JPH0578910A - Polyvinyl alcohol fiber and its production - Google Patents

Polyvinyl alcohol fiber and its production

Info

Publication number
JPH0578910A
JPH0578910A JP26843291A JP26843291A JPH0578910A JP H0578910 A JPH0578910 A JP H0578910A JP 26843291 A JP26843291 A JP 26843291A JP 26843291 A JP26843291 A JP 26843291A JP H0578910 A JPH0578910 A JP H0578910A
Authority
JP
Japan
Prior art keywords
fiber
pva
dry
strength
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26843291A
Other languages
Japanese (ja)
Other versions
JP2911073B2 (en
Inventor
Hirofumi Sano
洋文 佐野
Toshimi Yoshimochi
駛視 吉持
Masahiro Sato
政弘 佐藤
Tomoyuki Sano
友之 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP26843291A priority Critical patent/JP2911073B2/en
Publication of JPH0578910A publication Critical patent/JPH0578910A/en
Application granted granted Critical
Publication of JP2911073B2 publication Critical patent/JP2911073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber having high strength, high modulus and excellent hot-water resistance and thermal aging resistance and useful as a rubber-reinforcing material, etc., by dissolving a specific polymer in a solvent, adding an organic antioxidant, etc., to the dope during the spinning and drawing process and subjecting to dry-hot drawing under specific condition. CONSTITUTION:A PVA polymer having a viscosity-average polymerization degree of >=1,500 and a syndiotacticity of >=58% is dissolved in a solvent and subjected to spinning and dry-hot drawing. In the above process, one or more kinds of decomposition-suppressing agents composed of an organic antioxidant, an inorganic metal salt or a nitrogen-containing surfactant are added and/or applied in an amount of preferably 0.003-3.0wt.% to the fiber within a stage from the dissolution of the polymer to immediately before the dry-hot drawing and the fiber is subjected to dry-hot drawing at >=245 deg.C at a total draw ratio of >=18 to obtain the objective fiber having a single fiber strength of >=18g/d, a single fiber modulus of >=450g/d and a strength retention of >=60% after the dry-heat treatment at 160 deg.C for 24hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱水性および耐熱老
化性に優れ、かつ高強度、高弾性率の高シンジオポリビ
ニルアルコール(以下PVAと略記する)系繊維とその
製造法に関するものである。本発明の繊維は高温で長時
間使用されるタイヤ、ホース、コンベアベルトなどのゴ
ム資材や、耐湿熱性も要求されるセメントやプラスチッ
クなどの補強材、さらには耐水性が必要なロープ、帆
布、テントなどの産業資材に適した、高強度、高弾性率
なPVA系繊維である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high syndiopolyvinyl alcohol (hereinafter abbreviated as PVA) fiber having excellent hot water resistance and heat aging resistance, high strength and high elastic modulus, and a method for producing the same. .. The fiber of the present invention is used for a long time at high temperature such as tires, hoses, rubber materials such as conveyor belts, reinforcing materials such as cement and plastics that are also required to have wet heat resistance, and ropes, canvas, tents that require water resistance. A high-strength, high-modulus PVA-based fiber suitable for industrial materials such as.

【0002】[0002]

【従来の技術】従来、PVA系繊維は、強度、弾性率や
耐候性、耐薬品性、接着性などの点でポリアミド、ポリ
エステル、ポリアクリロニトリル系繊維に比べて優れて
おり、産業資材分野を中心に独自の用途を開拓してき
た。最近では耐アルカリ性の特徴を活かしたセメント補
強用繊維(アスベスト繊維の代替)として注目されてい
る。そしてさらなる高強度、高弾性率と合わせて、高耐
熱水性、高耐熱老化性のPVA系繊維が開発されれば、
ゴムやプラスチックの補強材あるいはロープ、漁網、テ
ントなどにおいて特に水や熱に厳しい条件下でも使用可
能となり、安全性、耐久性、軽量性などの点で優れた商
品が期待される。
2. Description of the Related Art Conventionally, PVA-based fibers are superior to polyamide, polyester and polyacrylonitrile-based fibers in strength, elastic modulus, weather resistance, chemical resistance, adhesiveness, etc. Has pioneered its own uses. Recently, it has been attracting attention as a fiber for cement reinforcement (alternative to asbestos fiber) that takes advantage of its alkali resistance. If PVA-based fibers with high hot water resistance and high heat aging resistance are developed in combination with even higher strength and higher elastic modulus,
It can be used in rubber or plastic reinforcements, ropes, fishing nets, tents, etc. even under severe conditions of water and heat, and is expected to have excellent safety, durability, and lightweight properties.

【0003】現在市販されているPVA系繊維の原料で
あるPVA系重合体の立体構造は、本発明のタクチシテ
ィ評価法(詳細は後述する)によればダイアッド表示に
よるシンジオタクチシティが53〜54%のアタクチッ
ク体である。該PVA系重合体から得られる繊維は耐水
性や耐湿熱性が不十分であり、強度、弾性率も十分高い
とは言えない。
According to the tacticity evaluation method of the present invention (details will be described later), the three-dimensional structure of the PVA-based polymer, which is a raw material for PVA-based fibers currently on the market, has a syndiotacticity of 53 to 54 according to the diad display. % Atactic body. The fibers obtained from the PVA-based polymer have insufficient water resistance and resistance to moist heat, and cannot be said to have sufficiently high strength and elastic modulus.

【0004】耐水性の良好なシンジオタクチシティに富
むPVAを溶剤に溶かして湿式紡糸する方法は日本特許
539683号、同581737号、同548856
号、同615659号などで開示されている。しかしこ
れらの方法では、従来のアタクチックPVAに比べて耐
水性、耐湿熱性は向上するが、耐熱老化性が不十分であ
り、かつ強度が9〜11g/dと低いものであった。
A method of dissolving PVA rich in syndiotacticity having good water resistance in a solvent and performing wet spinning is described in Japanese Patent Nos. 539683, 581737 and 548856.
No. 615659 and the like. However, these methods have improved water resistance and wet heat resistance as compared with conventional atactic PVA, but have insufficient heat aging resistance and low strength of 9 to 11 g / d.

【0005】最近耐水性に加えて、強度、弾性率を向上
させようとシンジオタクチシティに富むPVA系重合体
を繊維化する提案がなされている。すなわち特開昭61
−108713号によると、ダイアッド表示でシンジオ
タクチシティが58%、平均重合度が6000のPVA
系重合体を用い、これをジメチルスルホキシド(以下D
MSOと略記する)やグリセリンに溶解して乾湿式紡糸
して、最高単糸強度15g/d、弾性率380g/d程
度の繊維が得られている。しかしこれらの値は特に高い
ものではなく、耐熱水性や耐熱老化性も前述の日本特許
同様十分なものではない。
Recently, in order to improve strength and elastic modulus in addition to water resistance, it has been proposed to make a PVA-based polymer rich in syndiotacticity into fibers. That is, JP-A-61
According to -108713, PVA with 58% syndiotacticity and an average degree of polymerization of 6000 in diads
Of a dimethylsulfoxide (hereinafter referred to as D
A fiber having a maximum single yarn strength of 15 g / d and an elastic modulus of about 380 g / d is obtained by dissolving it in MSO) or glycerin and performing dry-wet spinning. However, these values are not particularly high, and the hot water resistance and heat aging resistance are not sufficient as in the above-mentioned Japanese patent.

【0006】一方、高重合度PVAを用いて、高強力、
高弾性率繊維を得る方法が特開昭59−130314
号、特開昭61−289112号、特開昭62−850
13号などで開示され、強度19〜29g/d、弾性率
550〜650g/dの繊維が得られている。しかしこ
れらの繊維は耐熱水性や耐熱老化性の点で十分とは言い
難い。
On the other hand, by using PVA having a high degree of polymerization, high strength,
A method for obtaining a high elastic modulus fiber is disclosed in JP-A-59-130314.
No. 61-289112, 62-850.
No. 13, etc., and a fiber having a strength of 19 to 29 g / d and an elastic modulus of 550 to 650 g / d is obtained. However, these fibers are not sufficient in terms of hot water resistance and heat aging resistance.

【0007】耐熱水性を向上させるために架橋を施す方
法は、特開昭63−120107号、特開昭64−15
6517号、特開平1−207435号などで公知であ
るが、架橋と共に繊維強度、弾性率、耐熱老化性が低下
する問題を有している。
The method of crosslinking in order to improve hot water resistance is described in JP-A-63-120107 and JP-A-64-15.
No. 6517, Japanese Patent Application Laid-Open No. 1-207435, etc., but there is a problem that fiber strength, elastic modulus, and heat aging resistance decrease with crosslinking.

【0008】また本発明者らは、先に高シンジオPVA
繊維について出願しているが(特願平2−22584
9)、この度の本願は分解抑制剤を一定範囲で高シンジ
オPVA繊維に添加する事により、乾熱延伸時のPVA
分解を抑え、同一重合度で比較した場合常に本願の強度
は、先の出願のそれより0.5〜1g/d以上、弾性率
は30g/d以上高くなる。さらに本願で得られる延伸
糸は耐熱老化性に優れ、160℃、24時間での強力保
持率は先の出願の場合50%以下であるのに対し、本願
では60%以上と、いずれも高性能を示し、産業資材と
して商品価値の高いものが得られるものである。
Further, the present inventors have previously found that high syndio PVA
I have applied for fiber (Japanese Patent Application No. 2-22584)
9). In this application, by adding a decomposition inhibitor to the high syndio PVA fiber within a certain range, PVA during dry heat drawing can be obtained.
When decomposition is suppressed and the same degree of polymerization is compared, the strength of the present application is always 0.5 to 1 g / d or more and the elastic modulus is 30 g / d or more higher than that of the previous application. Further, the drawn yarn obtained in the present application is excellent in heat aging resistance, and the tenacity retention rate at 24 hours at 160 ° C. is 50% or less in the case of the previous application, whereas it is 60% or more in the present application, which is high performance. This indicates that industrial materials with high commercial value can be obtained.

【0009】[0009]

【発明が解決しようとする課題】以上の背景を踏まえ、
本発明の目的は、耐熱水性や耐熱老化性に優れ、かつ高
強度、高弾性率を有するPVA系繊維を提供せんとする
ものである。本発明者らは上記特性を同時に満足する繊
維の構造として、次の点を念頭に置いて検討を進めた。 (1) より完全な結晶による強固な分子間水素結合…
高シンジオPVA繊維の採用。 (2) 結晶と非晶を結ぶ強固なタイ分子…高シンジオ
で高重合度なPVAの採用。 (3) 結晶、非晶の高度な配向…高温高倍率延伸での
熱分解を抑える。 (4) 延伸時および延伸後の熱分解を抑制…分解抑制
剤の添加。
[Problems to be Solved by the Invention] Based on the above background,
An object of the present invention is to provide a PVA-based fiber having excellent hot water resistance and heat aging resistance, high strength and high elastic modulus. The present inventors have studied the structure of the fiber satisfying the above properties at the same time with the following points in mind. (1) Strong intermolecular hydrogen bond due to a more complete crystal ...
Uses high syndio PVA fiber. (2) A strong tie molecule that connects the crystal and the amorphous ... Uses PVA with high syndio and high polymerization degree. (3) Highly crystalline or amorphous orientation: Suppresses thermal decomposition during high-temperature high-magnification stretching. (4) Suppress thermal decomposition during and after stretching ... Addition of decomposition inhibitor.

【0010】高シンジオで高重合度ほど結晶性と分子鎖
のからみにより延伸倍率が低下するが、本発明者らは、
それを高温でかつPVAの分解が少ない状態で高倍率に
延伸するためには、いかにするか、を追及したものであ
る。
The higher syndiolysis and the higher the degree of polymerization, the lower the draw ratio due to the crystallinity and the entanglement of the molecular chains.
In order to stretch it at a high temperature at a high temperature and with a small amount of decomposition of PVA, how to do it was pursued.

【0011】[0011]

【課題を解決するための手段】本発明は、高シンジオ高
重合度PVA系繊維を高温、高倍率に延伸する際、PV
Aの酸素分解やラジカル分解を抑制する事で、強度、弾
性率、耐熱水性をさらに向上させ、かつ得られた延伸糸
を長時間高温にさらしても強度低下が少ない、言わゆる
耐熱老化性に優れた繊維を得るものである。
Means for Solving the Problems The present invention provides a method for stretching a high syndio and high degree of polymerization PVA fiber at a high temperature and a high draw ratio.
By suppressing the oxygen decomposition and radical decomposition of A, the strength, elastic modulus and hot water resistance are further improved, and even if the obtained drawn yarn is exposed to high temperature for a long time, the strength does not decrease so much. It is an excellent fiber.

【0012】即ち本発明は、「(1)粘度平均重合度が
1500以上、シンジオタクチシティが58%以上で、
有機系酸化防止剤、無機系金属塩あるいはチッ素含有界
面活性剤からなる分解抑剤の1種又は2種以上を0.0
03〜3.0重量%含有しているポリビニルアルコール
系重合体からなり、単繊維強度が18g/d以上、単繊
維弾性率が450g/d以上であり、160℃、24時
間乾熱処理後の強力保持率が60%以上であるポリビニ
ルアルコール系繊維。」および「(2)粘度平均重合体
が1500以上、シンジオタクチシティが58%以上の
ポリビニルアルコール系重合体を溶剤に溶解し、常法に
より紡糸して紡糸原糸を得て、それを乾熱延伸するに際
して、溶解から乾熱延伸直前までの間で、有機系酸化防
止剤、無機系金属塩あるいはチッ素含有界面活性剤の分
解抑制剤である1種又は2種以上を該繊維に添加又は/
及び付着せしめ、245℃以上の温度で総延伸倍率が1
8倍以上になるように乾熱延伸する事を特徴とするポリ
ビニルアルコール繊維の製造法」である。
That is, according to the present invention, "(1) the viscosity average degree of polymerization is 1500 or more and the syndiotacticity is 58% or more,
0.0 or more of one or more decomposition inhibitors composed of an organic antioxidant, an inorganic metal salt or a nitrogen-containing surfactant.
It is composed of a polyvinyl alcohol-based polymer containing 03 to 3.0% by weight, has a single fiber strength of 18 g / d or more, a single fiber elastic modulus of 450 g / d or more, and is strong after dry heat treatment at 160 ° C. for 24 hours. A polyvinyl alcohol fiber having a retention rate of 60% or more. And ((2) a polyvinyl alcohol polymer having a viscosity average polymer of 1500 or more and syndiotacticity of 58% or more is dissolved in a solvent and spun by a conventional method to obtain a spun raw yarn, which is dried. During hot drawing, one or more kinds of decomposition inhibitors of organic antioxidants, inorganic metal salts or nitrogen-containing surfactants are added to the fiber from the time of dissolution to immediately before dry heat drawing. Or /
And the total stretching ratio is 1 at a temperature of 245 ° C or higher.
It is a method for producing polyvinyl alcohol fibers, which is characterized in that dry heat drawing is performed so as to be 8 times or more. "

【0013】以下本発明の内容をさらに詳細に説明す
る。本発明に言うPVA系重合度とは、後述する測定法
によって求めた粘度平均重合度を言うものである。
The contents of the present invention will be described in more detail below. The PVA-based degree of polymerization referred to in the present invention means a viscosity average degree of polymerization determined by a measuring method described later.

【0014】本発明のPVA系重合体は、該重合度が1
500以上のものを用いる必要がある。重合度が150
0未満では、本発明に言う耐熱水性や高強度高弾性繊維
は得がたい。より好ましい重合度は6000以上、さら
に好ましくは10,000以上である。
The PVA polymer of the present invention has a degree of polymerization of 1
It is necessary to use 500 or more. Degree of polymerization is 150
When it is less than 0, it is difficult to obtain the hot water resistant or high strength and high elasticity fiber referred to in the present invention. The more preferable degree of polymerization is 6000 or more, and more preferably 10,000 or more.

【0015】本発明においては、上記重合度を満足して
いるPVA系重合体において、ダイアッド表示によるシ
ンジオタクチシティが58%以上である。シンジオタク
チシティが58%未満のPVAではより完全な結晶化が
なされず、本発明に言う高性能繊維を得るのは難しい。
シンジオタクチシティは60%以上が好ましいが、70
%を超えると高結晶化により溶剤への溶解性や延伸倍率
の低下を招き易い。
In the present invention, the PVA-based polymer satisfying the above-mentioned degree of polymerization has a syndiotacticity of 58% or more as indicated by a diad. PVA having a syndiotacticity of less than 58% does not achieve more complete crystallization, and it is difficult to obtain the high-performance fiber according to the present invention.
Syndiotacticity is preferably 60% or more, but 70
If it exceeds%, the crystallization tends to be high and the solubility in a solvent or the draw ratio tends to be lowered.

【0016】本発明に言うところのダイアッド表示によ
るタクチシティは重水素化ジメチルスルホキシド(d↓
6−DMSO)に溶解したPVA系重合体のプロトンN
MR測定により求まるトライアッド表示によるシンジオ
タクチシティ(T.Moritani etal.,
Macromolecules, 5, 577(19
72))であり、シンジオタクチシティ(S)、ヘテロ
タクチシティ(H)、およびアイソタクチシティ(I)
から次式により算出される値である。 s=S+H/2(ダイアッド表示によるシンジオタクチ
シティ) i=I+H/2(ダイアッド表示によるアイソタクチシ
ティ)
In the present invention, the tacticity indicated by the diad is the deuterated dimethyl sulfoxide (d ↓).
Proton N of PVA polymer dissolved in 6-DMSO)
Syndiotacticity (T. Moritani et al., By triad display obtained by MR measurement)
Macromolecules, 5, 577 (19
72)) and syndiotacticity (S), heterotacticity (H), and isotacticity (I).
Is a value calculated from the following equation. s = S + H / 2 (Syndiotacticity by dyad display) i = I + H / 2 (Isotacticity by dyad display)

【0017】PVA系重合体には、3重量%以下の顔
料、酸化防止剤、紫外線吸収剤、結晶化抑制剤、架橋
剤、界面活性剤など必要に応じて添加しても支障ない。
If necessary, 3% by weight or less of a pigment, an antioxidant, an ultraviolet absorber, a crystallization inhibitor, a crosslinking agent, and a surfactant may be added to the PVA polymer.

【0018】PVA系重合体の溶剤としては、グリセリ
ン、エチレングリコール、ジエチレングリコール、トリ
エチレングリコール、3−メチルペンタン−1,3,5
−トリオールなどの多価アルコールやジメチルスルホキ
シド(DMSO)、ジメチルホルムアミド、ジメチルア
セトアミド、N−メチルピロリドン、1,3ジメチル2
−イミダゾリジノン、エチレンジアミン、ジエチレント
リアミンおよび水などが単独または混合して使用され
る。さらに塩化亜鉛、塩化マグネシウム、ロダンカルシ
ウム、臭化リチウムなどの無機塩水溶液など該重合体を
溶解するものも使用可能である。冷却でゲル化するよう
な多価アルコールやそれらと水との混合溶剤あるいはジ
メチルスルホキシド、ジメチルホルムアミドやそれらと
水との混合溶剤などが紡糸安定となり易いので好まし
い。
Solvents for PVA type polymers include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, 3-methylpentane-1,3,5.
-Polyhydric alcohols such as triol, dimethyl sulfoxide (DMSO), dimethylformamide, dimethylacetamide, N-methylpyrrolidone, 1,3 dimethyl 2
-Imidazolidinone, ethylenediamine, diethylenetriamine, water and the like are used alone or in combination. Further, it is also possible to use an aqueous solution of an inorganic salt such as zinc chloride, magnesium chloride, calcium rhodanide or lithium bromide, which dissolves the polymer. A polyhydric alcohol that gels on cooling, a mixed solvent of them and water, dimethyl sulfoxide, dimethylformamide, a mixed solvent of them and water, and the like are preferable because spinning stability tends to occur.

【0019】紡糸方式としては湿式、乾式、乾湿式など
一般に用いられるいずれの方式でも何んら支障ない。中
でも、乾湿式法を用い、PVA系重合体の溶液を紡糸ノ
ズルより吐出させ、直ちに低温のメタノールやエタノー
ルなどアルコール類あるいはそれらと該溶剤との混合液
さらには無機塩やアルカリを含む水溶液に浸漬して急冷
し均質な透明なゲル繊維を得る方法が好ましい。
As the spinning method, any generally used method such as a wet method, a dry method and a dry-wet method can be used without any problem. Among them, a dry-wet method is used to discharge a solution of a PVA-based polymer from a spinning nozzle and immediately immerse it in a low temperature alcohol such as methanol or ethanol or a mixed solution of them and the solvent, or an aqueous solution containing an inorganic salt or an alkali. It is preferable that the method is followed by rapid cooling to obtain a homogeneous transparent gel fiber.

【0020】本発明で用いられる高シンジオPVA系重
合体は、アタクチックPVAに比べて結晶化し易いの
で、凝固時は、20℃以下の低温にして結晶化を抑え、
かつ溶剤抽出をゆっくりして均質なゲル繊維を得るの
が、その後の高倍率延伸につながり、高機能性繊維とな
り易い。
The high syndio-PVA polymer used in the present invention is more likely to be crystallized than atactic PVA. Therefore, at the time of solidification, the temperature is kept at 20 ° C. or lower to suppress crystallization.
In addition, slow solvent extraction to obtain a homogeneous gel fiber leads to subsequent high-strength drawing and tends to be a highly functional fiber.

【0021】またゲル繊維の断面変形や膠着を防止し、
かつ紡糸時の微結晶を破壊して延伸倍率を向上させるた
めに溶剤を含んだままで2倍以上、好ましくは4倍以上
湿延伸するのが良い。
In addition, it prevents cross-sectional deformation and sticking of the gel fiber,
In addition, in order to destroy the microcrystals during spinning and improve the draw ratio, it is preferable to wet-draw at least 2 times, preferably at least 4 times while containing the solvent.

【0022】続いてメタノール、エタノールなどのアル
コール類やアセトン、水などの抽出剤で該溶剤のほとん
ど全部を除去し、その後乾燥により該抽出剤を蒸発させ
る。
Then, almost all of the solvent is removed with an extractant such as alcohols such as methanol and ethanol, acetone and water, and then the extractant is evaporated by drying.

【0023】さらにその後、乾熱延伸するが、本発明で
は紡糸原液から乾熱延伸直前までの間で分解抑制剤を添
加又は/及び付着させ、延伸時のPVA分解と、延伸後
の乾熱老化を押さえるものである。
After that, dry heat drawing is further performed. In the present invention, a decomposition inhibitor is added or / and attached between the stock solution for spinning and immediately before dry heat drawing to decompose PVA during drawing and dry heat aging after drawing. Is to hold down.

【0024】本発明に言う分解抑制剤とは、フェノール
系、ホスファイト系、チオエステル系、ベンゾトリアゾ
ール系、ヒンダードアミン系などの有機系酸化防止剤あ
るいはCu,Mn,Ti,Sn,Pb,Zn,Crなど
の硫酸塩、硝酸塩、ハロゲン化物の無機系金属塩、さら
には次の3つに分類されるチッ素含有界面活性剤が挙げ
られ、これらの1種又は2種以上を用いることが出来
る。 (1) 分子内にアミド結合または尿素結合を有するア
ンモニウム化合物、例えば次の化学式1の構造式で表さ
れるカチオン界面活性剤。
The term "decomposition inhibitor" as used in the present invention means an organic antioxidant such as phenol, phosphite, thioester, benzotriazole, hindered amine or Cu, Mn, Ti, Sn, Pb, Zn, Cr. Examples thereof include inorganic metal salts of sulfates, nitrates, and halides, and further nitrogen-containing surfactants classified into the following three types, and one or more types thereof can be used. (1) An ammonium compound having an amide bond or a urea bond in the molecule, for example, a cationic surfactant represented by the structural formula of the following chemical formula 1.

【0025】[0025]

【化1】 (2) 分子内にアミド結合又は尿素結合を有するスル
ホネート化合物、例えば次の化学式2で表されるアニオ
ン界面活性剤。
[Chemical 1] (2) A sulfonate compound having an amide bond or a urea bond in the molecule, for example, an anionic surfactant represented by the following chemical formula 2.

【0026】[0026]

【化2】 (3) スルホネートのアミン化合物、例えば次の化学
式3で表されるアニオン活性剤。
[Chemical 2] (3) An amine compound of sulfonate, for example, an anion activator represented by the following chemical formula 3.

【0027】[0027]

【化3】 [Chemical 3]

【0028】これらの分解抑制剤を平滑剤や乳化剤が入
った配合油剤に添加して繊維に付着させてもよいが、付
着斑や紡糸から延伸までにおける脱落、あるいは延伸性
の阻害があるものは好ましくない。
These decomposition inhibitors may be added to a compounded oil containing a smoothing agent or an emulsifier to be attached to the fiber, but if there are adhesion spots, drop from spinning to drawing, or hindering of drawability. Not preferable.

【0029】該分解抑制剤の含有量は、延伸後で繊維に
対し0.003〜3.0重量%である。分解抑制剤の含
有量は種類によって異なるが、有機系酸化防止剤では
0.2〜2重量%が好ましく、無機系金属塩では0.0
05〜0.5重量%が好ましく、チッ素含有界面活性剤
では0.1〜1重量%が好ましい。分解抑制剤の中には
多すぎると逆に分解を促進する事があるので要注意であ
る。分解抑制剤の含有量が0.003重量%未満では分
解抑制効果が少なく、3重量%を超えると紡糸時の糸切
れや延伸倍率の低下、あるいは逆に分解を促進する場合
があり好ましくない。なお、分解抑制剤を2種類以上使
用した時の含有量は総和量を意味する。
The content of the decomposition inhibitor is 0.003 to 3.0% by weight based on the fiber after stretching. Although the content of the decomposition inhibitor varies depending on the type, it is preferably 0.2 to 2% by weight for the organic antioxidant and 0.0 for the inorganic metal salt.
05 to 0.5% by weight is preferable, and 0.1 to 1% by weight is preferable for the nitrogen-containing surfactant. It should be noted that some of the decomposition inhibitors may promote the decomposition if they are too much. If the content of the decomposition inhibitor is less than 0.003% by weight, the decomposition suppressing effect is small, and if it exceeds 3% by weight, yarn breakage during spinning, a reduction in the draw ratio, or conversely, decomposition may be promoted, which is not preferable. The content when two or more kinds of decomposition inhibitors are used means the total amount.

【0030】次に得られた紡糸原糸を乾熱延伸するが、
この場合総延伸倍率を18倍以上にする必要があり、2
0倍以上が好ましい。18倍未満では、PVA分子鎖の
配向が不十分であり、より高い強度、弾性率を得るのが
難しい。総延伸倍率は湿延伸倍率と乾熱延伸倍率の積で
表される。
Then, the obtained spun raw yarn is dry-heat drawn,
In this case, it is necessary to increase the total draw ratio to 18 times or more.
It is preferably 0 times or more. If it is less than 18 times, the orientation of the PVA molecular chain is insufficient, and it is difficult to obtain higher strength and elastic modulus. The total draw ratio is represented by the product of the wet draw ratio and the dry heat draw ratio.

【0031】また、延伸倍率や結晶化度を高め、強度、
弾性率、耐熱水性に優れた高シンジオPVA繊維をつく
るためには、延伸温度は245℃以上が必要であり、好
ましくは250℃以上である。特に高シンジオPVA繊
維は結晶化し易く、高倍率延伸するには高温にしてPV
A分子鎖の運動性を高める必要がある。また高重合度ほ
ど分子鎖のからみや微結晶間を結ぶタイ分子が多いため
か延伸倍率が低下し易く、それをカバーするためには高
温延伸が必要である。しかし、従来高温になるほどPV
Aの着色分解が激しく、延伸張力の低下、ひいては強
度、弾性率の低下、さらには耐熱老化性の悪化を招い
た。
Further, the stretching ratio and the crystallinity are increased, and the strength,
In order to produce a high syndio PVA fiber excellent in elastic modulus and hot water resistance, the stretching temperature needs to be 245 ° C or higher, preferably 250 ° C or higher. In particular, high syndio PVA fibers are easy to crystallize, so to draw at a high ratio, the PV should be raised to a high temperature.
It is necessary to increase the mobility of the A molecular chain. Further, the higher the degree of polymerization, the more the number of tie molecules that connect the molecular chains and the number of tie molecules that connect the microcrystals to each other, so that the draw ratio tends to decrease, and high-temperature drawing is necessary to cover it. However, the higher the conventional temperature, the more PV
The coloration and decomposition of A was severe, resulting in a decrease in stretching tension, a decrease in strength and elastic modulus, and a deterioration in heat aging resistance.

【0032】本発明では、分解抑制剤を添加又は/及び
付着させる事によって、より高い延伸温度でもPVA分
解を抑え、高倍率延伸が可能となった。
In the present invention, by adding or / and adhering a decomposition inhibitor, PVA decomposition is suppressed even at a higher drawing temperature, and high-magnification drawing becomes possible.

【0033】延伸温度は、高重合度、高シンジオPVA
ほど高く出来るが、あまり高すぎると分子鎖のフローが
起こり、延伸張力が下がって性能が低下したり着色分解
を誘発し易いので好ましくない。
Stretching temperature is high polymerization degree, high syndio PVA
Although it can be made as high as possible, if it is too high, the flow of molecular chains occurs, the stretching tension is lowered, the performance is lowered, and color decomposition is easily induced, which is not preferable.

【0034】延伸雰囲気は一般に空気、窒素などの不活
性ガス、水蒸気、油浴などが考えられるが、操作性、コ
ストなどから考えて、加熱空気が適している。また熱板
や熱ローラを用いた接触タイプと熱風炉を用いた非接触
タイプがあり、どちらでも可能である。
Air, an inert gas such as nitrogen, water vapor, an oil bath, etc. are generally considered as the stretching atmosphere, but heated air is suitable in view of operability and cost. Further, there are a contact type using a hot plate and a heat roller and a non-contact type using a hot stove, both of which are possible.

【0035】本発明の特徴は、高シンジオ高重合度PV
Aを用いて、分解抑制剤によって熱分解を抑えながら高
温高倍率に延伸する事にある。これより着色や重合度低
下の少ない高シンジオなPVA延伸糸が得られ、かつ高
配向高結晶化により、熱水溶断温度は140℃以上、重
合度が1万以上の高重合度では160℃以上に増大し、
さらに単繊維強度は18g/d以上、単繊維弾性率は4
50g/d以上、高重合度ではそれぞれ23g/d以
上、550g/d以上のものが得られる。また、分解抑
制剤の効果で、各用途に使用時の耐熱老化性が非常に高
く、ゴム、セメント、プラスチックなどの補強材や一般
産業資材に対し従来にみられない高性能PVA系繊維と
なる。また融点についても通常のアタクチックPVAか
らなるPVA繊維に対し、10℃以上高い値を示し、耐
熱性を要求する用途にも有利である。
The feature of the present invention is that high syndio and high degree of polymerization PV
A is used to stretch at high temperature and high magnification while suppressing thermal decomposition with a decomposition inhibitor. Due to this, highly syndio-pVA drawn yarn with less coloration and lowering of the degree of polymerization can be obtained, and due to the high orientation and high crystallization, the hot water disconnection temperature is 140 ° C or higher, and the polymerization degree is 10,000 ° C or higher and 160 ° C or higher. Increased to
Furthermore, the single fiber strength is 18 g / d or more, and the single fiber elastic modulus is 4
With a polymerization degree of 50 g / d or higher, a polymerization degree of 23 g / d or higher and 550 g / d or higher are obtained. Also, due to the effect of the decomposition inhibitor, it has extremely high heat aging resistance when used in various applications, and it is a high-performance PVA fiber that has not been seen in the past for reinforcing materials such as rubber, cement and plastics, and general industrial materials. .. Further, the melting point also shows a value higher by 10 ° C. or more than PVA fiber made of ordinary atactic PVA, which is also advantageous for applications requiring heat resistance.

【0036】[0036]

【実施例】以下実施例により、本発明をさらに具体的に
説明するが、本発明は実施例のみに限定されるものでは
ない。なお実施例中における各種の物性値パラメータは
以下の方法で測定された。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples. Various physical property value parameters in the examples were measured by the following methods.

【0037】 1)PVAの粘度平均重合度および重合度低下率 PVA系重合体を酢化して得た酢酸ビニルの30℃にお
けるPVA希薄アセトン溶液の比粘度η↓spを5点測定
し、次の数式1により極限粘度[η]を求め、さらに数
式2により粘度平均重合度を求めた。また重合度低下率
は、延伸糸の粘度平均重合度を上述と同様に求め、もと
のPVA重合体の粘度平均重合度に対する低下率より求
めた。
1) Viscosity average degree of polymerization and degree of decrease of degree of polymerization of PVA The specific viscosity η ↓ sp of a PVA diluted acetone solution of vinyl acetate obtained by acetylating a PVA polymer at 30 ° C. was measured at 5 points, and The intrinsic viscosity [η] was calculated by the mathematical formula 1, and the viscosity average degree of polymerization was further calculated by the mathematical formula 2. In addition, the degree of decrease in the degree of polymerization was obtained by determining the viscosity average degree of polymerization of the drawn yarn in the same manner as described above and from the rate of decrease with respect to the viscosity average degree of polymerization of the original PVA polymer.

【0038】[0038]

【数1】 [Equation 1]

【0039】[0039]

【数2】 [Equation 2]

【0040】 2)酸化防止剤および界面活性剤の付着量: 乾燥後の未延伸糸を100〜130℃の熱水に溶解せし
め、NMRよりPVAのCH↓2基ピークに対する酸化
防止剤および界面活性剤のピーク比を算出し、予め作成
した検量線より付着量を求めた。
2) Adhesion amount of antioxidant and surfactant: The undrawn yarn after drying was dissolved in hot water at 100 to 130 ° C., and the antioxidant and the surface activity against the CH ↓ 2 peak of PVA were measured by NMR. The peak ratio of the agent was calculated, and the adhesion amount was obtained from the calibration curve prepared in advance.

【0041】3)無機金属塩含有量 乾燥後の未延伸糸を100〜130℃の熱水に溶解せし
め、蛍光X線で特定元素のピークを測定し、検量線より
求めた。
3) Content of Inorganic Metal Salt The undrawn yarn after drying was dissolved in hot water at 100 to 130 ° C., the peak of the specific element was measured by fluorescent X-ray, and the content was determined from the calibration curve.

【0042】4)熱水溶断温度(WTb) 単繊維25本にデニール当たり200mgの荷重をかけ
て、水を満たしたガラス製円筒状密封容器の中間に吊
し、周囲より水を1〜2℃/minの速度で加熱昇温さ
せていき、繊維が溶断したときの温度を測定した。
4) Hot water disconnection temperature (WTb) A load of 200 mg per denier was applied to 25 monofilaments and suspended in the middle of a glass-made cylindrical sealed container filled with water, and the water was heated to 1 to 2 ° C. from the surroundings. The temperature at which the fibers melted was measured by heating and raising the temperature at a rate of / min.

【0043】5)融点 パーキンエルマー社製の示差熱量分析計(型式 DSC
−2C)を用い、カット長約1mmの繊維を10mg採取し
て、窒素気流中、10℃/minの昇温における融点
(吸熱ピーク温度)を測定した。
5) Melting point A differential calorimetric analyzer (model DSC, manufactured by Perkin Elmer Co., Ltd.
-2C), 10 mg of a fiber having a cut length of about 1 mm was sampled, and the melting point (endothermic peak temperature) at a temperature rise of 10 ° C./min in a nitrogen stream was measured.

【0044】6)単糸引張強伸度、弾性率 JIS L−1013に準じ、予め調湿された単繊維を
試長10cmになるように台紙に貼り、25℃×60%で
12時間以上放置。次いでインストロン1122 2kg
用チャックを用い、初荷重1/20g/d、引張速度5
0%/minにて、破断強伸度および初期弾性率を求
め、n≧20平均値を採用した。デニールは1/10g
/d荷重下で30cmにカットし、重量法により求めた。
なおデニール測定後の単繊維を用いて強伸度、弾性率を
測定し1本ずつデニールと対応させた。
6) Tensile strength / elongation of single yarn and elastic modulus In accordance with JIS L-1013, single filaments whose humidity has been adjusted in advance are attached to a mount so as to have a test length of 10 cm and left at 25 ° C. × 60% for 12 hours or more. Then Instron 1122 2kg
Chuck, initial load 1/20 g / d, pulling speed 5
The breaking strength and elongation and the initial elastic modulus were determined at 0% / min, and n ≧ 20 average value was adopted. Denier is 1 / 10g
It was cut to 30 cm under / d load and determined by gravimetric method.
The single fiber after denier measurement was used to measure the strength / elongation and elastic modulus, and each fiber was made to correspond to denier.

【0045】 7)耐熱老化性(乾熱処理後の強力保持率): ヤーンをフリーの状態で熱風炉に入れ、160℃×24
時間あるいは160℃×48時間乾熱処理した後のヤー
ン強力を測定し、乾熱処理前のヤーン強力に対する強力
保持率(%)を算出した。
7) Heat aging resistance (strength retention rate after dry heat treatment): The yarn is put in a hot air oven in a free state, 160 ° C. × 24
The tenacity of the yarn after dry heat treatment for 160 hours or 160 ° C. for 48 hours was measured, and the tenacity retention ratio (%) to the yarn strength before dry heat treatment was calculated.

【0046】実施例1: (PVAの製法) 攪拌機を備えた反応容器に、ピバリ
ン酸ビニルモノマー600部、メタノール200部を仕
込み、窒素ガスバブリングにより系を窒素置換した。別
途メタノール26部に開始剤として2,2′−アゾビス
イソブチロニトリル0.0712部を溶解した溶液を調
整し、窒素ガスによるバブリングで窒素置換した。反応
容器を昇温し、内温が60℃に達したところで開始剤を
溶解したメタノール溶液を注入し重合を開始した。19
0分後、重合率が50%に達したところで冷却して重合
を停止し、t−ブタノールを時どき添加しながら減圧下
で未反応のピバリン酸ビニルモノマーを除去してポリピ
バリン酸ビニルのt−ブタノール溶液とした。続いて減
圧下、t−ブタノールを除去して15wt%のポリピバ
リン酸ビニルのテトラヒドロフラン溶液を得た。次に攪
拌機と還流冷却管を備えた反応器にこの溶液70部を計
り取り、60℃に加温して窒素ガスを流して窒素置換し
60℃に保持した後、別途調整し窒素置換した25%の
水酸化カリウムのメタノール溶液21部を添加し十分に
攪拌した。系は約20分でゲル化したがさらに60℃で
100分間保持した後、酢酸6.8部をメタノール20
部とともに添加して水酸化カリウムを中和した。続いて
ゲルを粉砕した後メタノールによるソックスレー洗浄を
実施し、ポリビニルアルコール系重合体を得た。得られ
たポリビニルアルコール系重合体をd↓6−DMSOに
溶解し、NMRを測定したところけん化度99.5モル
%、シンジオタクチシティ−61.2%、ピバリン酸ビ
ニル含有率0.5モル%、融点241℃であった。この
得られたポリビニルアルコール系重合体0.5部に無水
酢酸10部、ピリジン2部を加えて封管した後、120
℃で8時間加熱して、酢化した。得られたポリ酢酸ビニ
ルはn−ヘキサンに沈殿させアセトン−n−ヘキサン系
で2回再沈殿を繰り返し精製した。このポリ酢酸ビニル
のアセトン中、30℃で測定した[η]から求めた粘度
平均重合度は1850であった。
Example 1: (PVA production method) A reaction vessel equipped with a stirrer was charged with 600 parts of vinyl pivalate monomer and 200 parts of methanol, and the system was replaced with nitrogen by bubbling nitrogen gas. Separately, a solution prepared by dissolving 0.0712 parts of 2,2′-azobisisobutyronitrile as an initiator in 26 parts of methanol was prepared, and the atmosphere was replaced with nitrogen by bubbling with nitrogen gas. The temperature of the reaction vessel was raised, and when the internal temperature reached 60 ° C., a methanol solution containing an initiator was injected to initiate polymerization. 19
After 0 minutes, when the rate of polymerization reached 50%, the polymerization was stopped by cooling, and unreacted vinyl pivalate monomer was removed under reduced pressure while adding t-butanol from time to time to obtain t-butanol of vinyl polypivalate. It was a solution. Then, t-butanol was removed under reduced pressure to obtain a tetrahydrofuran solution of 15 wt% vinyl polypivalate. Next, 70 parts of this solution was weighed in a reactor equipped with a stirrer and a reflux condenser, heated to 60 ° C., nitrogen gas was flowed to replace nitrogen, and the temperature was maintained at 60 ° C., then separately adjusted and replaced with nitrogen 25 % Of potassium hydroxide in methanol was added and stirred thoroughly. The system gelled in about 20 minutes, but after holding at 60 ° C. for 100 minutes, 6.8 parts of acetic acid was added to methanol 20 times.
Potassium hydroxide was added to neutralize the potassium hydroxide. Subsequently, the gel was crushed and then subjected to Soxhlet washing with methanol to obtain a polyvinyl alcohol polymer. The obtained polyvinyl alcohol-based polymer was dissolved in d ↓ 6-DMSO and measured by NMR. Saponification degree was 99.5 mol%, syndiotacticity-61.2%, vinyl pivalate content was 0.5 mol. %, Melting point 241 ° C. After adding 10 parts of acetic anhydride and 2 parts of pyridine to 0.5 part of the obtained polyvinyl alcohol polymer and sealing the tube, 120
It was acetylated by heating at ℃ for 8 hours. The obtained polyvinyl acetate was precipitated in n-hexane and re-precipitated twice with an acetone-n-hexane system for purification. The viscosity average degree of polymerization of this polyvinyl acetate determined from [η] in acetone at 30 ° C. was 1850.

【0047】(PVA繊維の製造) 上記で得られた高
シンジオPVAを濃度16重量%になるようにDMSO
に溶解した。次いで90℃にてホール数80、孔径0.
12mmのノズルより吐出させ、乾湿式法にて20mm下の
凝固浴中に落下させた。凝固組成はメタノール/DMS
O=7/3で5℃とした。得られた透明なゲル繊維を3
倍に湿延伸したあとメタノールの抽出浴で該溶剤を抽出
したが、最後のメタノール抽出浴に分解抑制剤であるM
nCl↓2を添加し、繊維を4分間滞留させてメタノー
ル含有繊維の内部および表面に付着させた。次いでステ
アリルアミドプロピルジメチル−β−ヒドロキシエチル
アンモニウム硝酸塩のカチオン界面活性剤を付着させ、
80℃にて乾燥した。得られた紡糸原糸のMnCl↓2
含有量は0.025重量%、カチオン界面活性剤の付着
量は0.93重量%であった。次いで第1熱風炉を17
0℃にして2.5倍延伸した後、第2熱風炉を255℃
にして総延伸倍率が22.8倍になるように乾熱2段延
伸を行った。得られた延伸糸は着色がなくて重合度低下
率は8%と低く、WTbは146℃、単繊強度は20.
9g/d、弾性率は520g/d、融点は259℃とい
ずれも高い値を示した。また該延伸糸を160℃×24
時間および48時間で乾熱処理した後、強力保持率を測
定したところ、それぞれ81%および68%であり、耐
熱老化性に優れていた。さらに水湿潤時および100℃
高温時の弾性率低下が少なく、ゴムやプラスチックの補
強材あるいは一般産業資材に適した高性能高シンジオP
VA繊維である事が判明した。
(Production of PVA Fiber) The high syndio PVA obtained above was added to DMSO to a concentration of 16% by weight.
Dissolved in. Next, at 90 ° C., the number of holes is 80 and the hole diameter is 0.
It was discharged from a 12 mm nozzle and dropped by a dry-wet method into a coagulation bath 20 mm below. Coagulation composition is methanol / DMS
It was set to 5 ° C. at O = 7/3. The obtained transparent gel fiber is 3
The solvent was extracted in a methanol extraction bath after being double-stretched by wet stretching.
nCl ↓ 2 was added and the fiber was allowed to dwell for 4 minutes to adhere to the interior and surface of the methanol containing fiber. Then, a cationic surfactant of stearylamidopropyldimethyl-β-hydroxyethylammonium nitrate is attached,
It was dried at 80 ° C. MnCl of the obtained spinning yarn ↓ 2
The content was 0.025% by weight, and the attached amount of the cationic surfactant was 0.93% by weight. Then, the first hot air stove 17
After stretching to 0 ° C and stretching 2.5 times, the second hot air stove is moved to 255 ° C.
Then, two stages of dry heat drawing were carried out so that the total draw ratio was 22.8 times. The obtained drawn yarn was not colored and had a low polymerization degree reduction rate of 8%, a WTb of 146 ° C. and a single fiber strength of 20.
9 g / d, the elastic modulus was 520 g / d, and the melting point was 259 ° C., which were all high values. In addition, the drawn yarn was
After the dry heat treatment for 48 hours and 48 hours, the tenacity retentions were measured to be 81% and 68%, respectively, which was excellent in heat aging resistance. Furthermore, when wet with water and at 100 ° C
High-performance and high syndio P suitable for rubber or plastic reinforcements or general industrial materials with little decrease in elastic modulus at high temperatures
It was found to be VA fiber.

【0048】比較例1: 実施例1で分解抑制剤を付着
させない場合を実施したが255℃の延伸では着色が激
しく、総延伸倍率は21.7倍と高かったが、延伸張力
は低く、重合度低下率は27%に増大した。WTbは1
40℃と高い値であったが単繊維強度は18.6g/
d、弾性率は450g/dと低いものであった。また、
160℃×24時間で乾熱処理した後、強力保持率を測
定したところ38%に低下していた。なお延伸温度を2
55℃から240℃に下げた場合、延伸時の着色がほと
んどなくなったが、総延伸倍率は19.5倍に低下し、
単繊維強度は19.9g/d、弾性率は425g/dと
低いものであった。また160℃×24時間熱処理後の
強力保持率は50%と耐熱老化性も劣っていた。
Comparative Example 1: The case where the decomposition inhibitor was not attached was carried out in Example 1, but the coloring was severe at the stretching of 255 ° C. and the total stretching ratio was as high as 21.7 times, but the stretching tension was low and the polymerization was performed. The rate of decrease was increased to 27%. WTb is 1
Although the value was as high as 40 ° C, the single fiber strength was 18.6 g /
d, the elastic modulus was as low as 450 g / d. Also,
After dry heat treatment at 160 ° C. for 24 hours, the strength retention was measured and found to be 38%. The stretching temperature is 2
When the temperature was lowered from 55 ° C to 240 ° C, coloring during stretching was almost eliminated, but the total stretching ratio was reduced to 19.5 times.
The single fiber strength was as low as 19.9 g / d and the elastic modulus was as low as 425 g / d. Moreover, the heat retention after heat treatment at 160 ° C. for 24 hours was 50%, which was inferior in heat aging resistance.

【0049】実施例2: 実施例1で製造したピバリン
酸ビニルからのPVAの製造法に準じ、粘度平均重合度
が7500、ケン化度が99.9モル%、シンジオタク
チシティが61.8%のPVAを得た。このPVAを濃
度が9重量%になるようにエチレングリコールで180
℃6時間窒素ガス雰囲気下で攪拌溶解した。得られた溶
液を190℃にてホール数150、孔径0.18mmのノ
ズルより吐出させ乾湿式法にて15mm下の凝固浴に落下
させた。凝固浴組成はメタノール/エチレングリコール
=7/3であり温度は0℃を保った。この凝固浴段階の
糸条はほぼ真円に近い透明なゲル繊維となった。続い
て、この繊維を40℃のメタノール中で4倍に湿延伸し
たあとメタノール浴でほぼ完全に該溶剤を抽出した。こ
の際最後のメタノール抽出浴にフェノール系酸化防止剤
である4′4−チオビス−(6−tブチル−3−メチル
フェノール)を0.5重量%/浴になるように添加し均
一溶液としたあと繊維を3分間滞留させてメタノール含
有繊維の内部および表面に付着させた。次いで90℃で
3%収縮を入れながら熱風乾燥して紡糸原糸を得た。該
原糸のフェノール系酸化防止剤の含有量は0.82重量
%であった。引続き該原糸にローラータッチ方式で分解
抑制剤であるラウリルアミドプロピルトリメチルアンモ
ニウム、メチルスルホネートのカチオン系界面活性剤と
平滑集束剤であるグリセリントリオレエートを付着さ
せ、170℃と260℃の輻射炉を用いて総延伸倍率2
0.4倍の乾熱延伸を行なった。得られた延伸糸は着色
もなく、該カチオン系界面活性剤の付着量は0.59重
量%であった。延伸糸のWTbは159℃と高く、単繊
維強度は24.7g/d、弾性率は630g/dを示し
高性能繊維となった。また160℃×24時間乾熱処理
後の強力保持率は78%を示し、さらに水に1日浸漬し
た後の湿潤弾性率や100℃雰囲気下の弾性率は60〜
70%を保持した。タイヤ、ホース、ベルトなどのゴム
補強材あるいはプラスチックやセメントの補強材さらに
はロープ、漁網、テントなどに従来に見られない高付加
価値PVA繊維として使用出来る事が判明した。
Example 2: According to the method for producing PVA from vinyl pivalate produced in Example 1, the viscosity average polymerization degree is 7500, the saponification degree is 99.9 mol%, and the syndiotacticity is 61.8. % PVA was obtained. 180% of this PVA with ethylene glycol to a concentration of 9% by weight
The mixture was stirred and dissolved in a nitrogen gas atmosphere at 6 ° C. for 6 hours. The obtained solution was discharged at 190 ° C. from a nozzle having 150 holes and a hole diameter of 0.18 mm and dropped into a coagulation bath 15 mm below by a dry-wet method. The coagulation bath composition was methanol / ethylene glycol = 7/3, and the temperature was kept at 0 ° C. The yarn in this coagulation bath stage became a transparent gel fiber which was almost circular. Subsequently, this fiber was wet-drawn 4 times in methanol at 40 ° C., and then the solvent was almost completely extracted in a methanol bath. At this time, 4'4-thiobis- (6-tbutyl-3-methylphenol), which is a phenolic antioxidant, was added to the final methanol extraction bath at a concentration of 0.5% by weight / bath to form a uniform solution. The fibers were then allowed to dwell for 3 minutes to adhere to the interior and surface of the methanol containing fibers. Then, it was dried with hot air at 90 ° C. with shrinkage of 3% to obtain a spun raw yarn. The content of the phenolic antioxidant in the raw yarn was 0.82% by weight. Subsequently, a laurylamidopropyltrimethylammonium which is a decomposition inhibitor, a cationic surfactant of methyl sulfonate and a glycerin trioleate which is a smoothing sizing agent are attached to the yarn by a roller touch method, and a radiation furnace at 170 ° C. and 260 ° C. is attached. Total draw ratio of 2
0.4 times dry heat drawing was performed. The drawn yarn obtained was not colored, and the amount of the cationic surfactant attached was 0.59% by weight. The drawn yarn had a high WTb of 159 ° C., a single fiber strength of 24.7 g / d, and an elastic modulus of 630 g / d, which was a high-performance fiber. The strength retention after dry heat treatment at 160 ° C. for 24 hours was 78%, and the wet elastic modulus after immersion in water for 1 day and the elastic modulus under 100 ° C. were 60 to 60 ° C.
Retained 70%. It has been found that it can be used as a high-value-added PVA fiber which has not been found in conventional rubber reinforcing materials such as tires, hoses and belts, or reinforcing materials such as plastics and cement, ropes, fishing nets and tents.

【0050】比較例2: 実施例2において、粘度平均
重合度が8000、ケン化度が99.9モル%、シンジ
オタクチシティが53.5%のアタクチックPVAを用
いて同様に実施したが、延伸温度が260℃では繊維の
溶融と着色があり延伸不能であった。延伸温度を250
℃に下げて18.5倍に延伸出来たが、WTbは135
℃、単繊維強度は20.4g/d、弾性率は505g/
dと高シンジオPVAを用いた実施例2の繊維よりも低
いものであった。
COMPARATIVE EXAMPLE 2 The procedure of Example 2 was repeated except that the atactic PVA having a viscosity average degree of polymerization of 8000, a saponification degree of 99.9 mol% and a syndiotacticity of 53.5% was used. When the drawing temperature was 260 ° C., the fibers were melted and colored, and the drawing was impossible. Stretching temperature is 250
The temperature was lowered to ℃ and the film could be stretched 18.5 times, but WTb was 135
℃, single fiber strength 20.4g / d, elastic modulus 505g /
d and lower than the fiber of Example 2 using high syndio PVA.

【0051】実施例3: 実施例1のPVAの製造法に
準じ、粘度平均重合度が15,000、ケン化度99.
2モル%、シンジオタクチシティ62.2%のPVAを
得た。このPVAを濃度4.5重量%になるようにグリ
セリンで190℃、10時間窒素ガス雰囲気下で攪拌溶
解した。その際実施例2で用いたフェノール系酸化防止
剤を1.0重量%添加し混合した。次いで得られた溶液
をホール数100、孔径0.19mmのノズルより吐出さ
せ、乾湿式法にて15mm下の凝固浴中に落下させた。凝
固浴組成はメタノール/グリセリン=7/3であり、温
度は−5℃を保った。得られた真円で透明なゲル繊維を
40℃のメタノール中で3倍に湿延伸したあと、メタノ
ール浴でほぼ完全に該溶媒を抽出し、引続き平滑集束油
剤としてグリセリンモノオレエート(ノニオン界面活性
剤)の2%メタノール溶液をギアポンプ方式で付着さ
せ、100℃にて熱風乾燥した。得られた紡糸原糸のフ
ェノール系酸化防止剤の含有量は0.85重量%、ノニ
オン界面活性剤の付着量は0.62重量%であった。引
続き170℃と266℃の輻射炉を用い、総延伸倍率1
9.1倍の乾熱延伸を行なった。得られた延伸糸の単繊
維強度は28.4g/d、弾性率は675g/dを示
し、WTbは177℃と非常に高い性能を示した。また
160℃×24時間乾熱処理後の強力保持率は75%を
示し、融点は265℃と高いものであった。さらに湿潤
弾性率は450g/d、100℃雰囲気下の弾性率は5
10g/dを示し、従来PVA繊維では得られない産業
資材に適した高付加価値PVA繊維であった。
Example 3: According to the method for producing PVA of Example 1, the viscosity average polymerization degree is 15,000 and the saponification degree is 99.
PVA of 2 mol% and syndiotacticity 62.2% was obtained. This PVA was dissolved by stirring with glycerin at 190 ° C. for 10 hours in a nitrogen gas atmosphere so that the concentration was 4.5% by weight. At that time, 1.0 wt% of the phenolic antioxidant used in Example 2 was added and mixed. Next, the obtained solution was discharged from a nozzle having 100 holes and a hole diameter of 0.19 mm, and dropped by a dry-wet method into a coagulation bath 15 mm below. The coagulation bath composition was methanol / glycerin = 7/3, and the temperature was kept at -5 ° C. The obtained true transparent gel fiber was wet-stretched 3 times in methanol at 40 ° C., and the solvent was extracted almost completely in a methanol bath, and then glycerin monooleate (nonionic surface active agent) was used as a smooth focusing oil agent. 2% methanol solution of the agent) was attached by a gear pump system and dried with hot air at 100 ° C. The content of the phenolic antioxidant in the obtained spun yarn was 0.85% by weight, and the amount of the nonionic surfactant attached was 0.62% by weight. Then, using a radiation furnace at 170 ° C and 266 ° C, the total draw ratio is 1
9.1 times dry heat drawing was performed. The drawn fiber thus obtained had a single fiber strength of 28.4 g / d, an elastic modulus of 675 g / d, and a WTb of 177 ° C., which was a very high performance. The tenacity retention rate after dry heat treatment at 160 ° C for 24 hours was 75%, and the melting point was as high as 265 ° C. Furthermore, the wet elastic modulus is 450 g / d, and the elastic modulus at 100 ° C. is 5
The value was 10 g / d, and it was a high value-added PVA fiber suitable for industrial materials that could not be obtained with conventional PVA fibers.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D02J 1/22 J 7199−3B H 7199−3B (72)発明者 佐野 友之 岡山県倉敷市酒津1621番地 株式会社クラ レ内Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI Technical indication location D02J 1/22 J 7199-3B H 7199-3B (72) Inventor Tomoyuki Sano 1621 Sakata, Kurashiki-shi, Okayama Co., Ltd. Inside the Kuraray

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粘度平均重合度が1500以上、シンジ
オタクチシティが58%以上で、有機系酸化防止剤、無
機系金属塩、あるいはチッ素含有界面活性剤から成る分
解抑制剤の1種又は2種以上を0.003〜3.0重量
%含有しているポリビニルアルコール系重合体からな
り、単繊維強度が18g/d以上、単繊維弾性率が45
0g/d以上であり、かつ160℃、24時間乾熱処理
後の強力保持率が60%以上であるポリビニルアルコー
ル系繊維。
1. A decomposition inhibitor which has a viscosity average degree of polymerization of 1500 or more and a syndiotacticity of 58% or more, and which comprises an organic antioxidant, an inorganic metal salt, or a nitrogen-containing surfactant, or It is made of a polyvinyl alcohol polymer containing 0.003 to 3.0% by weight of two or more kinds, and has a single fiber strength of 18 g / d or more and a single fiber elastic modulus of 45.
A polyvinyl alcohol fiber having a strength retention of 60% or more after dry heat treatment at 160 ° C. for 24 hours.
【請求項2】 粘度平均重合度が1500以上、シンジ
オタクチシティが58%以上のポリビニルアルコール系
重合体を溶剤に溶解し、常法により紡糸して紡糸原糸を
得、それを乾熱延伸するに際して、溶解から乾熱延伸直
前までの間で有機系酸化防止剤、無機系金属塩あるいは
チッ素含有界面活性剤から成る分解抑制剤の1種又は2
種以上を該繊維に添加又は/及び付着せしめ、245℃
以上の温度で総延伸倍率が18倍以上になるように乾熱
延伸する事を特徴とするポリビニルアルコール系繊維の
製造法。
2. A polyvinyl alcohol polymer having a viscosity average degree of polymerization of 1500 or more and syndiotacticity of 58% or more is dissolved in a solvent and spun by a conventional method to obtain a spun yarn, which is dry-heat stretched. At the time of melting, one or two of decomposition inhibitors consisting of an organic antioxidant, an inorganic metal salt or a nitrogen-containing surfactant during the period from dissolution to immediately before hot drawing.
At least 245 ° C by adding or / and adhering one or more seeds to the fiber
A method for producing a polyvinyl alcohol fiber, which comprises drawing at a temperature of the above temperature so that the total draw ratio becomes 18 times or more.
JP26843291A 1991-09-18 1991-09-18 Polyvinyl alcohol fiber and method for producing the same Expired - Fee Related JP2911073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26843291A JP2911073B2 (en) 1991-09-18 1991-09-18 Polyvinyl alcohol fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26843291A JP2911073B2 (en) 1991-09-18 1991-09-18 Polyvinyl alcohol fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0578910A true JPH0578910A (en) 1993-03-30
JP2911073B2 JP2911073B2 (en) 1999-06-23

Family

ID=17458412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26843291A Expired - Fee Related JP2911073B2 (en) 1991-09-18 1991-09-18 Polyvinyl alcohol fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2911073B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146625A (en) * 2000-11-08 2002-05-22 Japan Chemical Innovation Institute Polyvinyl alcohol based fiber and method for producing the same
JP2002302830A (en) * 2001-03-30 2002-10-18 Unitika Chem Co Ltd Polyvinyl alcohol-based fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146625A (en) * 2000-11-08 2002-05-22 Japan Chemical Innovation Institute Polyvinyl alcohol based fiber and method for producing the same
JP2002302830A (en) * 2001-03-30 2002-10-18 Unitika Chem Co Ltd Polyvinyl alcohol-based fiber

Also Published As

Publication number Publication date
JP2911073B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
EP0438635B1 (en) Polyvinyl alcohol fiber and process for its production
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JP2911073B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPS63120107A (en) High-strength and high-elastic modulus polyvinyl alcohol based fiber having excellent hot water resistance and production thereof
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP3067056B2 (en) High strength polyvinyl alcohol fiber and method for producing the same
JPH0681208A (en) Polyvinyl alcohol-based yarn having high modulus of elasticity and its production
JP3021859B2 (en) High performance polyvinyl alcohol fiber and method for producing the same
JP2851017B2 (en) Method for producing high strength polyvinyl alcohol fiber with good dry heat aging property
JPH07278950A (en) Polyvinyl alcohol-based fiber having excellent high-temperature characteristic and its production
JP2888503B2 (en) Polyvinyl alcohol fiber excellent in wet heat resistance and heat aging resistance and method for producing the same
JP3366476B2 (en) High-strength polyvinyl alcohol-based fiber excellent in wet heat resistance and method for producing the same
JPH04343708A (en) Production of high-tenacity polyvinyl alcohol-based fiber having excellent heat aging characteristic
JPH06299410A (en) Polyvinyl alcohol-based fiber and its production
JP2826183B2 (en) Production method of polyvinyl alcohol fiber
JPH06128809A (en) Highly durable polyvinyl alcohol-based fiber and its production
JP3183479B2 (en) High moisture-heat resistance high-strength polyvinyl alcohol fiber and method for producing the same
JP2656339B2 (en) High strength polyvinyl alcohol fiber
JPH04240208A (en) Production of high-elastic modulus polyvinyl alcoholic fiber
JPH04108109A (en) Polyvinyl alcohol-based fiber and production thereof
JP3183483B2 (en) Polyvinyl alcohol fiber having good fatigue resistance and method for producing the same
JP3210785B2 (en) Polyvinyl alcohol cord and method for producing the same
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JPH05321020A (en) Method for continuously acetalizing polyvinyl alcohol-based yarn
JPH05287608A (en) Production of high-tenancity polyvinyl alcohol-based fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees