JPH05243579A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05243579A
JPH05243579A JP4075981A JP7598192A JPH05243579A JP H05243579 A JPH05243579 A JP H05243579A JP 4075981 A JP4075981 A JP 4075981A JP 7598192 A JP7598192 A JP 7598192A JP H05243579 A JPH05243579 A JP H05243579A
Authority
JP
Japan
Prior art keywords
substrate
contact
porous
patterned
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4075981A
Other languages
Japanese (ja)
Inventor
Masaru Sakamoto
勝 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4075981A priority Critical patent/JPH05243579A/en
Priority to US08/021,670 priority patent/US5650664A/en
Priority to DE69321499T priority patent/DE69321499T2/en
Priority to EP93102982A priority patent/EP0558007B1/en
Publication of JPH05243579A publication Critical patent/JPH05243579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device which exhibits excellent contact characteristics and has a high speed and a low power consumption by providing at least a layer made of Ti compound between an ITO thin film and an Si region. CONSTITUTION:A polycrystalline silicon 202 to become a channel is formed on a glass board 201, patterned, a gate film 203 is then formed, a gate electrode 204 is formed, patterned, source.drain 205 are then ion implanted with the patterned electrode as a mask, and then an interlayer insulating film 206 is formed. Then, a through hole window is opened at the region 205 by RIE, Ti 207 is then formed by a CVD method or a sputtering method, and patterned to form an ITO. A contact resistance is measured, and a contact resistance of 50OMEGA or less can be obtained in a contact size of 3X3mum. A semiconductor device which has excellent and stable contact characteristics can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置、特に液晶表
示装置、光電交換装置等に好適に使用し得る、安定かつ
優れたコンタクト特性を示す半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device having stable and excellent contact characteristics, which can be suitably used for liquid crystal display devices, photoelectric exchange devices and the like.

【0002】[0002]

【従来の技術】従来、n型又はp型SiとITO膜との
コンタクト構造として、SiとITO膜のコンタクトを
直接取る構造(特開昭58−190063号公報)、S
iとITO膜をIn、Sn等のバリアメタルを介してコ
ンタクトを取る構造(特開昭59−22361号公報、
特開昭59−40582号公報)等があった。
2. Description of the Related Art Conventionally, as a contact structure between an n-type or p-type Si film and an ITO film, a structure in which the Si film and the ITO film are directly contacted with each other (JP-A-58-190063), S
A structure in which i and the ITO film are in contact with each other through a barrier metal such as In or Sn (Japanese Patent Laid-Open No. 59-22361,
JP-A-59-40582) and the like.

【0003】しかし、上記従来の方法ではオーミックコ
ンタクトを取りにくい、或いはコンタクト抵抗値がKΩ
〜MΩ代と大きくなる、更には、ITOの蒸着後、層間
絶縁膜を蒸着する工程(250℃以上の熱処理)でコン
タクト値が更に上昇するという問題もあり、電子特性の
ばらつき、遅延時間を大きくし、信頼性低下の原因とな
っていた。
However, it is difficult to make ohmic contact with the above-mentioned conventional method, or the contact resistance value is KΩ.
There is also a problem that the contact value further increases in the step of depositing the interlayer insulating film (heat treatment at 250 ° C. or higher) after vapor deposition of ITO, which causes a large variation in electronic characteristics and a large delay time. However, this has caused a decrease in reliability.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点を
解決し、優れたコンタクト特性を示す高速かつ低消費電
力の半導体装置を提供し、更に、該半導体装置を利用し
た画像品質の高い液晶表示装置、光電交換装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a high speed and low power consumption semiconductor device exhibiting excellent contact characteristics, and further, a liquid crystal having high image quality using the semiconductor device. An object is to provide a display device and a photoelectric conversion device.

【0005】[0005]

【課題を解決するための手段】即ち本発明は、ITO薄
膜とSi領域との間に少なくともTi化合物よりなる層
を設けたことを特徴とする半導体装置である。
That is, the present invention is a semiconductor device characterized in that a layer made of at least a Ti compound is provided between an ITO thin film and a Si region.

【0006】本発明の半導体装置はガラス基板上に形成
しても良いし、Si基板上に形成しても良い。
The semiconductor device of the present invention may be formed on a glass substrate or a Si substrate.

【0007】特に、本発明の半導体装置を液晶表示装置
に適用する場合には、以下に示す方法により製造される
単結晶Si層を有する半導体基板を用いることにより、
液晶素子、液晶駆動回路及びその他の周辺駆動回路を同
時に同一基板上に作成することができ、好ましい。以
下、その方法につき説明する。
In particular, when the semiconductor device of the present invention is applied to a liquid crystal display device, by using a semiconductor substrate having a single crystal Si layer manufactured by the method described below,
A liquid crystal element, a liquid crystal drive circuit and other peripheral drive circuits can be simultaneously formed on the same substrate, which is preferable. The method will be described below.

【0008】半導体基板の単結晶Si層は単結晶Si基
体を多孔質化した多孔質Si基体を用いて形成したもの
である。
The single crystal Si layer of the semiconductor substrate is formed by using a porous Si substrate obtained by making the single crystal Si substrate porous.

【0009】この多孔質Si基体には、透過型電子顕微
鏡による観察によれば、平均約600Å程度の径の孔が
形成されており、その密度は単結晶Siに比べると、半
分以下になるにもかかわらず、その単結晶性は維持され
ており、多孔質層の上部へ単結晶Si層をエピタキシャ
ル成長させることも可能である。ただし、1000℃以
上では、内部の孔の再配列が起こり、増速エッチングの
特性が損なわれる。このため、Si層のエピタキシャル
成長には、分子線エピタキシャル成長法、プラズマCV
D法、熱CVD法、光CVD法、バイアス・スパッタ
法、液晶成長法等の低温成長が好適とされる。
According to observation with a transmission electron microscope, pores having an average diameter of about 600 Å are formed in this porous Si substrate, and the density thereof is less than half that of single crystal Si. Nevertheless, its single crystallinity is maintained, and it is possible to epitaxially grow a single crystal Si layer on top of the porous layer. However, at 1000 ° C. or higher, rearrangement of internal holes occurs and the characteristics of enhanced etching are impaired. Therefore, for the epitaxial growth of the Si layer, the molecular beam epitaxial growth method, plasma CV
Low temperature growth such as D method, thermal CVD method, photo CVD method, bias sputtering method, liquid crystal growth method, etc. is suitable.

【0010】ここでP型Siを多孔質化した後に単結晶
層をエピタキシャル成長させる方法について説明する。
Here, a method for epitaxially growing a single crystal layer after making P-type Si porous will be described.

【0011】先ず、Si単結晶基体を用意し、それをH
F溶液を用いた陽極化成法によって、多孔質化する。単
結晶Siの密度は2.33g/cm3 であるが、多孔質
Si基体の密度はHF溶液濃度を20〜50重量%に変
化させることで、0.6〜1.1g/cm3 に変化させ
ることができる。この多孔質層は下記の理由により、P
型Si基体に形成され易い。
First, a Si single crystal substrate is prepared, and H
It is made porous by the anodization method using the F solution. The density of single crystal Si is 2.33 g / cm 3 , but the density of the porous Si substrate changes to 0.6 to 1.1 g / cm 3 by changing the HF solution concentration to 20 to 50% by weight. Can be made. This porous layer is P because of the following reasons.
It is easily formed on the mold Si substrate.

【0012】多孔質Siは半導体の電解研磨の研究過程
において発見されたものであり、陽極化成におけるSi
の溶解反応において、HF溶液中のSiの陽極反応には
正孔が必要であり、その反応は、次のように示される。
Porous Si was discovered in the course of research on electrolytic polishing of semiconductors, and Si in anodization was used.
In the dissolution reaction of 1), holes are required for the anodic reaction of Si in the HF solution, and the reaction is shown as follows.

【0013】 Si+2HF+(2−n)e+ →SiF2 +2H+ +ne- SiF2 +2HF→SiF4 +H2 SiF4 +2HF→H2 SiF6 又は、 Si+4HF+(4−λ)e+ →SiF4 +4H+ +λe- SiF4 +2HF→H2 SiF6 ここで、e+ 及び、e- はそれぞれ、正孔と電子を表し
ている。また、n及びλはそれぞれSi1原子が溶解す
るために必要な正孔の数であり、n>2又は、λ>4な
る条件が満たされた場合に多孔質Siが形成されるとし
ている。
Si + 2HF + (2-n) e + → SiF 2 + 2H + + ne - SiF 2 + 2HF → SiF 4 + H 2 SiF 4 + 2HF → H 2 SiF 6 or Si + 4HF + (4-λ) e + → SiF 4 + 4H + + λe - where SiF 4 + 2HF → H 2 SiF 6, e + and, e - respectively represent a positive hole and an electron. Further, n and λ are the numbers of holes necessary for dissolving Si1 atoms, respectively, and porous Si is formed when the condition of n> 2 or λ> 4 is satisfied.

【0014】以上のことから、正孔の存在するP型Si
は、多孔質化され易いと言える。
From the above, P-type Si in which holes are present
Can easily be said to be porous.

【0015】一方、高濃度N型Siも多孔質化されうる
ことが報告されているおり、従って、P型、N型の別に
こだわらずに多孔質化を行うことができる。
On the other hand, it has been reported that high-concentration N-type Si can also be made porous, so that it can be made porous regardless of whether it is P-type or N-type.

【0016】また、多孔質層はその内部に大量の空隙が
形成されているために、密度が半分以下に減少する。そ
の結果、体積に比べて表面積が飛躍的に増大するため、
その化学エッチング速度は、通常の単結晶層のエッチン
グ速度に比べて著しく増速される。
Further, since the porous layer has a large amount of voids formed therein, the density thereof is reduced to less than half. As a result, the surface area increases dramatically compared to the volume,
Its chemical etching rate is significantly increased as compared with the etching rate of a normal single crystal layer.

【0017】単結晶Siを陽極化成によって多孔質化す
る条件を以下に示す。尚、陽極化成によって形成する多
孔質Siの出発材料は、単結晶Siに限定されるもので
はなく、他の結晶構造のSiでも可能である。
The conditions for making single crystal Si porous by anodization are shown below. The starting material of porous Si formed by anodization is not limited to single crystal Si, and Si having another crystal structure may be used.

【0018】 印加電圧: 2.6(V) 電流密度: 30(mA・cm-2) 陽極化成溶液: HF:H2 O:C25 OH=1:
1:1 時間: 2.4(時間) 多孔質Siの厚み: 300(μm) Porosity: 56(%) このようにして形成した多孔質化Si基体の上にSiを
エピタキシャル成長させて単結晶Si薄膜を形成する。
単結晶Si薄膜の厚さは好ましくは50μm以下、さら
に好ましくは20μm以下である。
Applied voltage: 2.6 (V) Current density: 30 (mA · cm −2 ) Anodizing solution: HF: H 2 O: C 2 H 5 OH = 1: 1
1: 1 time: 2.4 (hour) Thickness of porous Si: 300 (μm) Porosity: 56 (%) Single crystal Si thin film prepared by epitaxially growing Si on the porous Si substrate thus formed. To form.
The thickness of the single crystal Si thin film is preferably 50 μm or less, more preferably 20 μm or less.

【0019】次に上記単結晶Si薄膜表面を酸化した
後、最終的に基板を構成することになる基体を用意し、
単結晶Si表面の酸化膜と上記基体を貼り合わせる。或
いは新たに用意した単結晶Si基体の表面を酸化した
後、上記多孔質Si基体上の単結晶Si層と貼り合わせ
る。この酸化膜を基体と単結晶Si層の間に設ける理由
は、例えば基体としてガラスを用いた場合、Si活性層
の下地界面により発生する界面準位は上記ガラス界面に
比べて、酸化膜界面の方が準位を低くできるため、電子
デバイスの特性を、著しく向上させることができるため
である。さらに、後述する選択エッチングにより多孔質
Si気体をエッチング除去した単結晶Si薄膜のみを新
しい基体に貼り合わせても良い。貼り合わせはそれぞれ
の表面を洗浄後に室温で接触させるだけでファン デル
ワールス力で簡単には剥すことができない程充分に密
着しているが、これをさらに200〜900℃、好まし
くは600〜900℃の温度で窒素雰囲気下熱処理し完
全に貼り合わせる。
Next, after oxidizing the surface of the above-mentioned single crystal Si thin film, a substrate which will eventually form a substrate is prepared,
The oxide film on the surface of the single crystal Si and the above substrate are bonded together. Alternatively, after the surface of a newly prepared single crystal Si substrate is oxidized, it is attached to the single crystal Si layer on the porous Si substrate. The reason for providing this oxide film between the substrate and the single crystal Si layer is that, for example, when glass is used as the substrate, the interface level generated by the underlying interface of the Si active layer is higher than that of the glass interface. This is because the level can be lowered and the characteristics of the electronic device can be significantly improved. Furthermore, only the single crystal Si thin film from which the porous Si gas has been removed by etching by selective etching described below may be attached to a new substrate. The bonding is such that the surfaces are sufficiently adhered so that they cannot be easily peeled off by Van der Waals force only by bringing them into contact with each other at room temperature, but this is further 200 to 900 ° C, preferably 600 to 900 ° C. Heat treatment under a nitrogen atmosphere at the temperature of and bond them completely.

【0020】さらに、上記の貼り合わせた2枚の基体全
体にSi34 層をエッチング防止膜として堆積し、多
孔質Si基体の表面上のSi34 層のみを除去する。
このSi34 層の代わりにアピエゾンワックスを用い
ても良い。この後、多孔質Si基体を全部エッチング等
の手段で除去することにより薄膜単結晶Si層を有する
半導体基板が得られる。
Further, a Si 3 N 4 layer is deposited as an etching prevention film on the whole of the above-mentioned two bonded substrates, and only the Si 3 N 4 layer on the surface of the porous Si substrate is removed.
Apiezon wax may be used instead of the Si 3 N 4 layer. Then, the porous Si substrate is entirely removed by a method such as etching to obtain a semiconductor substrate having a thin film single crystal Si layer.

【0021】この多孔質Si基体のみを無電解湿式エッ
チングする選択エッチング法についていて説明する。
A selective etching method for electroless wet etching only this porous Si substrate will be described.

【0022】結晶Siに対してはエッチング作用を持た
ず、多孔質Siのみを選択エッチング可能なエッチング
液としては、弗酸、フッ化アンモニウム(NH4 F)や
フッ化水素(HF)等バッファード弗酸、過酸化水素水
を加えた弗酸又はバッファード弗酸の混合液、アルコー
ルを加えた弗酸又はバッファード弗酸の混合液、過酸化
水素水とアルコールとを加えた弗酸又はバッファード弗
酸の混合液が好適に用いられる。これらの溶液に貼り合
わせた基板を湿潤させてエッチングを行う。エッチング
速度は弗酸、バッファード弗酸、過酸化水素水の溶液濃
度及び温度に依存する。過酸化水素水を添加することに
よって、Siの酸化を増速し、反応速度を無添加に比べ
て増速することが可能となり、さらに過酸化水素水の比
率を変えることにより、その反応速度を制御することが
できる。またアルコールを添加することにより、エッチ
ングによる反応生成気体の気泡を、瞬時にエッチング表
面から攪拌することなく除去でき、均一に且つ効率よく
多孔質Siをエッチングすることができる。
As an etching solution which does not have an etching effect on crystalline Si but can selectively etch only porous Si, a buffered material such as hydrofluoric acid, ammonium fluoride (NH 4 F) or hydrogen fluoride (HF) can be used. Hydrofluoric acid, mixed solution of hydrofluoric acid or buffered hydrofluoric acid with hydrogen peroxide solution, hydrofluoric acid with alcohol or buffered hydrofluoric acid, hydrofluoric acid with hydrogen peroxide solution and alcohol or buffer A mixed solution of dehydrofluoric acid is preferably used. Etching is performed by moistening the substrate bonded to these solutions. The etching rate depends on the solution concentration and temperature of hydrofluoric acid, buffered hydrofluoric acid, and hydrogen peroxide solution. By adding hydrogen peroxide solution, the oxidation of Si can be accelerated and the reaction rate can be increased as compared with that without addition. By further changing the ratio of hydrogen peroxide solution, the reaction rate can be increased. Can be controlled. Further, by adding alcohol, it is possible to instantaneously remove the bubbles of the reaction product gas due to etching from the etching surface without stirring, and it is possible to uniformly and efficiently etch the porous Si.

【0023】バッファード弗酸中のHF濃度は、エッチ
ング液に対して、好ましくは1〜95重量%、より好ま
しくは1〜85重量%、さらに好ましくは1〜70重量
%の範囲で設定され、バッファード弗酸中のNH4 F濃
度は、エッチング液に対して、好ましくは1〜95重量
%、より好ましくは5〜90重量%、さらに好ましくは
5〜80重量%の範囲で設定される。
The HF concentration in the buffered hydrofluoric acid is set in the range of preferably 1 to 95% by weight, more preferably 1 to 85% by weight, still more preferably 1 to 70% by weight, based on the etching solution. The NH 4 F concentration in the buffered hydrofluoric acid is set in the range of preferably 1 to 95% by weight, more preferably 5 to 90% by weight, further preferably 5 to 80% by weight, based on the etching solution.

【0024】HF濃度は、エッチング液に対して、好ま
しくは1〜95重量%、より好ましくは5〜90重量
%、さらに好ましくは5〜80重量%の範囲で設定され
る。
The HF concentration is preferably set in the range of 1 to 95% by weight, more preferably 5 to 90% by weight, further preferably 5 to 80% by weight, based on the etching solution.

【0025】H22 濃度は、エッチング液に対して、
好ましくは1〜95重量%、より好ましくは5〜90重
量%、さらに好ましくは10〜80重量%で、且つ上記
過酸化水素水の効果を奏する範囲で設定される。
The H 2 O 2 concentration depends on the etching solution.
It is preferably 1 to 95% by weight, more preferably 5 to 90% by weight, still more preferably 10 to 80% by weight, and is set within a range in which the effect of the hydrogen peroxide solution is exhibited.

【0026】アルコール濃度は、エッチング液に対し
て、好ましくは80重量%、より好ましくは60重量%
以下、さらに好ましくは40重量%以下で、且つ上記ア
ルコールの効果を奏する範囲で設定される。
The alcohol concentration is preferably 80% by weight, more preferably 60% by weight, based on the etching solution.
Hereafter, it is more preferably set to 40% by weight or less and within the range in which the effect of the alcohol is exhibited.

【0027】温度は、好ましくは0〜100℃、より好
ましくは5〜80℃、さらに好ましくは5〜60℃の範
囲で設定される。
The temperature is preferably set in the range of 0 to 100 ° C, more preferably 5 to 80 ° C, and further preferably 5 to 60 ° C.

【0028】本工程に用いられるアルコールはエチルア
ルコールの他、イソプロピルアルコールなど製造工程等
に実用上差し支えなく、さらに上記アルコール添加効果
を望むことのできるアルコールを用いることができる。
As the alcohol used in this step, in addition to ethyl alcohol, isopropyl alcohol or the like which can be used practically in the production step and which is desired to have the above-mentioned alcohol addition effect can be used.

【0029】このようにして得られた半導体基板は、通
常のSiウエハーと同等な単結晶Si層が平坦にしかも
均一に薄層化されて基板全域に大面積に形成されてい
る。
In the semiconductor substrate thus obtained, a single crystal Si layer equivalent to that of an ordinary Si wafer is flatly and uniformly thinned to have a large area over the entire substrate.

【0030】この半導体基板の単結晶Si層を部分酸化
法或いは島状にエッチングすることにより分離し、不純
物をドープしてp或いはnチャネルトランジスタを形成
する。
The single crystal Si layer of this semiconductor substrate is separated by a partial oxidation method or etched into an island shape, and is doped with impurities to form a p- or n-channel transistor.

【0031】[0031]

【実施例】以下、実施例により本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to examples.

【0032】(実施例1)図1は本実施例のコンタクト
構造の断面図である。図1において、ガラス基板101
上にポリシリコンTFTが形成され、絶縁膜106を介
してITO膜108が形成されている。102〜105
はそれぞれポリシリコンTFTのチャンネル部、層間絶
縁膜、ゲート電極、ソース・ドレイン領域である。
(Embodiment 1) FIG. 1 is a sectional view of a contact structure of this embodiment. In FIG. 1, a glass substrate 101
A polysilicon TFT is formed on top, and an ITO film 108 is formed via an insulating film 106. 102-105
Are a channel portion of a polysilicon TFT, an interlayer insulating film, a gate electrode, and a source / drain region, respectively.

【0033】本実施例においては酸素がソースドレイン
領域105まで拡散しない様に、ソースドレイン領域1
05とITO膜108の接触部にバリアメタルとしてT
i化合物107を設けている。Ti化合物107を形成
することにより、ITO膜108に含まれる酸素が後工
程の熱処理によってソースドレイン領域105まで移動
し、コンタクト特性を劣化することを防止できる。
In this embodiment, the source / drain region 1 is formed so that oxygen does not diffuse to the source / drain region 105.
05 as a barrier metal at the contact portion between the ITO film and the ITO film 108.
i-compound 107 is provided. By forming the Ti compound 107, it is possible to prevent the oxygen contained in the ITO film 108 from moving to the source / drain region 105 due to the heat treatment in the subsequent step and deteriorating the contact characteristics.

【0034】以下、図2を用いて製造工程の概略を説明
する。
The manufacturing process will be outlined below with reference to FIG.

【0035】図2(a)に示す様にガラス基板201に
チャンネル部となる多結晶シリコン202を形成し、パ
ターニング後、ゲート膜203を形成する。
As shown in FIG. 2A, a polycrystalline silicon 202 which will be a channel portion is formed on a glass substrate 201, and after patterning, a gate film 203 is formed.

【0036】続いて、図2(b)に示す様に、ゲート電
極204を形成し、パターニング後、ゲート電極204
をマスクとしてソース・ドレイン205をイオン注入し
た後、層間絶縁膜206を形成する。
Subsequently, as shown in FIG. 2B, a gate electrode 204 is formed and patterned, and then the gate electrode 204 is formed.
After the source / drain 205 is ion-implanted using as a mask, an interlayer insulating film 206 is formed.

【0037】更に、図2(c)に示す様に、ソース・ド
レイン領域205にRIEを用いてスルーホール(コン
タクト)窓開けを行う。続いてCVD法、またはスパッ
タ法を用いてTi207を形成する。膜厚は500オン
グストローム以上であれば、酸素に対する阻止能は十分
であるが、成膜方法等により粒径等が異なることにより
1000オングストローム以上が望ましい。
Further, as shown in FIG. 2C, a through hole (contact) window is formed in the source / drain region 205 by using RIE. Subsequently, Ti 207 is formed by using the CVD method or the sputtering method. If the film thickness is 500 angstroms or more, the ability to block oxygen is sufficient, but it is preferably 1000 angstroms or more because the particle size and the like vary depending on the film forming method and the like.

【0038】その後、このTi層207をパターニング
し、ITOを形成する。ITOはスパッタ法により形成
するのがよい。CVD法では、ITOの酸素含有量によ
り膜特性が変化するため、抵抗値の小さいITOを形成
するのは困難である。
Then, the Ti layer 207 is patterned to form ITO. ITO is preferably formed by a sputtering method. In the CVD method, it is difficult to form ITO having a small resistance value because the film characteristics change depending on the oxygen content of ITO.

【0039】ITOの蒸着条件は、基板温度200℃、
ArとO2 (1%)の雰囲気中(1Pa)、300Wの
パワーでスパッタした。
The ITO deposition conditions are: substrate temperature 200 ° C.
Sputtering was performed at a power of 300 W in an atmosphere of Ar and O 2 (1%) (1 Pa).

【0040】その後、コンタクト抵抗の測定を行った。
3μm×3μmのコンタクトサイズにおいて、50Ω以
下のコンタクト抵抗を得ることができた。
After that, the contact resistance was measured.
With a contact size of 3 μm × 3 μm, a contact resistance of 50Ω or less could be obtained.

【0041】(実施例2)Ti107をTiONまたは
TiNとした以外は実施例1と同様にして、実施例1に
比べコンタクト抵抗は更に低減され、20Ω以下のコン
タクト抵抗を得ることができた。また、膜厚を1000
オングストロームから2000オングストロームに増加
するとコンタクト抵抗は更に安定した。
(Example 2) The contact resistance was further reduced as compared with Example 1 except that Ti107 was TiON or TiN, and a contact resistance of 20Ω or less could be obtained. In addition, the film thickness is 1000
The contact resistance became more stable when increasing from angstrom to 2000 angstrom.

【0042】(実施例3)図3は本実施例のコンタクト
構造の断面図である。スルーホールを開けた後、Al1
11とTiN又はTiON107を連続でスパッタして
パターニング後、ITO膜108を堆積した以外は実施
例1と同様である。
(Embodiment 3) FIG. 3 is a sectional view of a contact structure of this embodiment. After opening the through hole, Al1
Example 11 is the same as Example 1 except that the ITO film 108 was deposited after 11 and TiN or TiON 107 were successively sputtered and patterned.

【0043】スルーホールサイズが2〜2.5μm□に
おいても30〜50Ωのコンタクト抵抗を維持すること
ができた。
A contact resistance of 30 to 50Ω could be maintained even when the through hole size was 2 to 2.5 μm.

【0044】本実施例によれば、Siの不純物濃度が1
20以下と低い場合でも良好なコンタクト特性を得るこ
とができる。
According to this embodiment, the impurity concentration of Si is 1
Good contact characteristics can be obtained even when it is as low as 0 20 or less.

【0045】[0045]

【発明の効果】以上説明の様に、本発明によれば、良好
かつ安定なコンタクト特性を有する半導体装置を得るこ
とができ、該半導体装置を適用することにより、画像品
質の高い液晶表示装置、光電交換装置を得ることができ
る。
As described above, according to the present invention, a semiconductor device having good and stable contact characteristics can be obtained, and by applying the semiconductor device, a liquid crystal display device having high image quality, A photoelectric conversion device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のコンタクト構造の断面図。FIG. 1 is a sectional view of a contact structure of Example 1.

【図2】実施例1のコンタクト構造の概略工程図。2A to 2C are schematic process diagrams of the contact structure of Example 1. FIG.

【図3】実施例3のコンタクト構造の断面図。FIG. 3 is a cross-sectional view of a contact structure of Example 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 31/04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ITO薄膜とSi領域との間に少なくとも
Ti化合物よりなる層を設けたことを特徴とする半導体
装置。
1. A semiconductor device comprising a layer made of at least a Ti compound between an ITO thin film and a Si region.
JP4075981A 1992-02-28 1992-02-28 Semiconductor device Pending JPH05243579A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4075981A JPH05243579A (en) 1992-02-28 1992-02-28 Semiconductor device
US08/021,670 US5650664A (en) 1992-02-28 1993-02-24 Connector effecting an improved electrical connection and a semiconductor apparatus using such connector
DE69321499T DE69321499T2 (en) 1992-02-28 1993-02-25 Electrical connection between a silicon surface and an oxide layer with an indium content
EP93102982A EP0558007B1 (en) 1992-02-28 1993-02-25 Electrical connection between a region of silicon and a film of oxide containing indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075981A JPH05243579A (en) 1992-02-28 1992-02-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH05243579A true JPH05243579A (en) 1993-09-21

Family

ID=13591953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075981A Pending JPH05243579A (en) 1992-02-28 1992-02-28 Semiconductor device

Country Status (4)

Country Link
US (1) US5650664A (en)
EP (1) EP0558007B1 (en)
JP (1) JPH05243579A (en)
DE (1) DE69321499T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186264A (en) * 1994-12-28 1996-07-16 Seiko Epson Corp Thin-film transistor and its production
JP2011142316A (en) * 2009-12-11 2011-07-21 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860869B2 (en) * 1993-12-02 1999-02-24 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JPH07221174A (en) * 1993-12-10 1995-08-18 Canon Inc Semiconductor device and manufacturing method thereof
JPH09105953A (en) * 1995-10-12 1997-04-22 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US6900855B1 (en) * 1995-10-12 2005-05-31 Semiconductor Energy Laboratory Co., Ltd. Display device having resin black matrix over counter substrate
JP3597305B2 (en) * 1996-03-05 2004-12-08 株式会社半導体エネルギー研究所 Liquid crystal display device and manufacturing method thereof
JP2850850B2 (en) * 1996-05-16 1999-01-27 日本電気株式会社 Method for manufacturing semiconductor device
US7298447B1 (en) 1996-06-25 2007-11-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display panel
JP3640224B2 (en) * 1996-06-25 2005-04-20 株式会社半導体エネルギー研究所 LCD panel
JP3856889B2 (en) 1997-02-06 2006-12-13 株式会社半導体エネルギー研究所 Reflective display device and electronic device
TW531684B (en) * 1997-03-31 2003-05-11 Seiko Epson Corporatoin Display device and method for manufacturing the same
KR100252223B1 (en) * 1997-08-30 2000-04-15 윤종용 Cleaning method of contact hole of semiconductor device
JP3362008B2 (en) * 1999-02-23 2003-01-07 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JP4450850B2 (en) * 2007-09-26 2010-04-14 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
CN106960814A (en) * 2016-01-08 2017-07-18 中华映管股份有限公司 The manufacture method of dot structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276746A (en) * 1988-04-28 1989-11-07 Sony Corp Formation of wiring
JPH0267763A (en) * 1988-09-02 1990-03-07 Sony Corp Semiconductor device
JPH03129326A (en) * 1989-10-13 1991-06-03 Hitachi Ltd Wiring structure and wiring method for semiconductor device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190063A (en) * 1982-04-30 1983-11-05 Seiko Epson Corp Thin film transistor for transmission type liquid crystal display panel
JPS5922361A (en) * 1982-07-28 1984-02-04 Seiko Epson Corp Semiconductor device
JPS5940582A (en) * 1982-08-30 1984-03-06 Seiko Epson Corp Semiconductor device
US4646424A (en) * 1985-08-02 1987-03-03 General Electric Company Deposition and hardening of titanium gate electrode material for use in inverted thin film field effect transistors
EP0211402B1 (en) * 1985-08-02 1991-05-08 General Electric Company Process and structure for thin film transistor matrix addressed liquid crystal displays
JPS62250422A (en) * 1986-04-23 1987-10-31 Matsushita Electric Ind Co Ltd Liquid crystal panel and its production
JPH01102434A (en) * 1987-10-15 1989-04-20 Sharp Corp Matrix type liquid crystal panel
JP2596949B2 (en) * 1987-11-06 1997-04-02 シャープ株式会社 Manufacturing method of liquid crystal display device
JP2940051B2 (en) * 1990-02-09 1999-08-25 富士通株式会社 Method of forming insulating thin film
JPH06208132A (en) * 1990-03-24 1994-07-26 Sony Corp Liquid crystal display device
US5367179A (en) * 1990-04-25 1994-11-22 Casio Computer Co., Ltd. Thin-film transistor having electrodes made of aluminum, and an active matrix panel using same
US5402254B1 (en) * 1990-10-17 1998-09-22 Hitachi Ltd Liquid crystal display device with tfts in which pixel electrodes are formed in the same plane as the gate electrodes with anodized oxide films before the deposition of silicon
KR960014823B1 (en) * 1991-03-15 1996-10-21 가부시기가이샤 히다찌세이사구쇼 Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276746A (en) * 1988-04-28 1989-11-07 Sony Corp Formation of wiring
JPH0267763A (en) * 1988-09-02 1990-03-07 Sony Corp Semiconductor device
JPH03129326A (en) * 1989-10-13 1991-06-03 Hitachi Ltd Wiring structure and wiring method for semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186264A (en) * 1994-12-28 1996-07-16 Seiko Epson Corp Thin-film transistor and its production
JP2011142316A (en) * 2009-12-11 2011-07-21 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
US9142683B2 (en) 2009-12-11 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
EP0558007A3 (en) 1993-11-03
US5650664A (en) 1997-07-22
DE69321499T2 (en) 1999-05-06
DE69321499D1 (en) 1998-11-19
EP0558007B1 (en) 1998-10-14
EP0558007A2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
JPH05243579A (en) Semiconductor device
JPH05217825A (en) Manufacture of semiconductor substrate
US5714790A (en) Semiconductor device with an indium-tin-oxide in contact with a semiconductor or metal
JPH05217821A (en) Manufacture of semiconductor substrate
JPH05206422A (en) Semiconductor device and its manufacture
JPH05241200A (en) Liquid crystal display device
JPH06204168A (en) Semiconductor device
JPH07162002A (en) Manufacture of semiconductor film and manufacture of thin-film transistor
JP2834928B2 (en) Semiconductor element
JP3101779B2 (en) Liquid crystal display
JPH06260644A (en) Manufacture of semiconductor device
JPH05210090A (en) Signal input method
EP0558055B1 (en) Semiconductor device comprising an ITO film
JPH05241139A (en) Liquid crystal display device
JPS63119576A (en) Thin film transistor
JP3088032B2 (en) Semiconductor device
JPH05232482A (en) Liquid crystal display device
JP3128076B2 (en) Method for manufacturing bipolar transistor and method for manufacturing semiconductor device using the same
JPH05218326A (en) Semiconductor device and liquid crystal display device
JP3112102B2 (en) Semiconductor device
JP3112100B2 (en) Manufacturing method of semiconductor substrate
JP3098815B2 (en) Liquid crystal display
JP3098811B2 (en) Insulated gate field effect transistor and semiconductor device using the same
JPH05210115A (en) Liquid crystal display device
JP3088033B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010417