けられた超砥粒13は、樹脂多孔質体!4の個
々のセル内に入り込み、一部が合金外周面に接触した状
態に保持されたうえ、台金10の外周面に析出する金属
めっき相I2に取り込まれていく。この場合、台金10
の下端部分でも超砥粒13は樹脂多孔質体14から落下
しないため、金属めつき相12への埋め込みは合金外周
面の全面で同時に進行する。
After setting the apparatus, a predetermined amount of superabrasive particles are dispersed in the plating solution M, and the plating solution M is stirred using an ultrasonic stirrer (not shown), and the resin porous body I is mixed with the pump 24.
While spraying the plating solution M containing the superabrasive grains 13 onto the base metal 10, the base metal 10 is rotated at a constant speed and energized. Then, the superabrasive grains 13 sprayed from the nozzle 25 become a porous resin material! The metal particles penetrate into the individual cells of 4, a portion of which is held in contact with the outer circumferential surface of the alloy, and is also incorporated into the metal plating phase I2 deposited on the outer circumferential surface of the base metal 10. In this case, base metal 10
Since the superabrasive grains 13 do not fall from the resin porous body 14 even at the lower end of the superabrasive grains 13, embedding into the metal plating phase 12 proceeds simultaneously over the entire outer peripheral surface of the alloy.

また、一部のセルの内部には気泡が付着したまま電着が
進行するため、この気泡がそのまま金属めつき相12に
残って気孔15が形成される。このため、これら気孔1
5の内面には樹脂多孔質体14が一部露出し、また気孔
15の一部は互いに連通した状態となる。
Moreover, since electrodeposition proceeds with air bubbles attached inside some of the cells, the air bubbles remain in the metal plating phase 12 and form pores 15. Therefore, these pores 1
A portion of the resin porous body 14 is exposed on the inner surface of the pore 5, and a portion of the pores 15 are in communication with each other.

そして、所望の厚さの砥粒層11が形成されたら、通電
を停止し、台金10を装置から外して水洗する。さらに
、必要に応じて砥石にツルーイングやドレッシングを行
ない、砥粒層11の外周面を整形、あるいは目立てする
とともに砥粒層11からはみ出した樹脂多孔質体14を
除去し、多孔質電着砥石を得る。
When the abrasive grain layer 11 of a desired thickness is formed, the power supply is stopped, and the base metal 10 is removed from the apparatus and washed with water. Furthermore, if necessary, the grinding wheel is trued or dressed to shape or sharpen the outer peripheral surface of the abrasive grain layer 11, and the resin porous body 14 protruding from the abrasive grain layer 11 is removed, and the porous electrodeposited grinding wheel is obtain.

このような製造方法によれば、電解めっき時に樹脂多孔
質体14の個々のセル内に超砥粒13が保持されるため
、台金10の上端部分だけでなく、外周面全面で同時に
超砥粒13の電着が行なうことができ、また、合金外周
面に電解めっき液Mを強制的に供給することができるか
ら、めっき速度を高めることが可能で、生産性が高い。
According to such a manufacturing method, since the superabrasive grains 13 are held in each cell of the resin porous body 14 during electrolytic plating, the superabrasive grains 13 are simultaneously applied not only to the upper end portion of the base metal 10 but also to the entire outer peripheral surface. Since the particles 13 can be electrodeposited and the electrolytic plating solution M can be forcibly supplied to the outer peripheral surface of the alloy, the plating speed can be increased and productivity is high.

また、樹脂多孔質゛体14内での超砥粒13の保持密度
、気泡の分布密度、および金属めつき相12の析出速度
は、平均セル径D1に応じてほぼ一定に維持されるため
、いずれの部位の砥粒層11も、気孔率、砥粒含有率、
砥粒積層度および金属めっき相12の厚さが均等化され
る。したがって、従来は製造困難だった高精度の多層状
砥粒層が容易に形成でき、従来の単層状砥粒層に比して
砥石寿命を大幅に延長することか可能である。
Furthermore, the retention density of the superabrasive grains 13, the distribution density of air bubbles, and the precipitation rate of the metal plating phase 12 within the resin porous body 14 are maintained approximately constant according to the average cell diameter D1. The abrasive grain layer 11 in any part has a porosity, abrasive grain content,
The degree of lamination of abrasive grains and the thickness of the metal plating phase 12 are equalized. Therefore, it is possible to easily form a multi-layered abrasive grain layer with high precision, which has been difficult to manufacture in the past, and it is possible to significantly extend the life of the grinding wheel compared to a conventional single-layered abrasive grain layer.

さらに、ポリウレタンフォーム等の樹脂多孔質体14は
、気孔率およびセル径が広範囲に調整可能であるから、
砥石の用途に応じて任意のセル径および気孔率を有する
樹脂多孔質体14か容易に形成できる利点も有する。
Furthermore, the porous resin body 14 such as polyurethane foam has a porosity and a cell diameter that can be adjusted over a wide range.
Another advantage is that the resin porous body 14 having an arbitrary cell diameter and porosity can be easily formed depending on the use of the grindstone.

なお、上記実施例の製造方法では、台金10の外周に樹
脂多孔質体14を単純に固定しただけであったが、第6
図に示すように、非導電体製の円板形のマスク板30を
台金10および樹脂多孔質体14の軸方向両端にそれぞ
れ当接させて固定したうえで電着を行なってもよい。マ
スク板30の外径は、樹脂多孔質体!4の外周面と同径
か、あるいはそれより大きくされる。
Note that in the manufacturing method of the above embodiment, the resin porous body 14 was simply fixed to the outer periphery of the base metal 10.
As shown in the figure, electrodeposition may be performed after disk-shaped mask plates 30 made of a non-conductive material are fixed in contact with both axial ends of the base metal 10 and the porous resin body 14, respectively. The outer diameter of the mask plate 30 is a porous resin material! The diameter is the same as or larger than the outer peripheral surface of No. 4.

このようなマスク板30を用いれば、砥粒層が台金lO
の端面から軸方向に突出して形成されることがない。
If such a mask plate 30 is used, the abrasive grain layer becomes the base metal lO
It is not formed to protrude in the axial direction from the end face.

また、第7図はマスク板30の変形例を示したもので、
この例では、マスク板30の台金10との対向面の外周
部に、相対的に小径の環状段部31が全周に亙って形成
されている。これら環状段部31の外径は台金IOの外
−径よりも若干小さくされている。そして各マスク板3
0の環状段部31の間に樹脂多孔質体14を固定して、
電着を行なう。
Moreover, FIG. 7 shows a modification of the mask plate 30,
In this example, an annular stepped portion 31 having a relatively small diameter is formed around the entire circumference of the outer peripheral portion of the surface of the mask plate 30 that faces the base metal 10 . The outer diameter of these annular step portions 31 is slightly smaller than the outer diameter of the base metal IO. And each mask board 3
The resin porous body 14 is fixed between the annular step portions 31 of 0,
Perform electrodeposition.

この製造方法によれば、砥粒層11は台金10の軸方向
両端面から若干突出した状態で形成されるから、このよ
うな砥石を例えば溝研削などに使用すると、これら突出
部が台金lOの厚さよりも若干広く被削材に溝を形成し
、被削材と台金10との間には間隙が生じてこれらの接
触が防止される。したがって、これらの摩擦による研削
抵抗の増大を防止できるとともに、研削部への研削液の
供給性および切粉の排出性が高められ、被削材に対する
加工損傷を低減する効果も得られる。
According to this manufacturing method, the abrasive grain layer 11 is formed in a state in which it slightly protrudes from both axial end surfaces of the base metal 10. Therefore, when such a grindstone is used for, for example, groove grinding, these protruding portions are formed on the base metal 10. A groove is formed in the workpiece to be slightly wider than the thickness of IO, and a gap is created between the workpiece and the base metal 10 to prevent them from coming into contact with each other. Therefore, an increase in grinding resistance due to such friction can be prevented, and the supply of grinding fluid to the grinding section and the discharge of chips are improved, and the effect of reducing machining damage to the workpiece material can also be obtained.

次に、第8図は第2実施例の多孔性多層電着砥石の砥粒
層11を示す断面拡大図である。この砥石では、個々の
超砥粒13の表面に導電性皮膜32が形成されている点
、および金属めっき相12中に、電着時の気泡に起因す
る気孔15以外の気孔33が、隣接する各超砥粒13の
間に多数形成されている点を新たな特徴としている。
Next, FIG. 8 is an enlarged cross-sectional view showing the abrasive grain layer 11 of the porous multilayer electrodeposited grindstone of the second embodiment. In this grindstone, a conductive film 32 is formed on the surface of each superabrasive grain 13, and in the metal plating phase 12, pores 33 other than the pores 15 caused by air bubbles during electrodeposition are adjacent to each other. A new feature is that a large number of superabrasive grains 13 are formed between each superabrasive grain 13.

このような砥石を製造する7こは、先に述べた製造方法
において、予め超砥粒I3に導電性皮膜32を形成し、
後は前記と全く同じ操作を行なえばよい。すると、金属
めっき相12は、前記製造方法の場合のように台金lO
上にのみ析出するのではなく、台金lOに対して導通し
ている超砥粒13の導電性皮膜32上にも順次析出し、
超砥粒13同士が金属めっき相12によって架橋される
ため、超砥粒13の間に部分的に気孔33が残り、金属
めっき相12が多孔質になる。
7. To manufacture such a grindstone, in the manufacturing method described above, a conductive film 32 is formed on the superabrasive grains I3 in advance,
After that, just do exactly the same operation as above. Then, the metal plating phase 12 is formed by the base metal lO as in the case of the manufacturing method described above.
It does not precipitate only on the top, but also sequentially deposits on the conductive film 32 of the superabrasive grains 13 that is conductive to the base metal lO,
Since the superabrasive grains 13 are crosslinked with each other by the metal plating phase 12, pores 33 remain partially between the superabrasive grains 13, and the metal plating phase 12 becomes porous.

導電性皮膜32の材質としては、N i、 Co、 C
uなど無電解めっき法により皮膜形成が容易な金属、あ
るいはCr+Ct等の導電性セラミックスが使用可能で
ある。また、全ての超砥粒13に導電性被覆32を形成
する代わりに、一部の超砥粒13を未被覆のまま混入し
、電着を行なうことも可能である。このようにすれば、
未被覆の超砥粒の混合割合によって気孔33の分布密度
を調整することができる。
The material of the conductive film 32 includes Ni, Co, and C.
Metals that can be easily formed into a film by electroless plating, such as u, or conductive ceramics, such as Cr+Ct, can be used. Further, instead of forming the conductive coating 32 on all the superabrasive grains 13, it is also possible to mix some of the superabrasive grains 13 without coating and perform electrodeposition. If you do this,
The distribution density of the pores 33 can be adjusted by adjusting the mixing ratio of the uncoated superabrasive grains.

上記の砥石によれば、網目状をなす樹脂多孔質体14の
他に、金属めっき相12中に気孔33が多数形成され、
これらの一部が相互に、および気孔15と連通ずるため
、前記実施例の作用が一層顕著となり、砥石の冷却作用
および切粉排出性をさらに向上することが可能である。
According to the above-mentioned grindstone, in addition to the network-like resin porous body 14, a large number of pores 33 are formed in the metal plating phase 12,
Since some of these communicate with each other and with the pores 15, the effect of the above embodiment becomes even more remarkable, and it is possible to further improve the cooling effect of the grindstone and the chip discharge performance.

なお、金属めっき相12中に気孔33を形成するには、
上記方法以外に、電着時に超砥粒13と金属粉とを混合
しておき、これらを共に合金に電着する方法も実施可能
である。ただし、この場合には、金属粉を混入する分、
金属めっき相12による超砥粒13の保持力が低下する
傾向を有する。
Note that in order to form the pores 33 in the metal plating phase 12,
In addition to the above method, it is also possible to mix the superabrasive grains 13 and metal powder during electrodeposition, and then electrodeposit them together on the alloy. However, in this case, since metal powder is mixed in,
The holding power of the superabrasive grains 13 by the metal plating phase 12 tends to decrease.

金属めっき相12中の気孔33の割合は、台金10の回
転速度を高めと低下するため、台金lOの回転速度を調
整ことにより気孔率が調整できる。
Since the proportion of pores 33 in the metal plating phase 12 decreases as the rotation speed of the base metal 10 increases, the porosity can be adjusted by adjusting the rotation speed of the base metal 10.

また、ポンプ24を0N−OFFすることによっても気
孔率調整は可能である。
The porosity can also be adjusted by turning off the pump 24.

次に、第9図および第10図は、本発明の製造方法の他
の実施例を示す図である。これまで述べた製造方法は、
いずれも電着時に台金IOと陽極板22を対向配置して
めっきを行なうものであったが、これらの例では、台金
lOの外周面に固定した樹脂多孔質体14のさらに外周
に、全面に亙って多孔性陽極板34.35  を当接さ
せた状態で固定し、第[1図に示すように台金10を電
源陰極、多孔性陽極板34.35  を電源陽極に接続
し、台金lOを回転させつつ電着を行なうことを特徴と
している。
Next, FIGS. 9 and 10 are diagrams showing other embodiments of the manufacturing method of the present invention. The manufacturing method described so far is
In both cases, plating was performed by placing the base metal IO and the anode plate 22 facing each other during electrodeposition. The porous anode plate 34.35 is fixed in contact with the entire surface, and the base metal 10 is connected to the power supply cathode and the porous anode plate 34.35 is connected to the power supply anode as shown in Figure 1. , is characterized in that electrodeposition is performed while rotating the base metal lO.

第9図に示す多孔性陽極板34は、超砥粒13の粒径よ
りも大きな多数の開口部を有する不溶性金属製のメツシ
ュ体で、具体的には、ワイヤを編んだ網状物や、金属板
に多数の切れ込みを形成して引き延ばしたエキスパンデ
ッドメタル、あるいは貫通孔よりも小さい孔をプレスで
多数形成した多孔板等が使用される。
The porous anode plate 34 shown in FIG. 9 is a mesh body made of an insoluble metal having a large number of openings larger than the grain size of the superabrasive grains 13. Specifically, the porous anode plate 34 shown in FIG. Expanded metal, which is made by forming many cuts in a plate and stretching it, or a perforated plate, in which many holes smaller than through holes are formed by pressing, are used.

なお、不溶性金属とは、白金や白金めっきしたチタン等
の電解めっき時に溶出しない金属をいう。
Note that the insoluble metal refers to a metal that is not eluted during electrolytic plating, such as platinum or platinized titanium.

多孔性陽極板34が不溶性であれば、電着時に多孔性陽
極板34からアノードスライムが生じず、めっき面の荒
れか生じないうえ、多孔性陽極板34か消耗しないため
電流密度の一定化か図れ、繰返し使用も可能である。
If the porous anode plate 34 is insoluble, anode slime will not be generated from the porous anode plate 34 during electrodeposition, and only the plating surface will be roughened, and the porous anode plate 34 will not be consumed, so the current density can be kept constant. It can be used repeatedly.

この製造方法によれば、樹脂多孔質体14の厚さによっ
て、台金lOの外周面と多孔性陽極板34との離間量が
正確に確保されるから、合金外周面における電流密度か
いずれの部位の被めっき面においても一定になる。
According to this manufacturing method, the thickness of the porous resin body 14 ensures an accurate distance between the outer peripheral surface of the base metal lO and the porous anode plate 34, so that the current density on the outer peripheral surface of the alloy It is also constant on the plated surface of the part.

これは特に、合金の外周面が単純な円筒形でない場合に
好適である。例えば、台金10の外周面の軸方向断面形
状が凹状または凸状である場合など(総型砥石等)には
、第4図のように単純な平板状の陽極板を使用すると、
合金外周面と陽極板との距離が一定せず、電流密度のむ
らに起因する砥粒層の厚さ不均一が必然的に生じる問題
があった。
This is particularly suitable when the outer circumferential surface of the alloy is not a simple cylinder. For example, when the axial cross-sectional shape of the outer peripheral surface of the base metal 10 is concave or convex (such as a full-sized grindstone), a simple flat anode plate as shown in FIG. 4 is used.
There is a problem in that the distance between the outer peripheral surface of the alloy and the anode plate is not constant, and the thickness of the abrasive grain layer is inevitably uneven due to uneven current density.

しかし、この第9図の製造方法によれば、台金lOの外
周面がいかなる形状であろうとも、その全面に亙って電
流密度を均一化することができる。
However, according to the manufacturing method shown in FIG. 9, the current density can be made uniform over the entire surface of the base metal 1O, regardless of the shape of the outer peripheral surface.

なお、第9図の場合において、樹脂多孔質体14に多数
の開口部を形成しておいてもよい。その場合、これら開
口部の内部では樹脂多孔質体14のない緻密な砥粒層が
形成される一方、他の部分には樹脂多孔質体14を有す
る多孔砥粒層11が形成される。
In the case of FIG. 9, a large number of openings may be formed in the resin porous body 14. In that case, a dense abrasive grain layer without the resin porous body 14 is formed inside these openings, while a porous abrasive grain layer 11 having the resin porous body 14 is formed in other parts.

したがって、開口部の割合を変化させることにより、緻
密砥粒層と多孔砥粒層の分布割合を変化させ、砥石の切
れ味を微妙に調整することが可能である。
Therefore, by changing the ratio of openings, it is possible to change the distribution ratio of the dense abrasive grain layer and the porous abrasive grain layer, and finely adjust the sharpness of the grindstone.

一方、第1θ図の製造方法では、可撓性を有する不溶性
導電板に多数の開口部35Aを形成してなる多孔性陽極
板35を使用している。
On the other hand, the manufacturing method shown in FIG. 1θ uses a porous anode plate 35 formed by forming a large number of openings 35A in a flexible insoluble conductive plate.

この例では、第12図に示すように開口部35Aと対向
した部分でめっき時の電流密度が相対的に低下し、砥粒
1!illに相対的に薄肉の凹部11Bが形成される一
方、その他の部分ではほぼ一定の肉厚を有する凸部11
Aとなるため、前記凹部JIBがチップポケットとなっ
て、研削液の供給性および切粉排出性が増す利点を有す
る。
In this example, as shown in FIG. 12, the current density during plating decreases relatively in the part facing the opening 35A, and the abrasive grain 1! A relatively thin concave portion 11B is formed in the ill, while a convex portion 11 has a substantially constant thickness in other parts.
A, the recess JIB becomes a chip pocket, which has the advantage of increasing grinding fluid supply performance and chip discharge performance.

さらに、従来では、このように砥粒層に凹部を有する砥
石を得る場合、合金に多数の砥粒層チップを並へて固定
する方法が一般的だったが、そのような方法では砥粒層
チップと合金との接合面積を大きく確保できず、チップ
脱落のおそれが大きかった。それに対し、第12図のよ
うな砥石では、各凸部11Aの間に、なだらかな凹曲面
状をなす凹部llBが一体的に形成されるため、これら
凹部11Bの存在により各凸部11Aが大幅に補強され
、砥粒層の破損や脱落のおそれを解消することが可能で
ある。
Furthermore, conventionally, in order to obtain a grindstone having concave portions in the abrasive grain layer, it was common to fix a large number of abrasive layer chips to an alloy in parallel, but in such a method, the abrasive grain layer It was not possible to secure a large bonding area between the chip and the alloy, and there was a great risk that the chip would fall off. On the other hand, in the grindstone as shown in FIG. 12, since the concave portions 11B having a gently curved surface are integrally formed between the convex portions 11A, the convex portions 11A are greatly reduced due to the presence of these concave portions 11B. It is possible to eliminate the risk of damage or falling off of the abrasive grain layer.

なお、第1θ図の方法において、樹脂多孔質体14に、
各開口部35Aと合致する開口部を形成してもよい。そ
の場合には、砥粒層11の凹部lIBが樹脂多孔質体1
4のない緻密な砥粒層となるため、前述した補強効果が
一層顕著になる。
In addition, in the method of FIG. 1θ, the porous resin body 14 is
An opening may be formed that matches each opening 35A. In that case, the concave portion IIB of the abrasive grain layer 11 is
Since the abrasive grain layer is dense and free of particles 4, the reinforcing effect described above becomes even more pronounced.

なお、本発明の砥石は、特に被削材と面接触して研削を
行なう用途、例えば両頭研削、クリープフィード研削、
ロータリートランス研削、研摩定盤を用いた研摩、カー
ブジェネレータによる研摩等Jこ好適であるが、上記以
外の用途にも勿論使用してよいし、その用途に応じて基
材(台金)の形状や砥粒層の形状等を任意に変更してよ
い。例えば図示したホイール型の代わりに、カップ型、
ブロック型、総型砥石型、両頭砥石型なと、いかなる形
状としてもよい。また、外周面のみを導電性物質で構成
した非導電性物質製の合金を用いることもできる。
The grindstone of the present invention is particularly useful for grinding in surface contact with a workpiece, such as double-headed grinding, creep feed grinding,
Rotary transformer grinding, polishing using a polishing surface plate, polishing using a curve generator, etc. are suitable, but they may of course be used for purposes other than those mentioned above, and the shape of the base material (base metal) may be adjusted according to the purpose. The shape of the abrasive layer and the shape of the abrasive layer may be changed as desired. For example, instead of the wheel type shown, a cup type,
It may be of any shape, such as a block type, a complete grindstone type, or a double-headed grindstone type. Alternatively, an alloy made of a non-conductive material, in which only the outer peripheral surface is made of a conductive material, can also be used.

また、台金10の代わりに、金属薄板等の導電性および
可撓性を有するシート材を基材として用いてもよいし、
非導電性シート上に導電性皮膜を形成したシート材を用
いてもよい。
Further, instead of the base metal 10, a conductive and flexible sheet material such as a thin metal plate may be used as the base material.
A sheet material in which a conductive film is formed on a non-conductive sheet may also be used.

さらに、樹脂多孔質体!4を部分的に台金10の外周面
に粘着テープ等を用いて貼付し、電着を行ない、これら
貼付箇所に金属めっき相12を析出させないようにして
、砥粒層11に溝や凹部を形成し、さらに切粉排出性を
高めてもよい。
Furthermore, it is a porous resin material! 4 is partially attached to the outer circumferential surface of the base metal 10 using an adhesive tape or the like, electrodeposition is performed, and grooves and recesses are formed in the abrasive grain layer 11 without depositing the metal plating phase 12 at these attachment points. It is also possible to further improve the chip discharge performance.

「実験例」 次に、実験例を挙げて本発明の効果を実証する。"Experiment example" Next, the effects of the present invention will be demonstrated by giving experimental examples.

(実験例1) 第1図および第2図に相当するストレート型砥石を次の
方法で作成した。
(Experimental Example 1) Straight type grindstones corresponding to those shown in FIGS. 1 and 2 were created by the following method.

機械切削により外径200M11X内径40111Ix
幅15izの円板状台金(SS41製)を形成し、脱脂
等の清浄化処理を行なった後、外径215mzx内径1
95xIx幅15zzの円環状のポリウレタンフォーム
を合金の外周にはめあわせた。
Outer diameter 200M11X inner diameter 40111Ix by machine cutting
After forming a disc-shaped base metal (made of SS41) with a width of 15 iz and performing cleaning treatment such as degreasing, an outer diameter of 215 mz x inner diameter of 1
An annular polyurethane foam measuring 95×I×width 15zz was fitted around the outer periphery of the alloy.

このポリウレタンフォームは、株式会社ブリデストン製
の[エバーライトSFJのrHR−50ヨであり、その
セル個数は47〜53/25tttmである。
This polyurethane foam is Everlight SFJ rHR-50 manufactured by Brideston Co., Ltd., and the number of cells is 47 to 53/25 tttm.

また、ポリウレタンフォームには、撥水撥油剤として三
菱金属(株)製「シュエリ−ブライト」を薄く塗布した
In addition, a thin layer of "Schuelly Bright" manufactured by Mitsubishi Metals Co., Ltd. was applied to the polyurethane foam as a water and oil repellent.

次いで、合金の軸方向両端面に、第6図に示すようにマ
スク板を固定した。このマスク板は、外径215xxx
内径40xyx肉厚5juのアクリル板である。
Next, mask plates were fixed to both axial end faces of the alloy as shown in FIG. This mask board has an outer diameter of 215xxx
It is an acrylic plate with an inner diameter of 40xyx and a wall thickness of 5ju.

そして合金を電源陰極に接続される回転軸に固定した後
、第4図に示すように電着を行なった。
After fixing the alloy to a rotating shaft connected to a power source cathode, electrodeposition was performed as shown in FIG.

電着条件は以下の通りとした。The electrodeposition conditions were as follows.

電解めっき液:中濃度スルファミン酸Ni浴めっき液の
pH:4.0 めっき液の温度= 50°C めっき液中でのダイヤ砥粒の分散量:ll/ρl/中砥
粒の粒度: #140 回転軸の回転速度:30rpm めっき液の循環量;5ρ/min。
Electrolytic plating solution: medium concentration Ni sulfamate bath pH of plating solution: 4.0 Temperature of plating solution = 50°C Dispersion amount of diamond abrasive grains in plating solution: ll/ρl/particle size of medium abrasive grains: #140 rotation Rotation speed of shaft: 30 rpm Circulation rate of plating solution: 5ρ/min.

全めっき電流値=3A この条件で、砥粒層の厚さが5.5RIIになるまでめ
っきを行ない、合金をめっき槽から取り出して水洗した
後、トルーイングおよびドレッシングを行なって砥粒層
からはみ出した樹脂多孔質体を除去し、多孔性多層電着
砥石を得た。
Total plating current value = 3A Under these conditions, plating was carried out until the thickness of the abrasive grain layer reached 5.5RII, and the alloy was removed from the plating bath and washed with water, and then trued and dressed to remove it from the abrasive grain layer. The porous resin material was removed to obtain a porous multilayer electrodeposited grindstone.

(実験例2) 実験例1と異なる点は、前記と同じ超砥粒に、無電解め
っき法を用いて厚さ3μlのNi皮膜を形成したうえ電
着に使用した点のみで、他の条件は全て実験例1と等し
くして多孔性多層電着砥石を作成した。
(Experimental Example 2) The only difference from Experimental Example 1 was that a 3 μl thick Ni film was formed on the same superabrasive as above using electroless plating and then used for electrodeposition. A porous multilayer electrodeposited grindstone was prepared using all the same conditions as in Experimental Example 1.

(比較例) 実験例1と同じ台金の側面に絶縁マスキングを施した後
、この合金を前記と同じめっき液に浸漬し、#140の
ダイヤモンド砥粒を合金の上部外周面に散布し、一定時
間めっきを行ない、さらに合金を僅かに回転させ、再び
砥粒散布−めっき−台金回転の順で電着を繰り返し、−
旦合金の外周面全面にダイヤモンド砥粒を仮固定した。
(Comparative Example) After insulating masking was applied to the side surface of the same base metal as in Experimental Example 1, this alloy was immersed in the same plating solution as above, and #140 diamond abrasive grains were sprinkled on the upper outer peripheral surface of the alloy. Plating is carried out for a time, the alloy is rotated slightly, and electrodeposition is repeated again in the order of abrasive grain dispersion - plating - base metal rotation, -
Diamond abrasive grains were temporarily fixed on the entire outer peripheral surface of the alloy.

続いて合金を低速で連続回転しなからさらに金属めっき
相を析出させ、金属めっき相の厚さが砥粒径の70%と
なったところで電着を完了した。
Subsequently, a metal plating phase was further deposited while the alloy was continuously rotated at a low speed, and electrodeposition was completed when the thickness of the metal plating phase reached 70% of the abrasive grain diameter.

そして合金を取り出し、水洗および乾燥を行なって、単
層状電着砥石を得た。
The alloy was then taken out, washed with water, and dried to obtain a single-layer electrodeposited grindstone.

(比較方法および結果) 上記3Nの砥石により、92%Altos材の研削試験
を行なった。研削条件を以下に記す。
(Comparative Method and Results) A grinding test was conducted on 92% Altos material using the above 3N grindstone. The grinding conditions are described below.

被削材:92%A l ! O5 100izx100x肩×5JIR 砥石周速:  1500x/win。Work material: 92% Al! O5 100izx100x shoulder x 5JIR Grinding wheel peripheral speed: 1500x/win.

テーブル送り速度:  10x/min。Table feed speed: 10x/min.

クロススピード:  2 xx/ pass砥石切り込
み量:0.03xx そして、各砥石における研削盤の消費電力、研削後の被
削材の表面粗さを計測した。その結果を第1表に示す。
Cross speed: 2 xx/pass Grinding wheel cutting depth: 0.03xx Then, the power consumption of the grinding machine for each grinding wheel and the surface roughness of the workpiece after grinding were measured. The results are shown in Table 1.

なお、実験1は実験例1、実験2は実験例2をそれぞれ
示している。
Note that Experiment 1 represents Experiment Example 1, and Experiment 2 represents Experiment Example 2.

第1表 「発明の効果」 以上説明したように、本発明の多孔性多層電着砥石によ
れば、以下のような優れた効果が得られる。
Table 1 "Effects of the Invention" As explained above, according to the porous multilayer electrodeposited grindstone of the present invention, the following excellent effects can be obtained.

■ 砥粒層の内部に3次元網目状の柔軟な樹脂多孔質体
がくまなく埋設され、砥粒層が適度の弾性を有するため
、個々の超砥粒と被削材の衝突時の衝撃をその周囲の金
属めっき相の弾性変形によって緩和し、チッピングが防
止できる。
■ A three-dimensional network-like flexible resin porous material is embedded throughout the abrasive grain layer, and the abrasive grain layer has appropriate elasticity, so it absorbs the impact when the individual superabrasive grains collide with the workpiece. It is relaxed by the elastic deformation of the surrounding metal plating phase, and chipping can be prevented.

■ 砥粒層の表面に露出した樹脂多孔質体の端面か研削
につれ摩耗して凹部を生じるうえ、金属め。
■ The end face of the porous resin body exposed on the surface of the abrasive grain layer wears out as it is ground, creating a recess, and it is metal.

き相内に形成され1こ気孔の一部か研削面に露出するた
め、これらかいずれもチップポケットとして作用し、研
削部に生じた切粉を砥石の運動とともに排出するため、
切粉排出性が高く、砥粒層の目詰まりか生じにくい。し
たがって、ドレッソングの回数が少なくて済み、砥石寿
命を延長することができる。
Since some of the pores formed in the grinding phase are exposed on the grinding surface, each of these acts as a chip pocket, and the chips generated in the grinding part are discharged with the movement of the grinding wheel.
Excellent chip evacuation, and clogging of the abrasive grain layer is less likely to occur. Therefore, the number of times of dressing is reduced, and the life of the grinding wheel can be extended.

■ 湿式研削を行なう場合には、砥粒層内の気孔および
樹脂多孔質体を通じて、研削液が自由に砥粒層の内部に
出入りし、保持されるため、その−部が研削面へ流出し
、効率の良い研削液供給が行なえる。また、その際に研
削液が砥粒層内部の熱を奪うので、冷却効果が極めて高
い。
■ When performing wet grinding, the grinding fluid freely enters and exits the abrasive grain layer through the pores in the abrasive grain layer and the porous resin body, and is retained therein, so that part of the fluid flows out onto the grinding surface. , efficient grinding fluid supply is possible. In addition, since the grinding fluid removes the heat inside the abrasive grain layer at this time, the cooling effect is extremely high.

一方、本発明の多孔性多層電着砥石の製造方法によれば
、以下の効果が得られる。
On the other hand, according to the method for manufacturing a porous multilayer electrodeposited grindstone of the present invention, the following effects can be obtained.

■ 電解めっき時に樹脂多孔質体の網状構造の個々のセ
ル内に超砥粒が保持されるため、基材の水平面部分だけ
でなく、砥粒層形成面の全面で同時に超砥粒の電着が行
なうことができる。また、被めっき面に電解めっき液を
強制的に供給することができるから、めっき速度を高め
ることが可能で、生産性が高い。
■ During electrolytic plating, superabrasive grains are retained within individual cells of the network structure of the porous resin material, so superabrasive grains can be electrodeposited not only on the horizontal surface of the base material but also on the entire surface on which the abrasive grain layer will be formed. can be done. Furthermore, since the electrolytic plating solution can be forcibly supplied to the surface to be plated, the plating speed can be increased, resulting in high productivity.

■ 樹脂多孔質体内での気泡の付着密度、超砥粒の保持
密度および金属めっき相の析出速度は、平均セル径に応
じてほぼ一定になるため、いずれの部位の砥粒層も、砥
粒含有率、砥粒積層度、気孔率および金属めっき相の厚
さが均等化され、従来は製造困難だった高精度の多層状
砥粒層が容易に形成できる。
■ The adhesion density of air bubbles, the retention density of superabrasive grains, and the precipitation rate of metal plating phase within the porous resin body are approximately constant depending on the average cell diameter, so the abrasive grain layer in any part is The content, degree of lamination of abrasive grains, porosity, and thickness of the metal plating phase are equalized, making it possible to easily form a multilayered abrasive grain layer with high precision, which was previously difficult to manufacture.

■ 超砥粒として、表面に導電性皮膜が形成された超砥
粒を用いた場合には、各超砥粒間に気孔を残した状態で
金属めっき相か析出するため、金属めっき相がさらに多
孔質化し、切粉排出性および冷却効率を一層高めること
ができる。
■ When superabrasive grains with a conductive film formed on the surface are used as superabrasive grains, the metal plating phase will precipitate with pores remaining between each superabrasive grain, so the metal plating phase will further increase. It becomes porous and can further improve chip discharge performance and cooling efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる多孔性多層電着砥石の第1実施
例を示す正面図、第2゛図はその砥粒層の断面拡大図、
第3図および第4図は同砥石の製造方法を示す正面図、
第5図は樹脂多孔質体を合金に貼付した状態での断面拡
大図である。 また、第6図および第7図は前記方法における樹脂多孔
質体の固定方法の変形例を示す縦断面図、第8図は本発
明の多孔性多層電着砥石の第2実施例を示す砥粒層の断
面拡大図、第9図および第1O図は本発明の方法の互い
に異なる他の実施例を示す縦断面図、第1I図は同方法
での電着方法を示す説明図、第12図は第1θ図の方法
の作用を示す説明図である。 一方、第13図は従来の電着砥石を示す砥粒層の断面拡
大図である。 10・・・台金(基材)、11・・・砥粒層、12・・
・金属めっき相、I3・超砥粒、I4・・・樹脂多孔質
体、15・・・気孔、20・・・めっき槽、21・・・
回転軸、22・・・陽極板、24・・・ポンプ、25・
・・ノズル、M・・・電解めっき液、DI・・・平均セ
ル径、30・・・マスク板、32・・・導電性皮膜、3
3・・・気孔、34.35・・・多孔性陽極板。
FIG. 1 is a front view showing a first embodiment of a porous multilayer electrodeposited grindstone according to the present invention, and FIG. 2 is an enlarged cross-sectional view of its abrasive grain layer.
Figures 3 and 4 are front views showing the manufacturing method of the grindstone;
FIG. 5 is an enlarged cross-sectional view of the resin porous body attached to the alloy. Further, FIGS. 6 and 7 are longitudinal cross-sectional views showing a modification of the method of fixing the porous resin body in the above method, and FIG. 8 is a grindstone showing a second embodiment of the porous multilayer electrodeposited grindstone of the present invention. 9 and 1O are longitudinal cross-sectional views showing other different embodiments of the method of the present invention; FIG. 1I is an explanatory view showing an electrodeposition method using the same method; FIG. The figure is an explanatory diagram showing the effect of the method shown in Fig. 1θ. On the other hand, FIG. 13 is an enlarged cross-sectional view of an abrasive grain layer showing a conventional electrodeposited grindstone. 10... Base metal (base material), 11... Abrasive grain layer, 12...
- Metal plating phase, I3 - Super abrasive grain, I4... Resin porous body, 15... Pore, 20... Plating tank, 21...
Rotating shaft, 22...Anode plate, 24...Pump, 25.
... Nozzle, M ... Electrolytic plating solution, DI ... Average cell diameter, 30 ... Mask plate, 32 ... Conductive film, 3
3... Pores, 34.35... Porous anode plate.

Claims (4)

【特許請求の範囲】[Claims] (1)基材上に、超砥粒を金属めっき相中に多層状に分
散してなる砥粒層を設けた電着砥石であって、前記金属
めっき相中には、無方向性の3次元網目構造をなす樹脂
多孔質体が埋設され、この樹脂多孔質体の網目の平均セ
ル径は前記超砥粒の平均粒径の3〜100倍とされると
ともに、前記各セル内の金属めっき相には部分的に気孔
が形成されていることを特徴とする多孔性多層電着砥石
(1) An electrodeposited grindstone having an abrasive grain layer formed by dispersing superabrasive grains in a multilayered manner in a metal plating phase on a base material, wherein the metal plating phase includes a non-directional three-layer A resin porous body having a dimensional network structure is embedded, and the average cell diameter of the network of this resin porous body is 3 to 100 times the average particle diameter of the superabrasive grains, and the metal plating inside each cell is A porous multilayer electrodeposited grindstone characterized by the fact that pores are partially formed in the phase.
(2)基材の導電性を有する砥粒層形成面上に、無方向
性の3次元網目構造をなし、その網目の平均セル径が超
砥粒の平均粒径の3〜100倍である樹脂多孔質体を固
定したうえ、前記基材を電解めっき液に浸漬し、表面に
導電性皮膜が形成されてなる超砥粒を分散しつつ前記砥
粒層形成面に金属めっき相を析出させ、樹脂多孔質体の
内部に超砥粒が多層状に分散した多孔質状の砥粒層を形
成することを特徴とする多孔性多層電着砥石の製造方法
(2) A non-directional three-dimensional network structure is formed on the conductive abrasive layer forming surface of the base material, and the average cell diameter of the network is 3 to 100 times the average particle diameter of the superabrasive grains. After fixing the resin porous body, the base material is immersed in an electrolytic plating solution, and a metal plating phase is precipitated on the surface on which the abrasive grain layer is formed while dispersing superabrasive grains on which a conductive film is formed on the surface. A method for manufacturing a porous multilayer electrodeposited grindstone, which comprises forming a porous abrasive grain layer in which superabrasive grains are dispersed in a multilayered manner inside a porous resin body.
(3)前記砥粒層の形成に際し、前記樹脂多孔質体のセ
ル内に部分的に気泡を保持した状態で、前記導電性皮膜
が形成されてなる超砥粒を分散しつつ前記砥粒層形成面
に金属めっき相を析出させることにより、前記金属めっ
き相をさらに多孔質化することを特徴とする請求項2記
載の多孔性多層電着砥石の製造方法。
(3) When forming the abrasive grain layer, the superabrasive grains on which the conductive film is formed are dispersed while partially retaining air bubbles in the cells of the resin porous body. 3. The method for manufacturing a porous multilayer electrodeposited grindstone according to claim 2, wherein the metal plating phase is further made porous by precipitating a metal plating phase on the forming surface.
(4)基材の導電性を有する砥粒層形成面上に、無方向
性の3次元網目構造をなし、その網目の平均セル径が超
砥粒の平均粒径の3〜100倍である樹脂多孔質体を固
定したうえ、前記基材を電解めっき液に浸漬し、前記樹
脂多孔質体のセル内に部分的に気泡を保持した状態で、
超砥粒を分散しつつ前記砥粒層形成面に金属めっき相を
析出させ、樹脂多孔質体の内部に超砥粒が多層状に分散
した多孔質状の砥粒層を形成することを特徴とする多孔
性多層電着砥石の製造方法。
(4) A non-directional three-dimensional network structure is formed on the conductive abrasive layer forming surface of the base material, and the average cell diameter of the network is 3 to 100 times the average particle diameter of the superabrasive grains. After fixing the resin porous body, the base material is immersed in an electrolytic plating solution, with air bubbles partially retained in the cells of the resin porous body,
A metal plating phase is precipitated on the surface on which the abrasive layer is formed while dispersing superabrasive grains, thereby forming a porous abrasive layer in which superabrasive grains are dispersed in multiple layers inside the porous resin body. A method for manufacturing a porous multilayer electrodeposited grindstone.
JP2230129A 1990-08-31 1990-08-31 Porous multilayer electrodeposition grindstone and manufacture thereof Pending JPH04111776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230129A JPH04111776A (en) 1990-08-31 1990-08-31 Porous multilayer electrodeposition grindstone and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230129A JPH04111776A (en) 1990-08-31 1990-08-31 Porous multilayer electrodeposition grindstone and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04111776A true JPH04111776A (en) 1992-04-13

Family

ID=16903031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230129A Pending JPH04111776A (en) 1990-08-31 1990-08-31 Porous multilayer electrodeposition grindstone and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04111776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967979B2 (en) 2000-10-06 2005-11-22 Sharp Kabushiki Kaisha Semiconductor laser device, optical pickup and fabrication method of semiconductor laser device
JP2013013966A (en) * 2011-07-04 2013-01-24 Shin-Etsu Chemical Co Ltd Cemented carbide base outer balde cutting wheel, and method of making the same
WO2019180885A1 (en) * 2018-03-22 2019-09-26 三菱電機株式会社 Guide rail processing device and guide rail processing method for elevators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967979B2 (en) 2000-10-06 2005-11-22 Sharp Kabushiki Kaisha Semiconductor laser device, optical pickup and fabrication method of semiconductor laser device
JP2013013966A (en) * 2011-07-04 2013-01-24 Shin-Etsu Chemical Co Ltd Cemented carbide base outer balde cutting wheel, and method of making the same
WO2019180885A1 (en) * 2018-03-22 2019-09-26 三菱電機株式会社 Guide rail processing device and guide rail processing method for elevators
JPWO2019180885A1 (en) * 2018-03-22 2020-10-08 三菱電機株式会社 Elevator guide rail processing method

Similar Documents

Publication Publication Date Title
US6312324B1 (en) Superabrasive tool and method of manufacturing the same
JP3782108B2 (en) Superabrasive electrodeposited cutting blade and its manufacturing method
CN1980773B (en) High precision multi-grit slicing blade
JP2003511255A (en) Conditioner for polishing pad and method of manufacturing the same
JP2006130586A (en) Cmp conditioner and manufacturing method thereof
JP2522278B2 (en) Electroformed thin blade grindstone
JPH04111776A (en) Porous multilayer electrodeposition grindstone and manufacture thereof
TW419411B (en) Electrode generating hydrodynamic pressure
JPS6334071A (en) Manufacture of grindstone
JPS6334069A (en) Grindstone
JPH1177535A (en) Conditioner and its manufacture
JP2765172B2 (en) Porous multilayer electrodeposited grinding wheel and method for producing the same
JP2004358640A (en) Method for manufacturing electroplated tool and electroplated tool
WO2001036138A1 (en) Combined electrolytic polishing and abrasive super-finishing process
JPH0771789B2 (en) Whetstone
JPH052291Y2 (en)
JP3134469B2 (en) Electroplated whetstone and method of manufacturing the same
JPS6258872B2 (en)
JPH0825143B2 (en) Electroformed grindstone
JP2976502B2 (en) Whetstone having liquid supply means and method of manufacturing the same
JP4169612B2 (en) Electrodeposition tool manufacturing method
JPH04223878A (en) Grindwheel for grinding lens and manufacture thereof
JPH0531674A (en) Water permeable grinding wheel and manufacture thereof
JP2004268238A (en) Electrodeposition tool and its manufacturing method
JP3390137B2 (en) A method for manufacturing a superabrasive grain in which dimples are scattered on an outer peripheral surface.