JPH05304169A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05304169A
JPH05304169A JP13451292A JP13451292A JPH05304169A JP H05304169 A JPH05304169 A JP H05304169A JP 13451292 A JP13451292 A JP 13451292A JP 13451292 A JP13451292 A JP 13451292A JP H05304169 A JPH05304169 A JP H05304169A
Authority
JP
Japan
Prior art keywords
opening
semiconductor substrate
ion implantation
angle
mask material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13451292A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nakada
英俊 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13451292A priority Critical patent/JPH05304169A/en
Publication of JPH05304169A publication Critical patent/JPH05304169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823493MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Volatile Memory (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To obtain the manufacture of a semiconductor device, in which mask processes are reduced when two kinds of different diffusion layers are formed. CONSTITUTION:The manufacture of a semiconductor device includes a process in which a mask material 3 in required thickness is formed onto a semiconductor substrate 1, a process in which a plurality of first opening 20 having opening size smaller than the thickness of the mask material are formed in a region corresponding to a first ion implanting layer to the mask material 3 while a second opening 19 is shaped extending over approximately the whole region in a region corresponding to a second ion implanting layer, a process in which ions are implanted at an angle where the semiconductor substrate 1 is not exposed to the first openings 20, and a process in which ions are implanted at an angle where the semiconductor substrate 1 is exposed to the first openings 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に異なる不純物濃度のイオン注入層を有する半
導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having ion-implanted layers having different impurity concentrations.

【0002】[0002]

【従来の技術】従来、MOS型半導体装置の製造工程に
於いて、半導体表面の2箇所に各々別の濃度の不純物を
イオン注入法により導入しようとすると、2回のマスク
工程が必要となる。例えば、図3にMOS型半導体記憶
装置の製造方法を例を示す。先ず、図3(a)のよう
に、半導体基板1上に第1絶縁膜2として、熱酸化法に
より 400Å程度の酸化膜を形成した後、フォトレジスト
3Aを形成して所定の領域を開口し、このフォトレジス
ト3Aをマスクとして第1イオン注入を行い、第1注入
層4を形成する。
2. Description of the Related Art Conventionally, in the process of manufacturing a MOS type semiconductor device, if an impurity of different concentration is to be introduced into two points on the semiconductor surface by an ion implantation method, two masking steps are required. For example, FIG. 3 shows an example of a method for manufacturing a MOS semiconductor memory device. First, as shown in FIG. 3A, an oxide film of about 400 Å is formed as a first insulating film 2 on the semiconductor substrate 1 by a thermal oxidation method, and then a photoresist 3A is formed to open a predetermined region. First ion implantation is performed using the photoresist 3A as a mask to form a first implantation layer 4.

【0003】次いで、図3(b)のように、前記フォト
レジスト3Aを除去した後に改めてフォトレジスト3B
を形成して所定の領域を開口し、フォトレジスト3Bを
マスクとして第2イオン注入を行い、第2注入層5を形
成する。そして、フォトレジスト3Bを除去した後に、
高温の例えば1200℃の熱処理を行い、図3(c)のよう
に、第1ウェル拡散層6及び第2ウェル拡散層7を形成
する。しかる後、図3(d)のように、素子分離領域8
を形成した後、第2ウェル拡散層7には第1ゲート絶縁
膜17、浮遊ゲート12、第2ゲート絶縁膜18、制御
ゲート13、拡散層10を形成してMOS型記憶素子を
形成し、第1ウェル拡散層6には第3ゲート絶縁膜1
1、ゲート9、拡散層10を形成してMOSトランジス
タを構成し、かつ全面に層間絶縁膜14、電極配線1
5、カバー絶縁膜16を順次形成し、半導体記憶装置を
形成する。
Next, as shown in FIG. 3 (b), after removing the photoresist 3A, the photoresist 3B is newly formed.
Is formed, a predetermined region is opened, and second ion implantation is performed using the photoresist 3B as a mask to form a second implantation layer 5. Then, after removing the photoresist 3B,
Heat treatment at a high temperature of, for example, 1200 ° C. is performed to form the first well diffusion layer 6 and the second well diffusion layer 7 as shown in FIG. Then, as shown in FIG. 3D, the element isolation region 8
Then, a first gate insulating film 17, a floating gate 12, a second gate insulating film 18, a control gate 13 and a diffusion layer 10 are formed on the second well diffusion layer 7 to form a MOS type memory element. The third gate insulating film 1 is formed on the first well diffusion layer 6.
1, a gate 9 and a diffusion layer 10 are formed to form a MOS transistor, and an interlayer insulating film 14 and electrode wiring 1 are formed on the entire surface.
5, the cover insulating film 16 is sequentially formed to form a semiconductor memory device.

【0004】[0004]

【発明が解決しようとする課題】この従来の製造方法に
於けるイオン注入工程では、2種類の濃度の異なる拡散
層を形成する場合には、2度のフォトリソグラフィ(写
真蝕刻)工程が必要となり、半導体装置の製造期間が長
期化すると言う問題があった。又、従来では、MOSト
ランジスタのソースとドレインの不純物分布を非対称に
する為に、ゲート電極形成後に、ある注入角度,注入量
で第1イオン注入を行い、また別の注入角度,注入量で
第2イオン注入を行ってMOSトランジスタのソース,
ドレインとする方法が提案されている(例えば、特開昭
63−184365)。
In the ion implantation step in the conventional manufacturing method, two photolithography steps are required when forming two kinds of diffusion layers having different concentrations. However, there is a problem that the manufacturing period of the semiconductor device is extended. Further, conventionally, in order to make the impurity distribution of the source and the drain of the MOS transistor asymmetric, the first ion implantation is performed at a certain implantation angle and a certain implantation amount after the gate electrode is formed, and at the other implantation angle and another implantation amount. 2 Ion implantation is performed to source the MOS transistor,
A method of using a drain has been proposed (see, for example, Japanese Patent Laid-Open No.
63-184365).

【0005】しかしながら、この方法では、ソースとド
レイン共に2度のイオン注入が行われる為、ソースとド
レインの不純物分布を変える事は出来るが不純物濃度を
変える事は出来ない。又、所定の領域のソース、所定の
領域のドレインの不純物濃度を変えようとすると当然の
事ながら、2度のフォトリソグラフィ工程が必要とな
り、半導体装置の製造期間が長期化してしまう。本発明
の目的は、2種類の異なる拡散層を形成する際のマスク
工程を削減した半導体装置の製造方法を提供することに
ある。
However, according to this method, since the ion implantation is performed twice for both the source and the drain, the impurity distribution of the source and the drain can be changed, but the impurity concentration cannot be changed. In addition, if the impurity concentration of the source in a predetermined region and the drain concentration in a predetermined region are changed, two photolithography steps are naturally required, and the manufacturing period of the semiconductor device is lengthened. An object of the present invention is to provide a method for manufacturing a semiconductor device in which a mask process for forming two different diffusion layers is reduced.

【0006】[0006]

【課題を解決するための手段】本発明は、半導体基板上
に所要厚さのマスク材を形成する工程と、このマスク材
には第1イオン注入層に相当する領域はマスク材の厚さ
に対して開口寸法の小さな複数の第1の開口を形成する
一方、第2イオン注入層に相当する領域は略全領域にわ
たって第2の開口を形成する工程と、第1の開口に対し
て半導体基板が露呈されない角度でイオン注入を行う工
程と、第1の開口に対して半導体基板が露呈される角度
でイオン注入を行う工程とを含んでいる。例えば、マス
ク材の厚さをH,半導体基板の法線方向に対するイオン
注入角度をθ1(θ1≠0°)とした時に、第2の開口
は短辺の長さをA1として(H/A1)< tan(90°−
θ1)の関係に設定し、第1の開口は開口部の対角線の
長さをB3として、(H/B3)> tan(90°−θ1)
の関係となるように設定し、角度θ1で前記半導体基板
を法線方向を軸に回転させながらイオン注入を行い、第
1の開口の短辺の長さをB1として(H/B1)< tan
(90°−θ2)となる角度θ2で、前記半導体基板を法
線方向を軸に回転させながらイオン注入を行う。
According to the present invention, a step of forming a mask material having a required thickness on a semiconductor substrate, and a region corresponding to the first ion implantation layer in the mask material has a thickness of the mask material. On the other hand, a step of forming a plurality of first openings having a small opening size while forming the second openings over substantially the entire area corresponding to the second ion implantation layer, and a semiconductor substrate for the first openings. And the step of performing ion implantation at an angle at which the semiconductor substrate is exposed to the first opening. For example, when the thickness of the mask material is H and the ion implantation angle with respect to the normal direction of the semiconductor substrate is θ1 (θ1 ≠ 0 °), the second opening has a short side length of A1 (H / A1). <Tan (90 °-
θ1), and the first opening is (H / B3)> tan (90 ° -θ1), where B3 is the length of the diagonal line of the opening.
And ion implantation is performed while rotating the semiconductor substrate about the normal direction as an axis at an angle θ1 and the length of the short side of the first opening is B1 (H / B1) <tan
Ion implantation is performed while rotating the semiconductor substrate about the normal direction at an angle θ2 of (90 ° −θ2).

【0007】[0007]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例を製造工程順に示す図であ
り、特に同図(a),(c),(d),(e)は、同図
(b)のA−A線に沿う断面図である。先ず、図1
(a)のように、半導体基板1上に第1絶縁膜2として
例えば熱酸化法により酸化膜を 400Å程度形成し、フォ
トレジスト3を膜厚Hの厚さで形成し、図1(b)のよ
うに、開口部の短辺の長さがA1の比較的に大きな開口
19と、開口部の短辺の長さがB1,対角線の長さがB
3の比較的に小さな開口20を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a view showing an embodiment of the present invention in the order of manufacturing steps. Particularly, FIGS. 1 (a), (c), (d) and (e) are along the line AA in FIG. 1 (b). FIG. First, Fig. 1
As shown in FIG. 1A, an oxide film is formed on the semiconductor substrate 1 as the first insulating film 2 by, for example, a thermal oxidation method to a thickness of about 400 Å, and a photoresist 3 is formed to a film thickness H. As described above, the opening 19 has a relatively large short side length A1, and the opening side has a short side length B1 and a diagonal length B.
3 relatively small openings 20 are formed.

【0008】そして、半導体基板1を法線方向を軸に回
転させながら角度θ1(θ1≠0°)で第1イオン注入
を行う。ここで、A1>H/ tan(90°−θ1),B3
<H/ tan(90°−θ1)と設定する事により、開口2
0では半導体基板1がイオン注入方向に露呈されず、開
口19では露呈されるため、開口19にのみ第1注入層
4を形成する事ができる。例えば、H= 1.5μm,θ1
=45°とするとA1>1.5μm,B3< 1.5μmとな
る。
Then, the first ion implantation is performed at an angle θ1 (θ1 ≠ 0 °) while rotating the semiconductor substrate 1 about the axis of the normal line. Where A1> H / tan (90 ° -θ1), B3
By setting <H / tan (90 ° -θ1), opening 2
At 0, the semiconductor substrate 1 is not exposed in the ion implantation direction, but at the opening 19, the first implantation layer 4 can be formed only in the opening 19. For example, H = 1.5 μm, θ1
= 45 °, A1> 1.5 μm and B3 <1.5 μm.

【0009】続いて、フォトレジスト3を残したまま
で、図1(c)のように、第2イオン注入を tan(90°
−θ2)>H/B1となる角度θ2で半導体基板1を法
線方向を軸に回転させながら行うことで、開口19,2
0の双方に対してイオン注入ができ、第2注入層5を形
成する。例えば、B1= 1.0μmとするとθ2<33.6°
となる。この後、高温の熱処理を例えば、1200℃程度で
行い、図1(d)のように、不純物濃度の異なる2つの
第1ウェル拡散層6及び第2ウェル拡散層7を形成す
る。
Then, as shown in FIG. 1C, the second ion implantation is performed at tan (90 °) with the photoresist 3 left.
-[Theta] 2)> H / B1 is performed while rotating the semiconductor substrate 1 around the normal direction as an angle [theta] 2.
Ions can be implanted into both 0 and 0 to form the second implantation layer 5. For example, if B1 = 1.0 μm, θ2 <33.6 °
Becomes After that, high temperature heat treatment is performed at, for example, about 1200 ° C. to form two first well diffusion layers 6 and 7 having different impurity concentrations as shown in FIG.

【0010】その後、図1(e)のように、素子分離絶
縁膜8を形成した後、第2ウェル拡散層7に、第1ゲー
ト絶縁膜17、浮遊ゲート12、第2ゲート絶縁膜1
8、制御ゲート13、拡散層10を形成してMOS型記
憶素子を形成する。又、第1ウェル拡散層6に第3ゲー
ト絶縁膜11、ゲート9、拡散層10を形成してMOS
トランジスタを形成する。更に、全面に層間絶縁膜1
4、電極配線15、カバー絶縁膜16を順次形成し、半
導体装置を形成する。以上の様に、本発明では、マスク
材としてのフォトレジストに、大きさの異なる2種類の
開口領域を形成し、角度の異なる2回のイオン注入を行
う事により、1回のフォトリソグラフィ工程で不純物濃
度の異なる2種類の拡散層を形成出来る。
Thereafter, as shown in FIG. 1E, after forming an element isolation insulating film 8, a first gate insulating film 17, a floating gate 12 and a second gate insulating film 1 are formed on the second well diffusion layer 7.
8, the control gate 13 and the diffusion layer 10 are formed to form a MOS type memory element. In addition, the third gate insulating film 11, the gate 9 and the diffusion layer 10 are formed on the first well diffusion layer 6 to form a MOS.
Form a transistor. Further, the interlayer insulating film 1 is formed on the entire surface.
4, the electrode wiring 15 and the cover insulating film 16 are sequentially formed to form a semiconductor device. As described above, according to the present invention, two types of opening regions having different sizes are formed in the photoresist as the mask material, and the ion implantation is performed twice at different angles. Two types of diffusion layers having different impurity concentrations can be formed.

【0011】本発明の他の実施例を図2に示す。同図
(a),(c),(d),(e)は同図(b)のB−B
線に沿う断面図を示している。先ず、図2(a)のよう
に、例えばP型不純物を含有した半導体基板1上に、第
1ゲート絶縁膜17として熱酸化法により膜厚50Å〜 2
00Å程度の熱酸化膜を形成し、その上に浮遊ゲート1
2、第2ゲート絶縁膜18、制御ゲート13を順次形成
する。更に、この上にフォトレジスト3を膜厚Hの厚さ
で形成した上で、図2(b)のように、開口部の短辺の
長さがA1の比較的に大きな開口領域19と、開口部の
短辺の長さがB1,対角線の長さがB3の比較的に小さ
な開口領域20を形成する。
Another embodiment of the present invention is shown in FIG. (A), (c), (d), and (e) of the same figure are BB of the same figure (b).
A cross-sectional view along a line is shown. First, as shown in FIG. 2A, for example, on the semiconductor substrate 1 containing P-type impurities, a film thickness of 50Å to 2 is formed as the first gate insulating film 17 by a thermal oxidation method.
A thermal oxide film of about 00Å is formed, and a floating gate 1 is formed on it.
2, the second gate insulating film 18 and the control gate 13 are sequentially formed. Further, a photoresist 3 having a thickness of H is formed thereon, and then, as shown in FIG. 2B, a relatively large opening region 19 in which the length of the short side of the opening is A1 and A relatively small opening region 20 having a short side length B1 and a diagonal length B3 is formed.

【0012】そして、第1イオン注入として例えば、基
板と同一導電型の不純物ボロンを、半導体基板1を法線
方向を軸に回転させながら角度θ1(θ1≠0°)で注
入する。ここで、A1>H/ tan(90°−θ1),B3
<H/ tan(90°−θ1)と認定する事により開口領域
19にのみ第1注入層4を形成する事が出来る。例え
ば、H= 1.5μm,θ1=45°とするとA1> 1.5μ
m,B3< 1.5μmを満たせば実現出来ることになる。
Then, as the first ion implantation, for example, impurity boron having the same conductivity type as the substrate is implanted at an angle θ1 (θ1 ≠ 0 °) while rotating the semiconductor substrate 1 around the axis of the normal line. Where A1> H / tan (90 ° -θ1), B3
By recognizing <H / tan (90 ° −θ1), the first injection layer 4 can be formed only in the opening region 19. For example, if H = 1.5 μm and θ1 = 45 °, A1> 1.5 μ
It can be realized by satisfying m, B3 <1.5 μm.

【0013】続いて、図2(c)のように、フォトレジ
スト3を残したままで、第2イオン注入として、半導体
基板1と反対導電型の不純物ヒ素を、 tan(90°−θ
2)>H/B1となる角度θ2で半導体基板1を法線方
向を軸として回転させながら注入し、第2注入層5を形
成する。次いで、熱処理を例えば 800℃〜 900℃で行
い、図2(d)のように、ドレイン拡散層5A及びソー
ス拡散層5Bを形成する。この後、図2(e)のよう
に、層間絶縁膜14、電極配線15、カバー絶縁膜16
を順次形成しMOS型半導体記憶素子を形成する。この
実施例においても、マスク材としてのフォトレジスト
に、大きさの異なる2種類の開口領域を形成し、角度の
異なる2回のイオン注入を行う事により、1回のフォト
リソグラフィ工程だけで、所定の領域のドレイン拡散層
とソース拡散層の不純物分布を異なる状態に設定出来
る。
Then, as shown in FIG. 2C, with the photoresist 3 left as it is, impurity arsenic having a conductivity type opposite to that of the semiconductor substrate 1 is changed to tan (90 ° -θ) as a second ion implantation.
2) Implant while rotating the semiconductor substrate 1 at an angle θ2 such that> H / B1 with the normal direction as an axis, to form the second implantation layer 5. Next, heat treatment is performed at, for example, 800 ° C. to 900 ° C. to form the drain diffusion layer 5A and the source diffusion layer 5B as shown in FIG. After that, as shown in FIG. 2E, the interlayer insulating film 14, the electrode wiring 15, and the cover insulating film 16 are formed.
Are sequentially formed to form a MOS type semiconductor memory element. Also in this embodiment, two types of opening regions having different sizes are formed in the photoresist as the mask material, and ion implantation is performed twice at different angles, so that a predetermined photolithography process is required. The impurity distributions of the drain diffusion layer and the source diffusion layer in the region can be set to different states.

【0014】[0014]

【発明の効果】以上説明した様に本発明は、イオン注入
のマスクとなるフォトレジストに大きさの異なる2つの
開口領域を設け、小さい開口においては半導体基板が露
呈されない角度でのイオン注入を行い、その後小さい開
口においても半導体基板が露呈される角度でのイオン注
入を行うことにより、1度のフォトリソグラフィ工程に
より、濃度分布の異なる2種類の拡散層を、所定の領域
に形成出来るという効果を有する。
As described above, according to the present invention, the photoresist serving as the ion implantation mask is provided with two opening regions having different sizes, and the ion implantation is performed at an angle such that the semiconductor substrate is not exposed in the small opening. Then, by performing ion implantation at an angle at which the semiconductor substrate is exposed even in a small opening, two types of diffusion layers having different concentration distributions can be formed in a predetermined region by one photolithography process. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を製造工程順に示す図であ
る。
FIG. 1 is a diagram showing an embodiment of the present invention in the order of manufacturing steps.

【図2】本発明の他の実施例を製造工程順に示す図であ
る。
FIG. 2 is a diagram showing another embodiment of the present invention in the order of manufacturing steps.

【図3】従来の製造方法を製造工程順に示す図である。FIG. 3 is a diagram showing a conventional manufacturing method in the order of manufacturing steps.

【符号の説明】[Explanation of symbols]

1 半導体基板 3 フォトレジスト 4 第1注入層 5 第2注入層 6 第1ウェル拡散層 7 第2ウェル拡散層 19 開口(大きな開口) 20 開口(小さな開口) 1 Semiconductor Substrate 3 Photoresist 4 First Injection Layer 5 Second Injection Layer 6 First Well Diffusion Layer 7 Second Well Diffusion Layer 19 Opening (Large Opening) 20 Opening (Small Opening)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/788 29/792 8617−4M H01L 21/265 L 29/78 371 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical indication location H01L 29/788 29/792 8617-4M H01L 21/265 L 29/78 371

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に対して異なる濃度の第1イ
オン注入層と第2イオン注入層を形成するに際し、半導
体基板上に所要厚さのマスク材を形成する工程と、前記
マスク材には第1イオン注入層に相当する領域はマスク
材の厚さに対して開口寸法の小さな複数の第1の開口を
形成する一方、第2イオン注入層に相当する領域は略全
領域にわたって第2の開口を形成する工程と、第1の開
口に対して半導体基板が露呈されない角度でイオン注入
を行う工程と、第1の開口に対して半導体基板が露呈さ
れる角度でイオン注入を行う工程とを含むことを特徴と
する半導体装置の製造方法。
1. A step of forming a mask material having a required thickness on a semiconductor substrate when forming a first ion implantation layer and a second ion implantation layer having different concentrations on a semiconductor substrate, The region corresponding to the first ion-implanted layer forms a plurality of first openings having a small opening size with respect to the thickness of the mask material, while the region corresponding to the second ion-implanted layer covers the second region over substantially the entire region. A step of forming an opening, a step of performing ion implantation at an angle at which the semiconductor substrate is not exposed to the first opening, and a step of performing ion implantation at an angle at which the semiconductor substrate is exposed to the first opening. A method of manufacturing a semiconductor device, comprising:
【請求項2】 マスク材の厚さをH,半導体基板の法線
方向に対するイオン注入角度をθ1(θ1≠0°)とし
た時に、第2の開口は短辺の長さをA1として(H/A
1)< tan(90°−θ1)の関係に設定し、第1の開口
は開口部の対角線の長さをB3として、(H/B3)>
tan(90°−θ1)の関係となるように設定し、角度θ
1で前記半導体基板を法線方向を軸に回転させながらイ
オン注入を行い、第1の開口の短辺の長さをB1として
(H/B1)< tan(90°−θ2)となる角度θ2で、
前記半導体基板を法線方向を軸に回転させながらイオン
注入を行う請求項1の半導体装置の製造方法。
2. When the thickness of the mask material is H and the ion implantation angle with respect to the direction normal to the semiconductor substrate is θ1 (θ1 ≠ 0 °), the second opening has a short side length of A1 (H / A
1) <tan (90 ° -θ1), and the first opening is (H / B3), where the diagonal length of the opening is B3.
Set so that the relationship of tan (90 ° -θ1) is satisfied and the angle θ
In step 1, ion implantation is performed while rotating the semiconductor substrate about the axis of the normal line, and the length of the short side of the first opening is B1 and the angle θ2 is (H / B1) <tan (90 ° −θ2). so,
2. The method of manufacturing a semiconductor device according to claim 1, wherein ion implantation is performed while rotating the semiconductor substrate about a normal line direction.
JP13451292A 1992-04-28 1992-04-28 Manufacture of semiconductor device Pending JPH05304169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13451292A JPH05304169A (en) 1992-04-28 1992-04-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13451292A JPH05304169A (en) 1992-04-28 1992-04-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05304169A true JPH05304169A (en) 1993-11-16

Family

ID=15130062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13451292A Pending JPH05304169A (en) 1992-04-28 1992-04-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05304169A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005649A1 (en) * 1995-07-25 1997-02-13 Siemens Aktiengesellschaft Process for manufacturing a self-aligned contact and doped region
EP0696059A3 (en) * 1994-08-03 2001-08-01 Kabushiki Kaisha Toshiba Semiconductor device having trenches and method of forming trenches
JP2004071664A (en) * 2002-08-02 2004-03-04 Sony Corp Semiconductor device and its manufacturing method
DE102004009521A1 (en) * 2004-02-27 2005-09-15 Austriamicrosystems Ag High-voltage PMOS transistor
US7315062B2 (en) 2004-03-31 2008-01-01 Eudyna Devices Inc. Semiconductor device, mask for impurity implantation, and method of fabricating the semiconductor device
JP2011171603A (en) * 2010-02-19 2011-09-01 Oki Semiconductor Co Ltd Method of manufacturing semiconductor element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696059A3 (en) * 1994-08-03 2001-08-01 Kabushiki Kaisha Toshiba Semiconductor device having trenches and method of forming trenches
EP1569265A2 (en) * 1994-08-03 2005-08-31 Kabushiki Kaisha Toshiba Semiconductor device having trenches and method of forming trenches
EP1569265A3 (en) * 1994-08-03 2008-06-04 Kabushiki Kaisha Toshiba Semiconductor device having trenches and method of forming trenches
WO1997005649A1 (en) * 1995-07-25 1997-02-13 Siemens Aktiengesellschaft Process for manufacturing a self-aligned contact and doped region
JP2004071664A (en) * 2002-08-02 2004-03-04 Sony Corp Semiconductor device and its manufacturing method
DE102004009521A1 (en) * 2004-02-27 2005-09-15 Austriamicrosystems Ag High-voltage PMOS transistor
US7663203B2 (en) 2004-02-27 2010-02-16 Austriamicrosystems Ag High-voltage PMOS transistor
DE102004009521B4 (en) * 2004-02-27 2020-06-10 Austriamicrosystems Ag High-voltage PMOS transistor, mask for manufacturing a tub and method for manufacturing a high-voltage PMOS transistor
US7315062B2 (en) 2004-03-31 2008-01-01 Eudyna Devices Inc. Semiconductor device, mask for impurity implantation, and method of fabricating the semiconductor device
JP2011171603A (en) * 2010-02-19 2011-09-01 Oki Semiconductor Co Ltd Method of manufacturing semiconductor element

Similar Documents

Publication Publication Date Title
US6204105B1 (en) Method for fabricating a polycide semiconductor device
JP2509706B2 (en) Mask ROM manufacturing method
US5381028A (en) Nonvolatile semiconductor memory with raised source and drain
JPH0361338B2 (en)
JPH05304169A (en) Manufacture of semiconductor device
JP3461107B2 (en) Manufacturing method of semiconductor integrated circuit
JPH0563206A (en) Manufacture of nonvolatile semiconductor memory
JPH01208866A (en) Manufacture of semiconductor device
JPH07321015A (en) Manufacture of semiconductor device
JP2003031770A (en) Semiconductor memory device and its manufacturing method
JP2582931B2 (en) Method for manufacturing semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPH07106443A (en) Nonvolatile semiconductor memory and fabrication thereof
JPH0479336A (en) Production of semiconductor device
JPH03125479A (en) Manufacture of semiconductor integration circuit with non-volatile memory element
JPS61239671A (en) Manufacture of semiconductor memory device
JP2003060075A (en) Semiconductor device and manufacturing method therefor
JPH10189471A (en) Manufacture of semiconductor device
JPH0582734A (en) Manufacture of mos semiconductor device
JPH08162548A (en) Manufacture of nonvolatile semiconductor device
JPH03205870A (en) Semiconductor device
JPH0536987A (en) Non-volatile semiconductor memory device and manufacturing method
JPH02209767A (en) Manufacture of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH0427166A (en) Manufacture of semiconductor nonvolatile memory