JPH05287608A - Production of high-tenancity polyvinyl alcohol-based fiber - Google Patents

Production of high-tenancity polyvinyl alcohol-based fiber

Info

Publication number
JPH05287608A
JPH05287608A JP10876092A JP10876092A JPH05287608A JP H05287608 A JPH05287608 A JP H05287608A JP 10876092 A JP10876092 A JP 10876092A JP 10876092 A JP10876092 A JP 10876092A JP H05287608 A JPH05287608 A JP H05287608A
Authority
JP
Japan
Prior art keywords
temperature
pva
spinning
polyvinyl alcohol
coagulation bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10876092A
Other languages
Japanese (ja)
Inventor
Hirofumi Sano
洋文 佐野
Toshimi Yoshimochi
駛視 吉持
Masahiro Sato
政弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP10876092A priority Critical patent/JPH05287608A/en
Publication of JPH05287608A publication Critical patent/JPH05287608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide the subject polyvinyl alcohol-based fiber excellent in heat resistance, fatigue resistance and abrasion resistance and suitable for a reinforcing material such as rubber, plastic or cement and an industrial material such as a rope, a fish net and a sheet for construction. CONSTITUTION:The objective polyvinyl alcohol-based fiber is obtained by dissolving a polyvinyl alcohol-based polymer having >=6000 viscosity-average polymerization degree in a dimethyl sulfoxidebased solvent and dry and wet spinning it while keeping the temperature of the coagulation bath to <=15 deg.C, keeping the temperature of the discharged polyvinyl alcohol solution to a temperature 90 to 150 deg.C higher than that of the coagulation bath and controlling the spinning draft to 0.1 to 1.0 so as to form a uniform and crystallite-network structured gel yarn and subsequently carrying out wet drawing and dry heat stretching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強力なポリビニルア
ルコール(以下PVAと略記する)系繊維の製造法に関
するものである。本発明で得られる繊維は高温で長時間
使用されるタイヤ、自動車ホース、消防ホース、コンベ
アベルト、Vベルトなどのゴム資材の補強材あるいはプ
ラスチックやセメントの補強材さらにはロープ、テン
ト、帆布、漁網、テンションメンバー、土木建築などの
一般産業資材に適した高強度PVA系繊維である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength polyvinyl alcohol (hereinafter abbreviated as PVA) fiber. The fiber obtained in the present invention is a reinforcing material for rubber materials such as tires, automobile hoses, fire hoses, conveyor belts, V-belts or the like used for a long time at high temperature, or a reinforcing material for plastics or cement, as well as ropes, tents, canvas, fishing nets. It is a high-strength PVA fiber suitable for general industrial materials such as tension members, civil engineering and construction.

【0002】[0002]

【従来の技術】従来、PVA系繊維は、強度、弾性率、
耐候性、耐薬品性、接着性などの点でポリアミド、ポリ
エステル、ポリアクリロニトリル系繊維に比べて優れて
おり、産業資材分野を中心に独自の用途を開拓してき
た。そしてさらに強度、耐湿熱性、耐ゴム疲労性などの
性能が向上したPVA系繊維が開発されれば、ゴムやプ
ラスチックスの補強材あるいは一般産業資材において、
苛酷な条件下での安全性、耐久性、軽量性を満足した商
品が期待される。
2. Description of the Related Art Conventionally, PVA-based fibers are
It is superior to polyamide, polyester, and polyacrylonitrile-based fibers in terms of weather resistance, chemical resistance, adhesiveness, etc., and has pioneered unique applications mainly in the field of industrial materials. If PVA-based fibers with improved performance such as strength, resistance to moist heat, and resistance to rubber fatigue are developed, they will be used as reinforcement materials for rubber and plastics or general industrial materials.
Expecting products that satisfy safety, durability, and lightness under harsh conditions.

【0003】高重合度PVAを用いて高強度、高弾性率
繊維を得る方法が特開昭59−130314号公報、特
開昭61−289112号公報、特開昭62−8501
3号公報等で開示され、強度19〜29g/d、弾性率
550〜650g/dの繊維が得られるている。これら
の物性は、PVAが高重合度であるほど高くなるが、そ
の思想は高重合度により分子鎖が長く、からみ点が多く
なるがそれを希薄溶液で少なくし、高倍率延伸をする事
で高強力化を行うものであった。しかし、希薄溶液を紡
糸する場合、ノズルやローラーへの粘着あるいは曳糸性
不良による欠陥部や単糸切れの発生、さらには結晶と結
晶を結ぶタイ分子数の減少による耐久性低下など繊維物
性は十分満足されるものではなかった。
Methods for obtaining high strength and high modulus fibers using a high degree of polymerization PVA are disclosed in JP-A-59-130314, JP-A-61-289112 and JP-A-62-8501.
A fiber having a strength of 19 to 29 g / d and an elastic modulus of 550 to 650 g / d, which is disclosed in Japanese Patent No. 3 or the like, is obtained. The higher the degree of polymerization of PVA, the higher these physical properties become, but the idea is that the molecular chain is long due to the high degree of polymerization, and the number of entanglements increases, but by reducing it in a dilute solution and stretching at a high ratio. It was intended to be highly powerful. However, when spinning a dilute solution, fiber physical properties such as adhesion to nozzles and rollers or defective parts due to poor spinnability or single yarn breakage, and further decrease in durability due to decrease in the number of tie molecules connecting crystals are not observed. I was not completely satisfied.

【0004】一方ジメチルスルホキシド溶剤を用いて紡
糸する方法は特公昭43−16675号公報、特開昭6
0−126311号公報、特開昭60−126312号
公報、特開昭62−162010号公報などに記載され
ている。しかしこれらの方法は重合度が5000以下で
あったり、あるいは溶液温度が80℃以下であった。重
合度が5000以下では結晶間を貫通するタイ分子が少
なく、強度や耐久性に劣っていた。また高重合度で溶液
温度が80℃以下では紡糸粘度上PVA濃度を高める事
は出来ず、前記の希薄溶液での欠点を有していた。
On the other hand, the method of spinning using a dimethyl sulfoxide solvent is disclosed in Japanese Examined Patent Publication No. 43-16675 and Japanese Unexamined Patent Publication No.
0-126311, JP-A-60-126312, JP-A-62-162010 and the like. However, in these methods, the degree of polymerization was 5000 or less, or the solution temperature was 80 ° C. or less. When the degree of polymerization was 5000 or less, there were few tie molecules penetrating between the crystals, and the strength and durability were poor. Further, when the polymerization temperature is high and the solution temperature is 80 ° C. or lower, the PVA concentration cannot be increased due to the spinning viscosity, and there is a drawback in the above dilute solution.

【0005】また、グリセリンやエチレングリコールの
如き多価アルコールでは、ゲル化温度が高い為、例えば
170℃以上の溶液温度を用いるが、希薄溶液の欠点を
抑える為にPVA濃度を高くすると粘度増大ひいては溶
液温度上昇となり、熱分解などで重合度低下を招くとい
う問題があった。
With polyhydric alcohols such as glycerin and ethylene glycol, since the gelling temperature is high, a solution temperature of, for example, 170 ° C. or higher is used. However, increasing the PVA concentration in order to suppress the drawbacks of a dilute solution increases the viscosity and thus the viscosity. There is a problem that the solution temperature rises and the degree of polymerization is lowered due to thermal decomposition or the like.

【0006】[0006]

【発明が解決しようとする課題】以上の背景を踏まえ本
発明の目的は、高重合度PVAを用い溶剤および紡糸条
件を適性範囲に選びより均質な非晶ゲル構造を生成する
事により高強力で耐疲労性や耐熱水性などの耐久性に優
れるPVA系繊維を提供することにある。本発明者ら
は、高重合度PVA系重合体を用い如何に熱分解を抑え
ながら均質なゲル構造を作るか、そして微結晶でネット
ワーク状に分子がつながり、その後の乾熱延伸で伸び切
り鎖に近い高配向、高結晶構造、さらには結晶間を結ぶ
たて方向、よこ方向のtie分子の多い構造にするかに
ついて鋭意検討を重ねた。その結果、比較的低い温度で
高重合度PVAを溶解するジメチルスルホキシド(以下
DMSOと略記する)系溶剤を用い、やや高目の紡糸温
度でPVA濃度を高めながら逆ドラフトの状態で急激に
冷却をする事により、均質で微結晶に富んだネットワー
ク構造のゲル糸が得られる事を見出し、本発明に至った
ものである。
SUMMARY OF THE INVENTION Based on the above background, the object of the present invention is to obtain high homogeneity by using PVA having a high degree of polymerization and selecting a solvent and spinning conditions in an appropriate range to produce a more homogeneous amorphous gel structure. It is to provide a PVA-based fiber having excellent durability such as fatigue resistance and hot water resistance. The inventors of the present invention have found out how to use a high degree of polymerization PVA-based polymer to form a homogeneous gel structure while suppressing thermal decomposition, and to connect molecules in a network with fine crystals, and then to extend and cut chains by dry heat drawing. The inventors have made extensive studies on whether the structure should have a high orientation and a high crystal structure close to the above, or a structure with many tie molecules in the vertical and horizontal directions connecting the crystals. As a result, a dimethylsulfoxide (hereinafter abbreviated as DMSO) solvent that dissolves PVA with a high degree of polymerization at a relatively low temperature is used, and the PVA concentration is increased at a slightly higher spinning temperature while rapidly cooling in a reverse draft state. By doing so, it was found that a gel thread having a network structure that is homogeneous and rich in fine crystals can be obtained, and the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、粘度
平均重合度が6000以上のポニビニルアルコール系重
合体がジメチルスルホキシドを60重量%以上含む溶剤
に溶解されている溶液をノズルより気体中に吐出し続い
て凝固浴中にて固化させる乾湿式紡糸法において、凝固
浴温度を15℃以下とし、かつ該吐出溶液の温度を凝固
浴温度より90〜150℃高くし、さらに紡糸ドラフト
0.1〜1.0で紡糸することを特徴とする高強力ポニ
ビニルアルコール系繊維の製造法に関するものである。
Means for Solving the Problems That is, according to the present invention, a solution in which a ponivinyl alcohol-based polymer having a viscosity average degree of polymerization of 6000 or more is dissolved in a solvent containing 60% by weight or more of dimethyl sulfoxide is introduced into a gas from a nozzle. In the dry-wet spinning method of discharging and subsequently solidifying in a coagulation bath, the coagulation bath temperature is set to 15 ° C. or lower, and the temperature of the discharge solution is set to 90 to 150 ° C. higher than the coagulation bath temperature, and further spinning draft 0.1. The present invention relates to a method for producing a high-strength ponivinyl alcohol fiber, which is characterized in that spinning is performed at 1.0 to 1.0.

【0008】以下本発明の内容をさらに詳細に説明す
る。本発明で言うPVA系重合体とは、粘度平均重合度
が6,000以上のものであり、好ましくはケン化度が
99モル%以上で分岐度の低い直鎖状のものである。P
VAの平均重合度が高いほどネットワーク構造で多くの
微結晶を貫通する分子(tie分子)の数が多くなり高
強度、高弾性率、高耐久性が得やすく、好ましくは8,
000以上、さらに好ましくは10,000以上であ
る。PVA系重合体には、3重量%以下の顔料、酸化防
止剤、紫外線吸収剤、結晶化抑制剤、架橋剤、界面活性
剤などを必要に応じて添加しても支障ない。また2モル
%以下の改質剤を共重合したものもPVAに含まれる。
The contents of the present invention will be described in more detail below. The PVA polymer referred to in the present invention is a linear polymer having a viscosity average polymerization degree of 6,000 or more, preferably a saponification degree of 99 mol% or more and a low branching degree. P
The higher the average degree of polymerization of VA, the greater the number of molecules (tie molecules) penetrating many fine crystals in the network structure, and the higher the strength, the higher the elastic modulus, the higher the durability, the easier it is to obtain.
000 or more, more preferably 10,000 or more. If necessary, 3% by weight or less of a pigment, an antioxidant, an ultraviolet absorber, a crystallization inhibitor, a cross-linking agent, and a surfactant may be added to the PVA-based polymer. Moreover, what copolymerized the modifier of 2 mol% or less is also contained in PVA.

【0009】PVA系重合体の溶剤としては、少なくと
もDMSOを60重量%以上含むものである。60重量
%未満では高重合度PVAの溶解性が減少し、より高温
で溶解するためPVAの着色や分解が起こり、ひいては
繊維性能の低下を招き易い。従って、本発明の溶剤は、
DMSO100%は勿論の事、40重量%未満の他の溶
剤、例えば水やグリセリン、エチレングリコール、ジエ
チレングリコール、トリエチレングリコールなどの多価
アルコール、さらにはジメチルホルムアミド、ジメチル
アセトアミド、エチレンジアミン、ジエチレントリアミ
ンなどのアミン化合物などが1種又は2種以上混合され
ていても何ら問題ない。但し、PVA系重合体の溶解温
度および紡糸温度が165℃を越えると分解を起こし易
いのでそれ以下の温度で、かつ均一な溶液を作る溶剤及
び混合比を選ぶ必要がある。
The solvent for the PVA-based polymer contains at least 60% by weight of DMSO. If it is less than 60% by weight, the solubility of the high degree of polymerization PVA is reduced, and the PVA is dissolved at a higher temperature, so that the PVA is colored or decomposed, and the fiber performance is likely to be deteriorated. Therefore, the solvent of the present invention,
DMSO 100%, of course, other solvents less than 40% by weight, such as water and polyhydric alcohols such as glycerin, ethylene glycol, diethylene glycol, triethylene glycol, and amine compounds such as dimethylformamide, dimethylacetamide, ethylenediamine, diethylenetriamine. There is no problem even if one or more of these are mixed. However, if the dissolution temperature and spinning temperature of the PVA-based polymer exceed 165 ° C., decomposition is likely to occur, so it is necessary to select a solvent and a mixing ratio at which the temperature is lower than that and a uniform solution is formed.

【0010】PVA系重合体の濃度は、重合度および溶
剤によって異なるが、本発明は紡糸温度を高くし、通常
用いるPVA濃度より高めにしている。例えば、重合度
8,000、DMSO100%の溶剤において、通常で
は紡糸温度60〜80℃でPVA濃度5.5〜7.5重
量%であるのに対し、本発明では紡糸温度90〜165
℃でPVA濃度8〜11重量%を用いる。なお高温でP
VA濃度を低くすると曳糸性が低下し、粘着が激しくな
って紡糸が安定に出来ない。PVA濃度を若干高める事
により、結晶間のtie分子を多くし、高耐久性繊維を
つくることができる。
The concentration of the PVA-based polymer varies depending on the degree of polymerization and the solvent, but in the present invention, the spinning temperature is raised to be higher than the concentration of PVA usually used. For example, in a solvent having a degree of polymerization of 8,000 and DMSO 100%, the spinning temperature is usually 60 to 80 ° C. and the PVA concentration is 5.5 to 7.5% by weight, whereas the spinning temperature is 90 to 165 in the present invention.
A PVA concentration of 8-11 wt.% At C is used. P at high temperature
When the VA concentration is lowered, the spinnability is deteriorated, the tackiness is increased, and the spinning cannot be stabilized. By increasing the PVA concentration slightly, the number of tie molecules between crystals can be increased and a highly durable fiber can be produced.

【0011】さらに結晶の成長を抑え、微結晶構造にす
る為に急冷する事が重要であり、本発明では15℃以下
の凝固温度に対し、紡糸温度はそれより90〜150℃
高くしている。凝固温度が15℃を越えると結晶が成長
し易く失透気味のゲル糸が得られ、PVA濃淡差による
不均一構造やtie分子の片寄りにより高強度、高耐久
性を十分満足できない。凝固温度は好ましくは10℃以
下であるが、溶剤中のDMSOが凍結する温度より高く
しなければならない。DMSOが凍結すると、DMSO
の結晶でPVA濃淡差が生じ易く、均質なゲル構造は得
られない。
Further, it is important to quench rapidly in order to suppress the growth of crystals and form a fine crystal structure. In the present invention, the spinning temperature is 90 to 150 ° C. while the solidification temperature is 15 ° C. or lower.
It's high. When the coagulation temperature exceeds 15 ° C., crystals easily grow and a devitrified gel yarn is obtained, and high strength and high durability cannot be sufficiently satisfied due to the non-uniform structure due to the difference in PVA density and the deviation of tie molecules. The coagulation temperature is preferably below 10 ° C, but must be above the temperature at which DMSO in the solvent freezes. When DMSO freezes, DMSO
A difference in PVA density is likely to occur in the crystals of, and a uniform gel structure cannot be obtained.

【0012】紡糸温度が凝固温度に対し90℃より少な
い温度差では急冷ができなく、微結晶ネットワーク構造
が難しい。150℃以上の温度差では、PVAの分解が
起こり易くなり、かつ紡糸安定の為PVA濃度を高めた
場合、分子鎖のからみが多くなり高倍率延伸が出来ず、
高配向な高強力繊維を得難い。紡糸温度の好ましい条件
は100〜150℃である。
If the spinning temperature is lower than 90 ° C. with respect to the solidification temperature, rapid cooling cannot be performed, and the microcrystalline network structure is difficult. At a temperature difference of 150 ° C. or more, decomposition of PVA is likely to occur, and when the PVA concentration is increased for spinning stability, entanglement of molecular chains increases and high-magnification stretching cannot be performed.
It is difficult to obtain highly oriented, high strength fibers. The preferred spinning temperature is 100 to 150 ° C.

【0013】紡糸方式としては、PVA系重合体の高温
溶液を紡糸ノズルより吐出させ、その後低温の凝固浴で
急冷し、均質で透明なゲル繊維を得る為に乾湿式紡糸法
が用いられる。乾湿式紡糸法とは、ノズルと凝固浴の間
に気体層を存在させ、ノズルが凝固浴中に直接存在しな
いようにした紡糸法であり、従って吐出された紡糸原液
は気体層を通過したのち凝固浴に入ることとなる。気体
層としては、通常、空気層が用いられる。
As a spinning method, a dry-wet spinning method is used in order to obtain a homogeneous and transparent gel fiber by discharging a high temperature solution of a PVA polymer from a spinning nozzle and then rapidly cooling it in a low temperature coagulation bath. The dry-wet spinning method is a spinning method in which a gas layer is present between the nozzle and the coagulation bath so that the nozzle does not directly exist in the coagulation bath, and therefore the discharged spinning stock solution passes through the gas layer. You will enter the coagulation bath. An air layer is usually used as the gas layer.

【0014】凝固浴中の凝固剤としては、メタノール、
エタノールなどのアルコール類、アセトン、アルカリ水
溶液、アルカリ金属塩水溶液などいずれの凝固剤も使用
できるが、溶剤をゆっくり抽出し且つ均一なゲルを作る
為にはアルコール/溶剤の混合系が好ましい。
As a coagulant in the coagulation bath, methanol,
Although any coagulant such as alcohols such as ethanol, acetone, an aqueous alkali solution, an aqueous alkali metal salt solution can be used, an alcohol / solvent mixed system is preferable for slowly extracting the solvent and forming a uniform gel.

【0015】一方、PVAの結晶成長やPVAと溶剤の
相分離を抑えて、微結晶のネットワーク構造を作る為に
は、紡糸ドラフトも関係してくる。紡糸ドラフトは、P
VA溶液がノズルから射出する時の速度に対する引取速
度の比(すなわち原液がノズルより吐出される際の吐出
線速度に対する第1ゴデットローラー速度の比:本発明
で言う第1ゴデットローラーとは、原液がノズルより吐
出されて凝固浴で固化され、その固化糸が実質的に初め
て接触する固体であり、所定速度で回転している駆動ロ
ーラーや、固化糸との摩擦により回転するアリーローラ
ー、さらには固化糸の糸道方向を変更するために用いら
れそれ自体は動かない棒状、T字状、スネーク状などの
ガイド類等が含まれる。もちろん、接触するには違いな
いがその程度が極めて軽微であるような固体はこれには
含まれない。)を意味し、次式で表される。
On the other hand, in order to suppress the crystal growth of PVA and the phase separation between PVA and the solvent to form a microcrystalline network structure, a spinning draft is also involved. The spinning draft is P
The ratio of the take-up speed to the speed at which the VA solution is ejected from the nozzle (that is, the ratio of the first godet roller speed to the discharge linear velocity when the stock solution is discharged from the nozzle: the first godet roller in the present invention is , A stock solution is discharged from a nozzle and solidified in a coagulation bath, and the solidified yarn is a solid that is substantially in contact for the first time, and a driving roller that rotates at a predetermined speed, or an alley roller that rotates by friction with the solidified yarn, Furthermore, guides such as rod-shaped, T-shaped, snake-shaped, etc., which are used to change the yarn path direction of the solidified yarn and do not move by themselves, are included. It does not include a solid that is slight, and is represented by the following formula.

【0016】Df=πD↑2×H×Tu/4Q 但し D :ノズル直径mm H :ノズル孔数 Tu:引取速度m/min Q :吐出量cc/minDf = πD ↑ 2 × H × Tu / 4Q where D: nozzle diameter mm H: nozzle hole number Tu: take-up speed m / min Q: discharge rate cc / min

【0017】紡糸ドラフトが1.0を超える事は、ノズ
ルより吐出した糸条を引張る事により分子鎖の配向と分
子鎖の接近による結晶の生長が起こり易く好ましくな
い。紡糸ドラフトが0.1未満では溶液の射出速度が大
きすぎてノズル下でバルーニング(剪断と直角方向の膨
らみ)現象が増大し、ノズルでの粘着や糸ゆれなどの問
題により紡糸が不安定になる。好ましくは0.2〜0.
6である。
A spinning draft of more than 1.0 is not preferable because the orientation of the molecular chains and the growth of crystals due to the approach of the molecular chains are likely to occur by pulling the yarn discharged from the nozzle. If the spinning draft is less than 0.1, the injection speed of the solution will be too high and the ballooning (bulging in the direction perpendicular to shear) phenomenon will increase under the nozzle, and spinning will become unstable due to problems such as sticking and yarn wobbling at the nozzle. .. Preferably 0.2-0.
It is 6.

【0018】また、ゲル繊維の断面変形や膠着を防止
し、かつ紡糸時の微結晶を破壊して延伸倍率を向上させ
るために溶剤を含んだまま、2倍以上好ましくは4倍以
上湿延伸するのが良い。続いてメタノール、エタノール
などのアルコール類やアセトン、水などの抽出剤で該溶
剤をほとんど全部除去したあと乾燥により該抽出剤を蒸
発させる。
Further, in order to prevent the cross-section deformation and sticking of the gel fiber and to break the fine crystals at the time of spinning to improve the draw ratio, wet drawing is carried out at least 2 times, preferably at least 4 times while containing the solvent. Is good. Subsequently, almost all the solvent is removed with an extractant such as alcohols such as methanol and ethanol, acetone and water, and then the extractant is evaporated by drying.

【0019】その後200℃以上の温度で乾熱延伸する
が、湿延伸倍率と乾熱延伸倍率の積で表される総延伸倍
率は、16倍以上好ましくは18倍以上である。本発明
で得られる紡糸原糸は急冷と低紡糸ドラフトにより結晶
成長を抑えているので、通常より総延伸倍率は高い。高
温で高倍率延伸ほど配向と結晶化を高め、高性能なPV
A繊維が得られ易い。但し、高温にしすぎてPVAの分
解や分子鎖のフロー現象(結晶融解が起こり、延伸で分
子鎖が素抜ける現象)が生じないようにする必要があ
る。また分解を抑えたり、延伸をスムーズにさせる為に
紡糸原液から乾熱延伸直前までの間で、分解抑制剤や油
剤を繊維に含有させる事は何ら支障ない。
After that, the film is dry-heat stretched at a temperature of 200 ° C. or more, and the total draw ratio represented by the product of the wet draw ratio and the dry heat draw ratio is 16 times or more, preferably 18 times or more. Since the spun raw yarn obtained in the present invention suppresses crystal growth by quenching and low spinning draft, the total draw ratio is higher than usual. High-performance PV with higher orientation and higher crystallization at higher temperatures
A fiber is easily obtained. However, it is necessary to prevent the decomposition phenomenon of PVA and the flow phenomenon of the molecular chain (the phenomenon of crystal melting, which causes the molecular chain to come out by stretching) at too high temperature. Further, in order to suppress the decomposition and to make the drawing smooth, it is no problem to add a decomposition inhibitor or an oil agent to the fiber between the spinning stock solution and immediately before the dry heat drawing.

【0020】本発明により得られる繊維は、高強度、高
弾性率を有し、耐ゴム疲労性、耐熱水性、耐熱老化性な
どの耐久性に優れ、産業資材用として適した高性能PV
A系繊維であった。
The fiber obtained by the present invention has high strength and high elastic modulus, is excellent in durability such as rubber fatigue resistance, hot water resistance and heat aging resistance, and is a high performance PV suitable for industrial materials.
It was an A-based fiber.

【0021】[0021]

【実施例】以下実施例により本発明をさらに具体的に説
明するが、本発明は実施例のみに限定されるものではな
い。なお実施例中における各種の物性値は以下の方法に
より測定された。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples. The various physical properties in the examples were measured by the following methods.

【0022】1) PVAの粘度平均重合度(P)およ
び重合度低下率 PVA系重合体を酢化して得た酢酸ビニルの30℃にお
けるPVA希薄アセトン溶液の比粘度ηspを5点測定
し、〔η〕=lim c→o ηsp/Cより〔η〕を
求め、さらにP=(〔η〕×100/7.94)↑1/0.
64より粘度平均重合度を求めた。また重合度低下率は、
延伸糸のPを上述と同様に求めもとのPVA重合体のP
に対する低下率より求めた。
1) Viscosity average degree of polymerization (P) and degree of decrease in degree of polymerization of PVA The specific viscosity ηsp of a PVA diluted acetone solution of vinyl acetate obtained by acetylating a PVA polymer at 30 ° C. was measured at 5 points, η] = lim c → o ηsp / C to obtain [η], and further P = ([η] × 100 / 7.94) ↑ 1/0.
The viscosity average degree of polymerization was determined from 64. Also, the degree of decrease in the degree of polymerization is
The P of the drawn yarn was determined in the same manner as above, and the P of the PVA polymer was determined.
It was calculated from the rate of decrease.

【0023】2) 熱水溶断温度(WTb) 単繊維25本にデニール当たり200mgの荷重をかけ
て、水を満たしたガラス製円筒状密封容器の中間に吊
し、周囲より水を1〜2℃/minの速度で加熱昇温さ
せていき、繊維が溶断したときの温度を測定した。
2) Hot water disconnection temperature (WTb) A load of 200 mg per denier was applied to 25 monofilaments and hung in the middle of a glass-made cylindrical sealed container filled with water, and the water was heated to 1 to 2 ° C. from the surroundings. The temperature at which the fibers melted was measured by heating and raising the temperature at a rate of / min.

【0024】3) 単糸引張強伸度、弾性率 JIS L−1013に準じ、予め調湿された単繊維を
試長10cmになるように台紙に貼り、25℃×60%
で12時間以上放置。次いでインストロン1122で2
kg用チャックを用い、初荷重1/20g/d、引張速
度50%/minにて、破断強伸度および初期弾性率を
求め、n≧20の平均値を採用した。デニールは1/1
0g/d荷重下で30cmにカットし、重量法により求
めた。なおデニール測定後の単繊維を用いて強伸度、弾
性率を測定し1本ずつデニールと対応させた。
3) Single-filament Tensile Strength and Elongation, Elastic Modulus According to JIS L-1013, pre-conditioned humidity-adjusted single fibers are attached to a mount so that the test length is 10 cm, and 25 ° C. × 60%.
Leave it for 12 hours or more. Then at Instron 1122 2
Using a kg chuck, the breaking strength and elongation and the initial elastic modulus were determined at an initial load of 1/20 g / d and a tensile speed of 50% / min, and an average value of n ≧ 20 was adopted. Denier is 1/1
It was cut to 30 cm under a load of 0 g / d and determined by a gravimetric method. The single fiber after denier measurement was used to measure the strength / elongation and elastic modulus, and each fiber was made to correspond to denier.

【0025】4) 耐ゴム疲労性 約5000デニールの諸撚コードをRFL処理し、生ゴ
ムにコードを20本並べて、その上に生ゴムをはる。サ
ンドイッチ上に2層のコード層を作って加硫し、矩形状
のベルトを作成する。ついでプーリー径25φのベルト
屈曲試験機で100℃3万回該ベルトを圧縮疲労させた
あと圧縮部のコードをゴムより取り出し疲労前後のコー
ド強力より保持率を算出した。
4) Rubber fatigue resistance About 5,000 denier ply-twisted cord is subjected to RFL treatment, 20 cords are arranged on the raw rubber, and the raw rubber is put on the cord. Two layers of cord are made on the sandwich and vulcanized to form a rectangular belt. Then, the belt was subjected to compression fatigue at 100 ° C. 30,000 times with a belt bending tester having a pulley diameter of 25φ, the cord of the compression portion was taken out of the rubber, and the retention rate was calculated from the cord strength before and after fatigue.

【0026】実施例1 粘度平均重合度17,000でケン化度が99.8モル
%のPVAを濃度5.3%になるようにDMSO100
%の溶剤に添加し、100℃にて溶解した。得られた溶
液を140℃にして孔数300、孔径0.18φのノズ
ルより吐出させ、メタノール/DMSO=7/3重量
比、5℃の凝固浴で乾湿式紡糸した。その時の吐出量は
120cc/分、凝固浴中の引取ローラー速度は4m/
分、紡糸ドラフトは0.25であった。得られたゲル糸
は透明で真円の断面を有していた。次いで40℃のメタ
ノール浴で4倍湿延伸したあとメタノールで該溶剤をほ
とんど全部除去した。得られた紡糸原糸を180℃と2
10℃と250℃の3セクションからなる熱風炉で総延
伸倍率19.5倍になるように延伸した。
Example 1 PVA having a viscosity average degree of polymerization of 17,000 and a degree of saponification of 99.8 mol% was added to DMSO100 so as to have a concentration of 5.3%.
% Solvent and dissolved at 100 ° C. The obtained solution was heated to 140 ° C. and discharged from a nozzle having 300 holes and a hole diameter of 0.18φ, and dry-wet spinning was performed in a coagulation bath at a methanol / DMSO = 7/3 weight ratio of 5 ° C. The discharge rate at that time was 120 cc / min, and the take-up roller speed in the coagulation bath was 4 m /
The spinning draft was 0.25. The gel yarn obtained was transparent and had a perfect circular cross section. Next, the film was wet-stretched 4 times in a methanol bath at 40 ° C., and then almost all the solvent was removed with methanol. The obtained spun raw yarn was heated at 180 ° C. and 2
Stretching was performed in a hot-air stove consisting of three sections at 10 ° C. and 250 ° C. so that the total stretching ratio was 19.5 times.

【0027】延伸糸は着色や膠着がなく、ポリマー重合
度に対する延伸糸重合度の低下率は13%と低いもので
あった。延伸糸の単糸強度は26.7g/d、弾性率は
540g/dを示し、従来にみられない高強度、高弾性
率PVA繊維となった。また熱水溶断温度(WTb)は
158℃、融点は約260℃を示し、耐熱水性、耐熱性
にすぐれ、ロープ、漁網、土木シート、帆布などの一般
産業資材さらにはプラスチックやセメントなどの補強材
としても付加価値の高いものであった。また、約500
0デニールの諸撚コードを用いベルト屈曲試験を行った
が、100℃×3万回の強力保持率は81%と高く、タ
イヤやベルトなど耐ゴム疲労性にも優れる事が判明し
た。
The drawn yarn had no coloring or sticking, and the reduction rate of the degree of polymerization of the drawn yarn with respect to the degree of polymerization of the polymer was as low as 13%. The single yarn strength of the drawn yarn was 26.7 g / d, and the elastic modulus was 540 g / d, and it was a high-strength, high-modulus PVA fiber which was not found in the past. It also has a hot water cutoff temperature (WTb) of 158 ° C and a melting point of about 260 ° C. It has excellent heat and water resistance and heat resistance, as well as general industrial materials such as ropes, fishing nets, civil engineering sheets and canvas, and reinforcement materials such as plastics and cement. However, the value added was high. Also, about 500
A belt bending test was carried out using a twisted cord of 0 denier, and it was found that the strength retention at 100 ° C x 30,000 cycles was as high as 81% and the rubber fatigue resistance of tires and belts was also excellent.

【0028】比較例1 実施例1において、PVA濃度を4.5%にし、85℃
の溶液をノズルより吐出させ、メタノール/DMSO=
7/3重量比、5℃の凝固浴で乾湿式紡糸した。得られ
た紡糸原糸を実施例1と同じ温度で延伸したが総延伸倍
率は17.8倍であった。延伸糸の単糸強度は22.6
g/d、弾性率は490g/dを示し、実施例1の繊維
より低い値となった。またWTbは149℃、融点は2
52℃と低く、ベルト屈曲の100℃×3万回の強力保
持率も62%に低下した。PVA濃度が低くかつ溶液温
度と凝固温度の差が小さいと結晶がやや大きくなり、か
つ結晶間のtie分子数が少ない為か延伸倍率、強度、
耐久性などに劣る事が判明した。
Comparative Example 1 In Example 1, the PVA concentration was set to 4.5% and the temperature was changed to 85 ° C.
The solution of is discharged from the nozzle and methanol / DMSO =
Dry-wet spinning was performed in a coagulation bath at a weight ratio of 7/3 and 5 ° C. The obtained spun raw yarn was drawn at the same temperature as in Example 1, but the total draw ratio was 17.8 times. The single yarn strength of the drawn yarn is 22.6.
The g / d and elastic modulus were 490 g / d, which were lower than those of the fiber of Example 1. WTb is 149 ° C., melting point is 2
The temperature was as low as 52 ° C, and the strength retention of belt bending at 100 ° C x 30,000 cycles was also reduced to 62%. If the PVA concentration is low and the difference between the solution temperature and the solidification temperature is small, the crystals become slightly large, and the number of tie molecules between the crystals is small.
It was found to be inferior in durability.

【0029】実施例2 粘度平均重合度が8,000でケン化度が99.5モル
%のPVAを濃度9重量%になるようにDMSO/H↓
2O=8/2の溶剤に添加し95℃にて溶解した。得ら
れた溶液を120℃にして孔数80、孔径0.15φの
ノズルより吐出させ、メタノール/DMSO=6/4重
量比、2℃の凝固浴で乾湿式紡糸した。この時の紡糸ド
ラフトは0.31であった。得られたゲル糸は透明で、
円形断面を有していた。次いで40℃のメタノール浴で
4倍湿延伸したあとメタノールで該溶剤をほとんど全部
除去した。得られた原糸を170℃と248℃の2セク
ションからなる輻射炉で総延伸倍率が20.1倍になる
ように延伸した。延伸糸の単糸強度は23.1g/d、
弾性率は520g/dを示し、高強度、高弾性率PVA
繊維であった。またWTbも146℃と高く、100℃
×3万回ベルト屈曲疲労後の強力保持率も75%と高い
ものであった。
Example 2 PVA having a viscosity average degree of polymerization of 8,000 and a degree of saponification of 99.5 mol% was adjusted to a concentration of 9% by weight in DMSO / H ↓.
It was added to a solvent of 2O = 8/2 and dissolved at 95 ° C. The obtained solution was heated to 120 ° C. and discharged from a nozzle having 80 holes and a hole diameter of 0.15φ, and dry-wet spinning was performed in a coagulation bath at a methanol / DMSO = 6/4 weight ratio of 2 ° C. The spinning draft at this time was 0.31. The gel thread obtained is transparent,
It had a circular cross section. Next, the film was wet-stretched 4 times in a methanol bath at 40 ° C., and then almost all the solvent was removed with methanol. The obtained raw yarn was drawn in a radiation furnace consisting of two sections at 170 ° C. and 248 ° C. so that the total draw ratio was 20.1 times. The single yarn strength of the drawn yarn is 23.1 g / d,
Elastic modulus is 520g / d, high strength, high elastic modulus PVA
It was a fiber. WTb is also high at 146 ° C, 100 ° C
The strength retention after belt bending fatigue of 30,000 times was as high as 75%.

【0030】比較例2 実施例2において凝固温度を25℃にしたところ白濁し
たゲル糸が得られた。実施例2と同様にして延伸したと
ころ、総延伸倍率は21.0倍と高かったが、延伸張力
は低く単繊維の強度、弾性率もそれぞれ20.4g/
d、480g/dと実施例2より劣っていた。この理由
は明確でないが、凝固温度が高い為、溶剤の抽出速度が
大きく、PVA濃淡差による不均一構造が出来易いのが
原因と思われる。その結果大きな結晶が生成して粗密に
よる白濁現象とtie分子の片寄りが起こり、延伸され
易いが、延伸張力や強度の低い構造が形成されたと考え
られる。
Comparative Example 2 When the coagulation temperature was set to 25 ° C. in Example 2, a cloudy gel yarn was obtained. When stretched in the same manner as in Example 2, the total stretching ratio was as high as 21.0 times, but the stretching tension was low and the strength and elastic modulus of the single fiber were 20.4 g / each.
d, 480 g / d, which was inferior to Example 2. The reason for this is not clear, but it is considered that the solidification temperature is high, the extraction rate of the solvent is high, and a non-uniform structure is likely to be formed due to the difference in PVA density. As a result, it is considered that a large crystal was generated, a white turbidity phenomenon due to the density and a deviation of the tie molecules occurred, and the film was easily stretched, but a structure having low stretching tension and strength was formed.

【0031】実施例3 粘度平均重合度が23,000でケン化度が99.9モ
ル%のPVAを濃度5重量%になるようにDMSO/エ
チレングリコール=7/3の溶剤に添加し、100℃に
て溶解した。得られた溶液を145℃にして、孔数15
0、孔径0.22φのノズルより吐出させ、エタノール
/DMSO/エチレングリコール=8/14/6重量比
からなり、−2℃の温度の凝固浴で乾湿式紡糸した。こ
の時の紡糸ドラフトは0.27であった。得られた透明
ゲル糸を40℃のメタノールで3倍湿延伸したあとエタ
ノールで該溶剤をほとんど全部除去し、さらに第4級ア
ンモニウム塩のカチオン活性剤を付着させ、120℃に
て乾燥した。得られた原糸を180℃と253℃の2セ
クションからなる熱風炉で総延伸倍率が18.9倍で延
伸した。その時の延伸出口張力は4.1g/dと非常に
高いも延伸糸の単糸強度は28.8g/d、弾性率は6
05g/d、WTbは162℃と従来に見られない高性
能PVA繊維であった。さらにベルト屈曲疲労や乾熱老
化性、耐摩耗性にもすぐれ産業資材に適した高付加価値
繊維となった。
Example 3 PVA having a viscosity average degree of polymerization of 23,000 and a degree of saponification of 99.9 mol% was added to a solvent of DMSO / ethylene glycol = 7/3 so that the concentration was 5% by weight, and 100 It melted at ℃. The obtained solution was heated to 145 ° C. and the pore number was 15
The mixture was discharged from a nozzle having a pore size of 0.2 and a pore diameter of 0.22φ, and was dry / wet spun in a coagulation bath at a temperature of −2 ° C., consisting of ethanol / DMSO / ethylene glycol = 8/14/6 weight ratio. The spinning draft at this time was 0.27. The obtained transparent gel yarn was wet-stretched 3 times with methanol at 40 ° C., then almost all the solvent was removed with ethanol, a cation activator of a quaternary ammonium salt was further attached, and dried at 120 ° C. The obtained raw yarn was drawn at a total draw ratio of 18.9 times in a hot air oven consisting of two sections at 180 ° C and 253 ° C. At that time, the drawing exit tension was 4.1 g / d, which was very high, but the single yarn strength of the drawn yarn was 28.8 g / d and the elastic modulus was 6
It was a high-performance PVA fiber with an unprecedented value of 05 g / d and WTb of 162 ° C. Furthermore, it has excellent belt bending fatigue, dry heat aging resistance, and wear resistance, making it a high-value-added fiber suitable for industrial materials.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粘度平均重合度が6000以上のポリビ
ニルアルコール系重合体がジメチルスルホキシドを60
重量%以上含む溶剤に溶解されている溶液をノズルより
気体中に吐出し続いて凝固浴中にて固化させる乾湿式紡
糸法において、凝固浴温度を15℃以下とし、かつ該吐
出溶液の温度を凝固浴温度より90〜150℃高くし、
さらに紡糸ドラフト0.1〜1.0で紡糸することを特
徴とする高強力ポリビニルアルコール系繊維の製造法。
1. A polyvinyl alcohol-based polymer having a viscosity average degree of polymerization of 6000 or more contains dimethyl sulfoxide of 60.
In a dry-wet spinning method in which a solution dissolved in a solvent containing not less than wt% is discharged into a gas from a nozzle and then solidified in a coagulation bath, the coagulation bath temperature is set to 15 ° C. or lower, and the temperature of the discharged solution is 90 to 150 ℃ higher than the coagulation bath temperature,
Further, a method for producing a high-strength polyvinyl alcohol fiber, which comprises spinning with a spinning draft of 0.1 to 1.0.
JP10876092A 1992-03-31 1992-03-31 Production of high-tenancity polyvinyl alcohol-based fiber Pending JPH05287608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10876092A JPH05287608A (en) 1992-03-31 1992-03-31 Production of high-tenancity polyvinyl alcohol-based fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10876092A JPH05287608A (en) 1992-03-31 1992-03-31 Production of high-tenancity polyvinyl alcohol-based fiber

Publications (1)

Publication Number Publication Date
JPH05287608A true JPH05287608A (en) 1993-11-02

Family

ID=14492812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10876092A Pending JPH05287608A (en) 1992-03-31 1992-03-31 Production of high-tenancity polyvinyl alcohol-based fiber

Country Status (1)

Country Link
JP (1) JPH05287608A (en)

Similar Documents

Publication Publication Date Title
EP0146084B2 (en) Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
JPH0415287B2 (en)
US5133916A (en) Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH05287608A (en) Production of high-tenancity polyvinyl alcohol-based fiber
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPS61124622A (en) Monofilament of nylon 46
JPH05247719A (en) High-strength polyvinyl alcohol fiber and its production
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JPH07278950A (en) Polyvinyl alcohol-based fiber having excellent high-temperature characteristic and its production
JPH02169709A (en) Method for drawing polyvinyl alcohol-based fiber
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JPH0578910A (en) Polyvinyl alcohol fiber and its production
JPH04343708A (en) Production of high-tenacity polyvinyl alcohol-based fiber having excellent heat aging characteristic
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity
JPH08284013A (en) Polyvinyl alcohol monofilament yarn having excellent hot-water resistance, high strength and high initial modulus of elasticity
JPH07243122A (en) High-modulus polyvinyl alcohol-based fiber with excellent fatigue resistance and its production
KR100627171B1 (en) Method for preparing high-tenacity polyvinyl alchol fiber and product manufactured thereby
JP2728737B2 (en) Hot water-resistant polyvinyl alcohol fiber and method for producing the same
JPH06235117A (en) Production of high strength polyvinyl alcohol fiber
JPH07118917A (en) Polyvinyl alcohol filament excellent in flexural fatigue resistance and its production